+ All Categories
Home > Documents > AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015...

AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015...

Date post: 14-Jul-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
24
A Study of Open Charm Produc5on in p+p Collisions at STAR David Tlusty Nuclear Physics Ins5tute AS CR Czech Technical University Prague N
Transcript
Page 1: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

A  Study  of  Open  Charm  Produc5on  in  p+p  Collisions  at  STAR

David  TlustyNuclear  Physics  Ins5tute  AS  CR

Czech  Technical  University  Prague

ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 1

Heavy Flavor Measurements at STAR

Nuclear Physics Institute Academy of Sciences of the Czech Republic

Róbert Vértesi

[email protected] .

for the

collaboration

Page 2: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

l+

i_l

D0

_K /+

D0

cc

9.6%

3.89%

56.5%

56.5%

_

K

David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

Introduc5on

2

ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4

1. Open heavy flavor

Open Charm Production – D* Reconstruction -

9

)2) (GeV/c/)-M(K//M(K0.14 0.145 0.15 0.155 0.16 0.165

Cou

nts

0

500

1000

1500

2000

2500

right sign

wrong sign

side band

)2) (GeV/c/M(K1.7 1.75 1.8 1.85 1.9 1.95 2 2.05

Cou

nts

0

200

400

600

800

1000

1200

1400

1600

1800

2000

candidates0 D

side band

dE/d

x/

mn

-5

0

5

10 (a)pK

/

edE

/dx

Kmn

-5

0

5

10 (b)

K

p

/

Momentum (GeV/c)0 1 2 3 4 5

TOF

Kmn

-20

-10

0

10(c)

K

/

p

D0

K- π+

D*+

π+

p+p 200 GeV

Quark Matter 2014, Zhenyu Ye STAR: PRD 86, 072013 (2012)

!  Heavy quarks c, b !  Produced in initial hard processes !  Probe the strongly interacting Quark–Gluon Plasma !  Modified spectrum: access parton energy loss !  Flow: sensitive to dynamics, thermalization

!  Semi-leptonic decays !  Higher branching ratio, easy to trigger on !  Indirect access to kinematics,

mixture of c and b contributions

!  Hadronic reconstruction !  Direct access to kinematics !  Large combinatorial bg., difficult to trigger

April 8, 2014 WWND

Heavy quarks

✓ c and b quarks are produced in initial hard scattering

3

• Degree of medium thermalization – production and elliptic 4ow sensitive to dynamics of the medium

• Parton energy loss mechanism

• Cross-sections calculable within pQCD

• Unique probes of QGP properties

★Heavy  Quarks  c,  b★produced  in  ini5al  hard  processes★produc5on  well  described  by  pQCD  ★excellent  probe  of  the  strongly  interac5ng  Quark-­‐Gluon  Plasma  

Page 3: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

l+

i_l

D0

_K /+

D0

cc

9.6%

3.89%

56.5%

56.5%

_

K

David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

Introduc5on

«Direct  reconstruc5on  of  open  charm  mesons  

2

ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4

1. Open heavy flavor

Open Charm Production – D* Reconstruction -

9

)2) (GeV/c/)-M(K//M(K0.14 0.145 0.15 0.155 0.16 0.165

Cou

nts

0

500

1000

1500

2000

2500

right sign

wrong sign

side band

)2) (GeV/c/M(K1.7 1.75 1.8 1.85 1.9 1.95 2 2.05

Cou

nts

0

200

400

600

800

1000

1200

1400

1600

1800

2000

candidates0 D

side band

dE/d

x/

mn

-5

0

5

10 (a)pK

/

edE

/dx

Kmn

-5

0

5

10 (b)

K

p

/

Momentum (GeV/c)0 1 2 3 4 5

TOF

Kmn

-20

-10

0

10(c)

K

/

p

D0

K- π+

D*+

π+

p+p 200 GeV

Quark Matter 2014, Zhenyu Ye STAR: PRD 86, 072013 (2012)

!  Heavy quarks c, b !  Produced in initial hard processes !  Probe the strongly interacting Quark–Gluon Plasma !  Modified spectrum: access parton energy loss !  Flow: sensitive to dynamics, thermalization

!  Semi-leptonic decays !  Higher branching ratio, easy to trigger on !  Indirect access to kinematics,

mixture of c and b contributions

!  Hadronic reconstruction !  Direct access to kinematics !  Large combinatorial bg., difficult to trigger

April 8, 2014 WWND

Heavy quarks

✓ c and b quarks are produced in initial hard scattering

3

• Degree of medium thermalization – production and elliptic 4ow sensitive to dynamics of the medium

• Parton energy loss mechanism

• Cross-sections calculable within pQCD

• Unique probes of QGP properties

★Heavy  Quarks  c,  b★produced  in  ini5al  hard  processes★produc5on  well  described  by  pQCD  ★excellent  probe  of  the  strongly  interac5ng  Quark-­‐Gluon  Plasma  

Page 4: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

STAR%Detector%System%%TPC#MTD#Magnet# BEMC# BBC#EEMC# TOF#

HFT#

6/19/14% RHC(AGS%users%meeDng% 7%David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

The  STAR  Detector  

3

EEMC TOFTPCBEMCMTDMagnet

Page 5: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

STAR%Detector%System%%TPC#MTD#Magnet# BEMC# BBC#EEMC# TOF#

HFT#

6/19/14% RHC(AGS%users%meeDng% 7%David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

The  STAR  Detector  

« VPD:                        minimum  bias  trigger

3

EEMC TOFTPCBEMCMTDMagnet

Page 6: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

STAR%Detector%System%%TPC#MTD#Magnet# BEMC# BBC#EEMC# TOF#

HFT#

6/19/14% RHC(AGS%users%meeDng% 7%David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

The  STAR  Detector  

« VPD:                        minimum  bias  trigger

« TPC:                                              par4cle  iden4fica4on,  momentum  

3

EEMC TOFTPCBEMCMTDMagnet

Page 7: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

STAR%Detector%System%%TPC#MTD#Magnet# BEMC# BBC#EEMC# TOF#

HFT#

6/19/14% RHC(AGS%users%meeDng% 7%David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

The  STAR  Detector  

« VPD:                        minimum  bias  trigger

« TPC:                                              par4cle  iden4fica4on,  momentum  

« TOF:                                                  par4cle  iden4fica4on        (4me  resolu4on  110  ps  in  p+p,  87  ps  in  Au+Au)

3

EEMC TOFTPCBEMCMTDMagnet

Page 8: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

STAR%Detector%System%%TPC#MTD#Magnet# BEMC# BBC#EEMC# TOF#

HFT#

6/19/14% RHC(AGS%users%meeDng% 7%David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

The  STAR  Detector  

« VPD:                        minimum  bias  trigger

« TPC:                                              par4cle  iden4fica4on,  momentum  

« TOF:                                                  par4cle  iden4fica4on        (4me  resolu4on  110  ps  in  p+p,  87  ps  in  Au+Au)

« BEMC:                                    high-­‐energy  trigger,  electron  iden4fica4on  

3

EEMC TOFTPCBEMCMTDMagnet

Page 9: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

0 1 2 3 4 5

1

2

p [GeV/c ]

ln(dE/dx

)ln

keVcm

!1 TPC PID

0.5 1 1.5 2 2.5 31

2

3

4

1/!

p [GeV/c ]

protons

kaonspions

1/! =ctL

t from TOFL from TPC

1/!m2

p2+ 1

criterium of PID

Energy 200 GeV 500 GeV 500 GeVTrigger VPDMB VPDMB BHT1# events 105M 51M 111M�pp 30± 3.5 mb 34± 4 mb 6± 1 µb

David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

Daughter  Par5cle  Iden5fica5on

4

TOF  provides  clean  sample  of  kaons  with  momentum  up  to  ∼1.6  GeV/c

kaon  -­‐  pion  separa5on  be\er  by  TPC  than  by  TOF  for  track  with  momentum  above  ∼2.5  GeV/c

Page 10: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

0 1 2 3 4 5

1

2

p [GeV/c ]

ln(dE/dx

)ln

keVcm

!1 TPC PID

0.5 1 1.5 2 2.5 31

2

3

4

1/!

p [GeV/c ]

protons

kaonspions

1/! =ctL

t from TOFL from TPC

1/!m2

p2+ 1

criterium of PID

Energy 200 GeV 500 GeV 500 GeVTrigger VPDMB VPDMB BHT1# events 105M 51M 111M�pp 30± 3.5 mb 34± 4 mb 6± 1 µb

David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

Daughter  Par5cle  Iden5fica5on

4

TOF  provides  clean  sample  of  kaons  with  momentum  up  to  ∼1.6  GeV/c

kaon  -­‐  pion  separa5on  be\er  by  TPC  than  by  TOF  for  track  with  momentum  above  ∼2.5  GeV/c

ln(dE/dx) [ln(keV/cm)]0.6 0.8 1 1.2 1.4 1.6 1.8

1

10

210

310 protonskaonspionselectrons

4.5 < p < 5 GeV/c

Page 11: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

]2 [GeV/c/KM1.75 1.8 1.85 1.9 1.95 2 2.05

)2R

aw Y

ield

(/10

MeV

/c

-1-0.5

00.5

11.5

22.5

33.5

310=

1016(RwYld = 4584 /ndf = 27.426/332r

0.003( = 1.865 +

0.0025( = 0.0112 m

]2 [GeV/c/KM0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

0

5

10

)2R

aw Y

ield

(/10

MeV

/c

15

20

410=

0 1 2 3 4 5 6 7 8 9 10 11Unlike-Sign (left scale)

Like-Sign (left scale)Rotated Momentum (left scale)Unlike – Like (right scale)Unlike – Rotated (right scale)

]2 [GeV/c/KM1.75 1.8 1.85 1.9 1.95 2 2.05

)2R

aw Y

ield

(/10

MeV

/c

-1-0.5

0

0.51

1.5

22.5

33.5

310=

996(RwYld = 3564 /ndf = 17.643/332r

0.003( = 1.866 +

0.0029( = 0.0110 m

410=

1 < pT(K/) < 2 GeV/c-1 < y(K/) < 1

K0*(892)

K2*(1430) D0(1865)

VPDMBp+p @ 500 GeV

David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

D0  Meson  Reconstruc5on

5

D0

K−

π+

Page 12: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

D*  Meson  Reconstruc5on

6

wrong-sign method was included in the systematic uncer-tainties. Details in determining the uncertainties on the rawD! yields including the double-counting effect will bediscussed in Sec. VA. The D! raw yields are summarizedin Table II.

To obtain the cross section, the event-selection criteriadescribed in the previous section were applied. The rawdistributions were further divided into pT slices to obtainthe raw D! yields in each pT bin. Figure 8 shows the D!

candidates and background distributions in different pT

bins. The bottom panel on each plot was generated bysubtracting the sideband background from the right-signcandidates. The mean and width from Gaussian fits arecompared with MC simulation in the right panel of Fig. 6,

and it shows the obtained D! peak positions and widthsagree with the MC simulation well. From this analysis, thetotal signal consisted of 364" 68 counts, and the raw yieldratio of D!#=D!$ is 0:93" 0:37.

IV. EFFICIENCYAND TRIGGER OR VERTEXBIAS CORRECTION

The final charmed-hadron cross section in p$ p colli-sions is calculated as follows:

Ed3!

dp3 % 1

2"& 1

#rec& 1

BR& !ND

pT!pT!y& !NSD

NMB& ftrg;vtx; (3)

where !NSD is the total nonsingly diffractive (NSD) crosssection, which is measured at STAR to be 30:0" 2:4 mb[30].NMB is the total number of minimum-bias events usedfor the analysis. !ND is the raw charmed-hadron signal ineach pT bin within a rapidity window !y. BR is thehadronic decay branching ratio for the channel of interest.There are two correction factors: #rec, which is the recon-struction efficiency including geometric acceptance, trackselection efficiency, PID efficiency, and analysis cut effi-ciency; and ftrg;vtx'pT(, which is the correction factor to

)2) (GeV/c!)-M(KM(K!!0.14 0.145 0.15 0.155 0.16 0.165

Cou

nts

0

500

1000

1500

2000

2500

right sign

wrong sign

sideband

)2) (GeV/c!M(K1.7 1.75 1.8 1.85 1.9 1.95 2 2.05

Cou

nts

0

200

400

600

800

1000

1200

1400

1600

1800

2000

candidates0 D

sideband

FIG. 7 (color online). Upper: Raw D! candidate signal fromthe right-sign combinations in all p$ p minimum-biasevents. Histograms are combinatorial background distributionsfrom wrong-sign and sideband methods. Lower: Raw D0

candidates after requiring the D! candidate cut (0:144<!M<0:147 GeV=c2).

TABLE II. D! raw yields.

pT range (GeV=c) 2–3 3–4 4–5 5–6

pT (GeV=c) 2.45 3.44 4.45 5.45Raw yields 209" 58 98" 35 27" 11 12:3" 4:1

Cou

nts

100

200

300

400

500

600 <3GeV/cT

2<p

right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

50

100RS-SB

Cou

nts

20

40

60

80

100 <4GeV/cT

3<p

right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

20

40 RS-SB

Cou

nts

5

10

15

20

25

30<5GeV/c

T4<p right sign (RS)

wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

-5

0

5

10

15 RS-SB

Cou

nts

2

4

6

8

10

12 <6GeV/cT

5<p right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

5

RS-SB

FIG. 8 (color online). Raw D! signals in different pT bins.In each plot, the bottom panel distribution is generated bysubtracting the sideband background from the right-sign distri-bution. Variable binning is used in the bottom panel for betterillustration.

L. ADAMCZYK et al. PHYSICAL REVIEW D 86, 072013 (2012)

072013-8

Phys.  Rev.  D  86,  72013a)

b)

Page 13: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

D*  Meson  Reconstruc5on

6

wrong-sign method was included in the systematic uncer-tainties. Details in determining the uncertainties on the rawD! yields including the double-counting effect will bediscussed in Sec. VA. The D! raw yields are summarizedin Table II.

To obtain the cross section, the event-selection criteriadescribed in the previous section were applied. The rawdistributions were further divided into pT slices to obtainthe raw D! yields in each pT bin. Figure 8 shows the D!

candidates and background distributions in different pT

bins. The bottom panel on each plot was generated bysubtracting the sideband background from the right-signcandidates. The mean and width from Gaussian fits arecompared with MC simulation in the right panel of Fig. 6,

and it shows the obtained D! peak positions and widthsagree with the MC simulation well. From this analysis, thetotal signal consisted of 364" 68 counts, and the raw yieldratio of D!#=D!$ is 0:93" 0:37.

IV. EFFICIENCYAND TRIGGER OR VERTEXBIAS CORRECTION

The final charmed-hadron cross section in p$ p colli-sions is calculated as follows:

Ed3!

dp3 % 1

2"& 1

#rec& 1

BR& !ND

pT!pT!y& !NSD

NMB& ftrg;vtx; (3)

where !NSD is the total nonsingly diffractive (NSD) crosssection, which is measured at STAR to be 30:0" 2:4 mb[30].NMB is the total number of minimum-bias events usedfor the analysis. !ND is the raw charmed-hadron signal ineach pT bin within a rapidity window !y. BR is thehadronic decay branching ratio for the channel of interest.There are two correction factors: #rec, which is the recon-struction efficiency including geometric acceptance, trackselection efficiency, PID efficiency, and analysis cut effi-ciency; and ftrg;vtx'pT(, which is the correction factor to

)2) (GeV/c!)-M(KM(K!!0.14 0.145 0.15 0.155 0.16 0.165

Cou

nts

0

500

1000

1500

2000

2500

right sign

wrong sign

sideband

)2) (GeV/c!M(K1.7 1.75 1.8 1.85 1.9 1.95 2 2.05

Cou

nts

0

200

400

600

800

1000

1200

1400

1600

1800

2000

candidates0 D

sideband

FIG. 7 (color online). Upper: Raw D! candidate signal fromthe right-sign combinations in all p$ p minimum-biasevents. Histograms are combinatorial background distributionsfrom wrong-sign and sideband methods. Lower: Raw D0

candidates after requiring the D! candidate cut (0:144<!M<0:147 GeV=c2).

TABLE II. D! raw yields.

pT range (GeV=c) 2–3 3–4 4–5 5–6

pT (GeV=c) 2.45 3.44 4.45 5.45Raw yields 209" 58 98" 35 27" 11 12:3" 4:1

Cou

nts

100

200

300

400

500

600 <3GeV/cT

2<p

right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

50

100RS-SB

Cou

nts

20

40

60

80

100 <4GeV/cT

3<p

right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

20

40 RS-SB

Cou

nts

5

10

15

20

25

30<5GeV/c

T4<p right sign (RS)

wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

-5

0

5

10

15 RS-SB

Cou

nts

2

4

6

8

10

12 <6GeV/cT

5<p right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

5

RS-SB

FIG. 8 (color online). Raw D! signals in different pT bins.In each plot, the bottom panel distribution is generated bysubtracting the sideband background from the right-sign distri-bution. Variable binning is used in the bottom panel for betterillustration.

L. ADAMCZYK et al. PHYSICAL REVIEW D 86, 072013 (2012)

072013-8

Phys.  Rev.  D  86,  72013a)

b)

D0

K−π+

Page 14: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

D*  Meson  Reconstruc5on

6

wrong-sign method was included in the systematic uncer-tainties. Details in determining the uncertainties on the rawD! yields including the double-counting effect will bediscussed in Sec. VA. The D! raw yields are summarizedin Table II.

To obtain the cross section, the event-selection criteriadescribed in the previous section were applied. The rawdistributions were further divided into pT slices to obtainthe raw D! yields in each pT bin. Figure 8 shows the D!

candidates and background distributions in different pT

bins. The bottom panel on each plot was generated bysubtracting the sideband background from the right-signcandidates. The mean and width from Gaussian fits arecompared with MC simulation in the right panel of Fig. 6,

and it shows the obtained D! peak positions and widthsagree with the MC simulation well. From this analysis, thetotal signal consisted of 364" 68 counts, and the raw yieldratio of D!#=D!$ is 0:93" 0:37.

IV. EFFICIENCYAND TRIGGER OR VERTEXBIAS CORRECTION

The final charmed-hadron cross section in p$ p colli-sions is calculated as follows:

Ed3!

dp3 % 1

2"& 1

#rec& 1

BR& !ND

pT!pT!y& !NSD

NMB& ftrg;vtx; (3)

where !NSD is the total nonsingly diffractive (NSD) crosssection, which is measured at STAR to be 30:0" 2:4 mb[30].NMB is the total number of minimum-bias events usedfor the analysis. !ND is the raw charmed-hadron signal ineach pT bin within a rapidity window !y. BR is thehadronic decay branching ratio for the channel of interest.There are two correction factors: #rec, which is the recon-struction efficiency including geometric acceptance, trackselection efficiency, PID efficiency, and analysis cut effi-ciency; and ftrg;vtx'pT(, which is the correction factor to

)2) (GeV/c!)-M(KM(K!!0.14 0.145 0.15 0.155 0.16 0.165

Cou

nts

0

500

1000

1500

2000

2500

right sign

wrong sign

sideband

)2) (GeV/c!M(K1.7 1.75 1.8 1.85 1.9 1.95 2 2.05

Cou

nts

0

200

400

600

800

1000

1200

1400

1600

1800

2000

candidates0 D

sideband

FIG. 7 (color online). Upper: Raw D! candidate signal fromthe right-sign combinations in all p$ p minimum-biasevents. Histograms are combinatorial background distributionsfrom wrong-sign and sideband methods. Lower: Raw D0

candidates after requiring the D! candidate cut (0:144<!M<0:147 GeV=c2).

TABLE II. D! raw yields.

pT range (GeV=c) 2–3 3–4 4–5 5–6

pT (GeV=c) 2.45 3.44 4.45 5.45Raw yields 209" 58 98" 35 27" 11 12:3" 4:1

Cou

nts

100

200

300

400

500

600 <3GeV/cT

2<p

right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

50

100RS-SB

Cou

nts

20

40

60

80

100 <4GeV/cT

3<p

right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

20

40 RS-SB

Cou

nts

5

10

15

20

25

30<5GeV/c

T4<p right sign (RS)

wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

-5

0

5

10

15 RS-SB

Cou

nts

2

4

6

8

10

12 <6GeV/cT

5<p right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

5

RS-SB

FIG. 8 (color online). Raw D! signals in different pT bins.In each plot, the bottom panel distribution is generated bysubtracting the sideband background from the right-sign distri-bution. Variable binning is used in the bottom panel for betterillustration.

L. ADAMCZYK et al. PHYSICAL REVIEW D 86, 072013 (2012)

072013-8

Phys.  Rev.  D  86,  72013a)

b)

D0

K−π+

π+

D*+

Page 15: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

M( ) M( )

David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

D*  Meson  Reconstruc5on

6

wrong-sign method was included in the systematic uncer-tainties. Details in determining the uncertainties on the rawD! yields including the double-counting effect will bediscussed in Sec. VA. The D! raw yields are summarizedin Table II.

To obtain the cross section, the event-selection criteriadescribed in the previous section were applied. The rawdistributions were further divided into pT slices to obtainthe raw D! yields in each pT bin. Figure 8 shows the D!

candidates and background distributions in different pT

bins. The bottom panel on each plot was generated bysubtracting the sideband background from the right-signcandidates. The mean and width from Gaussian fits arecompared with MC simulation in the right panel of Fig. 6,

and it shows the obtained D! peak positions and widthsagree with the MC simulation well. From this analysis, thetotal signal consisted of 364" 68 counts, and the raw yieldratio of D!#=D!$ is 0:93" 0:37.

IV. EFFICIENCYAND TRIGGER OR VERTEXBIAS CORRECTION

The final charmed-hadron cross section in p$ p colli-sions is calculated as follows:

Ed3!

dp3 % 1

2"& 1

#rec& 1

BR& !ND

pT!pT!y& !NSD

NMB& ftrg;vtx; (3)

where !NSD is the total nonsingly diffractive (NSD) crosssection, which is measured at STAR to be 30:0" 2:4 mb[30].NMB is the total number of minimum-bias events usedfor the analysis. !ND is the raw charmed-hadron signal ineach pT bin within a rapidity window !y. BR is thehadronic decay branching ratio for the channel of interest.There are two correction factors: #rec, which is the recon-struction efficiency including geometric acceptance, trackselection efficiency, PID efficiency, and analysis cut effi-ciency; and ftrg;vtx'pT(, which is the correction factor to

)2) (GeV/c!)-M(KM(K!!0.14 0.145 0.15 0.155 0.16 0.165

Cou

nts

0

500

1000

1500

2000

2500

right sign

wrong sign

sideband

)2) (GeV/c!M(K1.7 1.75 1.8 1.85 1.9 1.95 2 2.05

Cou

nts

0

200

400

600

800

1000

1200

1400

1600

1800

2000

candidates0 D

sideband

FIG. 7 (color online). Upper: Raw D! candidate signal fromthe right-sign combinations in all p$ p minimum-biasevents. Histograms are combinatorial background distributionsfrom wrong-sign and sideband methods. Lower: Raw D0

candidates after requiring the D! candidate cut (0:144<!M<0:147 GeV=c2).

TABLE II. D! raw yields.

pT range (GeV=c) 2–3 3–4 4–5 5–6

pT (GeV=c) 2.45 3.44 4.45 5.45Raw yields 209" 58 98" 35 27" 11 12:3" 4:1

Cou

nts

100

200

300

400

500

600 <3GeV/cT

2<p

right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

50

100RS-SB

Cou

nts

20

40

60

80

100 <4GeV/cT

3<p

right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

20

40 RS-SB

Cou

nts

5

10

15

20

25

30<5GeV/c

T4<p right sign (RS)

wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

-5

0

5

10

15 RS-SB

Cou

nts

2

4

6

8

10

12 <6GeV/cT

5<p right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

5

RS-SB

FIG. 8 (color online). Raw D! signals in different pT bins.In each plot, the bottom panel distribution is generated bysubtracting the sideband background from the right-sign distri-bution. Variable binning is used in the bottom panel for betterillustration.

L. ADAMCZYK et al. PHYSICAL REVIEW D 86, 072013 (2012)

072013-8

Phys.  Rev.  D  86,  72013a)

b)

D0

K−π+

π+

D*+

Page 16: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

M( ) M( )

David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

D*  Meson  Reconstruc5on

6

wrong-sign method was included in the systematic uncer-tainties. Details in determining the uncertainties on the rawD! yields including the double-counting effect will bediscussed in Sec. VA. The D! raw yields are summarizedin Table II.

To obtain the cross section, the event-selection criteriadescribed in the previous section were applied. The rawdistributions were further divided into pT slices to obtainthe raw D! yields in each pT bin. Figure 8 shows the D!

candidates and background distributions in different pT

bins. The bottom panel on each plot was generated bysubtracting the sideband background from the right-signcandidates. The mean and width from Gaussian fits arecompared with MC simulation in the right panel of Fig. 6,

and it shows the obtained D! peak positions and widthsagree with the MC simulation well. From this analysis, thetotal signal consisted of 364" 68 counts, and the raw yieldratio of D!#=D!$ is 0:93" 0:37.

IV. EFFICIENCYAND TRIGGER OR VERTEXBIAS CORRECTION

The final charmed-hadron cross section in p$ p colli-sions is calculated as follows:

Ed3!

dp3 % 1

2"& 1

#rec& 1

BR& !ND

pT!pT!y& !NSD

NMB& ftrg;vtx; (3)

where !NSD is the total nonsingly diffractive (NSD) crosssection, which is measured at STAR to be 30:0" 2:4 mb[30].NMB is the total number of minimum-bias events usedfor the analysis. !ND is the raw charmed-hadron signal ineach pT bin within a rapidity window !y. BR is thehadronic decay branching ratio for the channel of interest.There are two correction factors: #rec, which is the recon-struction efficiency including geometric acceptance, trackselection efficiency, PID efficiency, and analysis cut effi-ciency; and ftrg;vtx'pT(, which is the correction factor to

)2) (GeV/c!)-M(KM(K!!0.14 0.145 0.15 0.155 0.16 0.165

Cou

nts

0

500

1000

1500

2000

2500

right sign

wrong sign

sideband

)2) (GeV/c!M(K1.7 1.75 1.8 1.85 1.9 1.95 2 2.05

Cou

nts

0

200

400

600

800

1000

1200

1400

1600

1800

2000

candidates0 D

sideband

FIG. 7 (color online). Upper: Raw D! candidate signal fromthe right-sign combinations in all p$ p minimum-biasevents. Histograms are combinatorial background distributionsfrom wrong-sign and sideband methods. Lower: Raw D0

candidates after requiring the D! candidate cut (0:144<!M<0:147 GeV=c2).

TABLE II. D! raw yields.

pT range (GeV=c) 2–3 3–4 4–5 5–6

pT (GeV=c) 2.45 3.44 4.45 5.45Raw yields 209" 58 98" 35 27" 11 12:3" 4:1

Cou

nts

100

200

300

400

500

600 <3GeV/cT

2<p

right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

50

100RS-SB

Cou

nts

20

40

60

80

100 <4GeV/cT

3<p

right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

20

40 RS-SB

Cou

nts

5

10

15

20

25

30<5GeV/c

T4<p right sign (RS)

wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

-5

0

5

10

15 RS-SB

Cou

nts

2

4

6

8

10

12 <6GeV/cT

5<p right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

5

RS-SB

FIG. 8 (color online). Raw D! signals in different pT bins.In each plot, the bottom panel distribution is generated bysubtracting the sideband background from the right-sign distri-bution. Variable binning is used in the bottom panel for betterillustration.

L. ADAMCZYK et al. PHYSICAL REVIEW D 86, 072013 (2012)

072013-8

Phys.  Rev.  D  86,  72013a)

b)

D0

K−π+

π+

D*+

Page 17: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

M( ) M( )

David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

D*  Meson  Reconstruc5on

6

wrong-sign method was included in the systematic uncer-tainties. Details in determining the uncertainties on the rawD! yields including the double-counting effect will bediscussed in Sec. VA. The D! raw yields are summarizedin Table II.

To obtain the cross section, the event-selection criteriadescribed in the previous section were applied. The rawdistributions were further divided into pT slices to obtainthe raw D! yields in each pT bin. Figure 8 shows the D!

candidates and background distributions in different pT

bins. The bottom panel on each plot was generated bysubtracting the sideband background from the right-signcandidates. The mean and width from Gaussian fits arecompared with MC simulation in the right panel of Fig. 6,

and it shows the obtained D! peak positions and widthsagree with the MC simulation well. From this analysis, thetotal signal consisted of 364" 68 counts, and the raw yieldratio of D!#=D!$ is 0:93" 0:37.

IV. EFFICIENCYAND TRIGGER OR VERTEXBIAS CORRECTION

The final charmed-hadron cross section in p$ p colli-sions is calculated as follows:

Ed3!

dp3 % 1

2"& 1

#rec& 1

BR& !ND

pT!pT!y& !NSD

NMB& ftrg;vtx; (3)

where !NSD is the total nonsingly diffractive (NSD) crosssection, which is measured at STAR to be 30:0" 2:4 mb[30].NMB is the total number of minimum-bias events usedfor the analysis. !ND is the raw charmed-hadron signal ineach pT bin within a rapidity window !y. BR is thehadronic decay branching ratio for the channel of interest.There are two correction factors: #rec, which is the recon-struction efficiency including geometric acceptance, trackselection efficiency, PID efficiency, and analysis cut effi-ciency; and ftrg;vtx'pT(, which is the correction factor to

)2) (GeV/c!)-M(KM(K!!0.14 0.145 0.15 0.155 0.16 0.165

Cou

nts

0

500

1000

1500

2000

2500

right sign

wrong sign

sideband

)2) (GeV/c!M(K1.7 1.75 1.8 1.85 1.9 1.95 2 2.05

Cou

nts

0

200

400

600

800

1000

1200

1400

1600

1800

2000

candidates0 D

sideband

FIG. 7 (color online). Upper: Raw D! candidate signal fromthe right-sign combinations in all p$ p minimum-biasevents. Histograms are combinatorial background distributionsfrom wrong-sign and sideband methods. Lower: Raw D0

candidates after requiring the D! candidate cut (0:144<!M<0:147 GeV=c2).

TABLE II. D! raw yields.

pT range (GeV=c) 2–3 3–4 4–5 5–6

pT (GeV=c) 2.45 3.44 4.45 5.45Raw yields 209" 58 98" 35 27" 11 12:3" 4:1

Cou

nts

100

200

300

400

500

600 <3GeV/cT

2<p

right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

50

100RS-SB

Cou

nts

20

40

60

80

100 <4GeV/cT

3<p

right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

20

40 RS-SB

Cou

nts

5

10

15

20

25

30<5GeV/c

T4<p right sign (RS)

wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

-5

0

5

10

15 RS-SB

Cou

nts

2

4

6

8

10

12 <6GeV/cT

5<p right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

5

RS-SB

FIG. 8 (color online). Raw D! signals in different pT bins.In each plot, the bottom panel distribution is generated bysubtracting the sideband background from the right-sign distri-bution. Variable binning is used in the bottom panel for betterillustration.

L. ADAMCZYK et al. PHYSICAL REVIEW D 86, 072013 (2012)

072013-8

Phys.  Rev.  D  86,  72013a)

b)

D0

K−π+

π+

D*+

π−

Page 18: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

M( ) M( )

David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

D*  Meson  Reconstruc5on

6

wrong-sign method was included in the systematic uncer-tainties. Details in determining the uncertainties on the rawD! yields including the double-counting effect will bediscussed in Sec. VA. The D! raw yields are summarizedin Table II.

To obtain the cross section, the event-selection criteriadescribed in the previous section were applied. The rawdistributions were further divided into pT slices to obtainthe raw D! yields in each pT bin. Figure 8 shows the D!

candidates and background distributions in different pT

bins. The bottom panel on each plot was generated bysubtracting the sideband background from the right-signcandidates. The mean and width from Gaussian fits arecompared with MC simulation in the right panel of Fig. 6,

and it shows the obtained D! peak positions and widthsagree with the MC simulation well. From this analysis, thetotal signal consisted of 364" 68 counts, and the raw yieldratio of D!#=D!$ is 0:93" 0:37.

IV. EFFICIENCYAND TRIGGER OR VERTEXBIAS CORRECTION

The final charmed-hadron cross section in p$ p colli-sions is calculated as follows:

Ed3!

dp3 % 1

2"& 1

#rec& 1

BR& !ND

pT!pT!y& !NSD

NMB& ftrg;vtx; (3)

where !NSD is the total nonsingly diffractive (NSD) crosssection, which is measured at STAR to be 30:0" 2:4 mb[30].NMB is the total number of minimum-bias events usedfor the analysis. !ND is the raw charmed-hadron signal ineach pT bin within a rapidity window !y. BR is thehadronic decay branching ratio for the channel of interest.There are two correction factors: #rec, which is the recon-struction efficiency including geometric acceptance, trackselection efficiency, PID efficiency, and analysis cut effi-ciency; and ftrg;vtx'pT(, which is the correction factor to

)2) (GeV/c!)-M(KM(K!!0.14 0.145 0.15 0.155 0.16 0.165

Cou

nts

0

500

1000

1500

2000

2500

right sign

wrong sign

sideband

)2) (GeV/c!M(K1.7 1.75 1.8 1.85 1.9 1.95 2 2.05

Cou

nts

0

200

400

600

800

1000

1200

1400

1600

1800

2000

candidates0 D

sideband

FIG. 7 (color online). Upper: Raw D! candidate signal fromthe right-sign combinations in all p$ p minimum-biasevents. Histograms are combinatorial background distributionsfrom wrong-sign and sideband methods. Lower: Raw D0

candidates after requiring the D! candidate cut (0:144<!M<0:147 GeV=c2).

TABLE II. D! raw yields.

pT range (GeV=c) 2–3 3–4 4–5 5–6

pT (GeV=c) 2.45 3.44 4.45 5.45Raw yields 209" 58 98" 35 27" 11 12:3" 4:1

Cou

nts

100

200

300

400

500

600 <3GeV/cT

2<p

right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

50

100RS-SB

Cou

nts

20

40

60

80

100 <4GeV/cT

3<p

right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

20

40 RS-SB

Cou

nts

5

10

15

20

25

30<5GeV/c

T4<p right sign (RS)

wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

-5

0

5

10

15 RS-SB

Cou

nts

2

4

6

8

10

12 <6GeV/cT

5<p right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

5

RS-SB

FIG. 8 (color online). Raw D! signals in different pT bins.In each plot, the bottom panel distribution is generated bysubtracting the sideband background from the right-sign distri-bution. Variable binning is used in the bottom panel for betterillustration.

L. ADAMCZYK et al. PHYSICAL REVIEW D 86, 072013 (2012)

072013-8

Phys.  Rev.  D  86,  72013a)

b)

D0

K−π+

π+

D*+

Page 19: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

M( ) M( )

David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

D*  Meson  Reconstruc5on

6

wrong-sign method was included in the systematic uncer-tainties. Details in determining the uncertainties on the rawD! yields including the double-counting effect will bediscussed in Sec. VA. The D! raw yields are summarizedin Table II.

To obtain the cross section, the event-selection criteriadescribed in the previous section were applied. The rawdistributions were further divided into pT slices to obtainthe raw D! yields in each pT bin. Figure 8 shows the D!

candidates and background distributions in different pT

bins. The bottom panel on each plot was generated bysubtracting the sideband background from the right-signcandidates. The mean and width from Gaussian fits arecompared with MC simulation in the right panel of Fig. 6,

and it shows the obtained D! peak positions and widthsagree with the MC simulation well. From this analysis, thetotal signal consisted of 364" 68 counts, and the raw yieldratio of D!#=D!$ is 0:93" 0:37.

IV. EFFICIENCYAND TRIGGER OR VERTEXBIAS CORRECTION

The final charmed-hadron cross section in p$ p colli-sions is calculated as follows:

Ed3!

dp3 % 1

2"& 1

#rec& 1

BR& !ND

pT!pT!y& !NSD

NMB& ftrg;vtx; (3)

where !NSD is the total nonsingly diffractive (NSD) crosssection, which is measured at STAR to be 30:0" 2:4 mb[30].NMB is the total number of minimum-bias events usedfor the analysis. !ND is the raw charmed-hadron signal ineach pT bin within a rapidity window !y. BR is thehadronic decay branching ratio for the channel of interest.There are two correction factors: #rec, which is the recon-struction efficiency including geometric acceptance, trackselection efficiency, PID efficiency, and analysis cut effi-ciency; and ftrg;vtx'pT(, which is the correction factor to

)2) (GeV/c!)-M(KM(K!!0.14 0.145 0.15 0.155 0.16 0.165

Cou

nts

0

500

1000

1500

2000

2500

right sign

wrong sign

sideband

)2) (GeV/c!M(K1.7 1.75 1.8 1.85 1.9 1.95 2 2.05

Cou

nts

0

200

400

600

800

1000

1200

1400

1600

1800

2000

candidates0 D

sideband

FIG. 7 (color online). Upper: Raw D! candidate signal fromthe right-sign combinations in all p$ p minimum-biasevents. Histograms are combinatorial background distributionsfrom wrong-sign and sideband methods. Lower: Raw D0

candidates after requiring the D! candidate cut (0:144<!M<0:147 GeV=c2).

TABLE II. D! raw yields.

pT range (GeV=c) 2–3 3–4 4–5 5–6

pT (GeV=c) 2.45 3.44 4.45 5.45Raw yields 209" 58 98" 35 27" 11 12:3" 4:1

Cou

nts

100

200

300

400

500

600 <3GeV/cT

2<p

right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

50

100RS-SB

Cou

nts

20

40

60

80

100 <4GeV/cT

3<p

right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

20

40 RS-SB

Cou

nts

5

10

15

20

25

30<5GeV/c

T4<p right sign (RS)

wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

-5

0

5

10

15 RS-SB

Cou

nts

2

4

6

8

10

12 <6GeV/cT

5<p right sign (RS) wrong sign (WS) sideband (SB)

)2) (GeV/c!) - M(K M(K!!0.14 0.145 0.15 0.155

)2C

ount

s (/

0.2

MeV

/c

0

5

RS-SB

FIG. 8 (color online). Raw D! signals in different pT bins.In each plot, the bottom panel distribution is generated bysubtracting the sideband background from the right-sign distri-bution. Variable binning is used in the bottom panel for betterillustration.

L. ADAMCZYK et al. PHYSICAL REVIEW D 86, 072013 (2012)

072013-8

Phys.  Rev.  D  86,  72013a)

b)

D0

K−π+

π+

D*+

)2) (GeV/c/)-M(K//M(K0.14 0.145 0.15 0.155 0.16 0.165

Cou

nts

100

200

300

400

500

600

right signwrong signside band

STAR preliminary

= 500 GeVsp+p > 4.2 GeVTE

Page 20: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

[GeV/c]T

p0 2 4 6 8 10 12 14 16 18 20

]-2

dy) [

mb(

GeV

/c)

Tdp Tp/

/(2

/< / p

pm2 d

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10 Trigger Efficiency=BHT1 pions

Nucl. Phys. B 335 261-287 500 GeVpUA1 pions from p

scaled from pp 200 to pp 500 GeV by PythiaSTAR pions, Phys. Rev. Lett. 108 72302

< 13.5 GeV/cT

in 12 < pPythia Pions scaled to match STAR pions

with lower and upper boundHagedorn Power-law fit to STAR pions

STAR Pions, measured from Min Bias sample

[GeV/c]T

p

0 2 4 6 8 10 12 14 16 18 20

Eff

icie

ncy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

[GeV/c]T

p

4 6 8 10 12 14 16 18 20

Effic

iency

-610

-510

-410

-310

-210

-110

Matching0

D

Reconstruction0

D

Matching MB*D

Reconstruction MB*D

Reconstruction HT*D

Trigger HT*D

p+p @ 500 GeV

David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

Correc5ons

7

pT  [GeV/c] 1-­‐2 2-­‐3 3-­‐8

VPDMB  bias 0.70 0.65 0.63

Pion  Spectra  in  VPDMB  and  BHT1 D0  &  D*  efficiencies  

Page 21: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

[GeV/c]Tp0 2 4 6 8 10 12 14 16 18 20

]-2

dy) [

mb(

GeV

/c)

Tdp Tp/

)/(2

ccppm2

(d

-810

-710

-610

-510

-410

-310

-210

-110 / 0.224 BHT1D*md

/ 0.224 MBD*md

/ 0.565 MB0Dmd

Levy-fit to All

0FONLL D

FONLL D*

fact. + BCFY FFTk

fact. + Peterson FFTk

[GeV/c]Tp0 2 4 6 8 10 12 14 16 18 20

]-2

dy) [

mb(

GeV

/c)

Tdp Tp/

)/(2

cppm2

(d

-810

-710

-610

-510

-410

-310

-210

-110

kT fact. : ѥF = ѥR = (mc)T, mc = 1.5 GeV/c2

FONLL D0: ѥF = ѥR = mc = 1.27 GeV/c2

FONLL D*: ѥF = ѥR = (mc)T, 1.3 < mc < 1.7 GeV/c2

[JHEP 9805 007]

[Phys. Rev. C87 014908]

[Phys. Rev. D 87 094022]

[Phys. Rev. D 87 094022]

p+p @ 500 GeV

[GeV/c]T

p0 2 4 6 8 10 12 14 16 18 20

]-2

dy) [

mb(

GeV

/c)

Tdp Tp/

)/(2

ccppm2

(d

-810

-710

-610

-510

-410

-310

-210

[GeV/c]T

p0 2 4 6 8 10 12 14 16 18 20

]-2

dy) [

mb(

GeV

/c)

Tdp Tp/

)/(2

cppm2

(d

-810

-710

-610

-510

-410

-310

-210 ccmd

Levy-fit

cFONLL c

limits cFONLL c

[JHEP 9805 007]

quadratic sum of mass and scale uncertainty

p+p @ 500 GeV

ccmd = dmD ×FONLL ccFONLL D

David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

Charm  Cross  Sec5on  at  Mid-­‐rapidity

8

Page 22: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

[GeV]s210 310 410

b]+ [

ccNNm

1

10

210

310

410

NLONLO limitSPS/FNALPHENIX ePamir/MuonUA2

STAR p+pSTAR Au+AuALICE[2]

ATLAS PreliminaryLHCb Preliminary

[1] Vogt R. et al., PoS ConfinementX (2012) 203ALICE Collaboration, JHEP07(2012)191

�+ F/m, + R

/m) = (1.35, 1.71)�+ F/m, + R

/m) = (4.65, 1.48)

NLO: m = 1.27 GeV/c2

+F/m = 2.1+R/m = 1.6

d�cc̄

dy⇥

((5.6± 0.1) @ 500 GeV(4.7± 0.7) @ 200 GeV

David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

Total  Charm  Cross  Sec5on

9

Extrapola5on  to  full  rapidity  from  Pythia  simula5on:

[3]  Phys.  Rev.  D86,  72013

[3]

Page 23: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

[GeV]s210 310 410

b]+ [

ccNNm

1

10

210

310

410

NLONLO limitSPS/FNALPHENIX ePamir/MuonUA2

STAR p+pSTAR Au+AuALICE[2]

ATLAS PreliminaryLHCb Preliminary

[1] Vogt R. et al., PoS ConfinementX (2012) 203ALICE Collaboration, JHEP07(2012)191

�+ F/m, + R

/m) = (1.35, 1.71)�+ F/m, + R

/m) = (4.65, 1.48)

NLO: m = 1.27 GeV/c2

+F/m = 2.1+R/m = 1.6

d�cc̄

dy⇥

((5.6± 0.1) @ 500 GeV(4.7± 0.7) @ 200 GeV

David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

Total  Charm  Cross  Sec5on

9

Many thanks to:

Jaro BielcikXin DongWitek BorowskiJamie DunlopZhangbu XuPavol Federic

Extrapola5on  to  full  rapidity  from  Pythia  simula5on:

[3]  Phys.  Rev.  D86,  72013

[3]

Page 24: AStudyofOpenCharmProduc5on Heavy Flavor …...David"Tlusty RHIC/AGS"Annual"Users’"Mee5ng"2015 Introduc5on 2 ICHEP 14, 04/07/2014 Heavy Flavor at STAR, R. Vértesi 4 1. Open heavy

David  Tlusty RHIC/AGS  Annual  Users’  Mee5ng  2015

Special  Thanks  To

10

Prof.  Zdeněk  Janout Msgr.  Georges  Lemaître


Recommended