+ All Categories
Home > Documents > ATLAS Searches for VV and V Resonances -...

ATLAS Searches for VV and V Resonances -...

Date post: 06-Feb-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
51
ATLAS Searches for VV and Vγ Resonances Chris Malena Delitzsch University of Arizona On behalf of the ATLAS Collaboration Phenomenology 2017 Symposium 8-10 May 2017
Transcript

ATLAS Searches for VV and Vγ Resonances

Chris Malena DelitzschUniversity of Arizona

On behalf of the ATLAS Collaboration

Phenomenology 2017 Symposium

8-10 May 2017

How to find new physics - the easy way!

General idea

Search for new particle Z → XX or XY

Reconstruct invariant mass mXX/XY

Search for narrow resonance on top ofbackground

Analyses presented today based on 13.2 - 15.5 fb−1 taken in 2015+2016

1 WZ/ZZ → ``qq ATLAS-CONF-2016-082

2 WZ/ZZ → ννqq ATLAS-CONF-2016-082

3 WW /WZ → `νqq ATLAS-CONF-2016-062

4 WW /WZ/ZZ → qqqq ATLAS-CONF-2016-055

5 Zγ → ``γ ATLAS-CONF-2016-044

*See Mark Oreglia’s talk on VH and HH resonances**Diboson resonance searches with hadronic decays rely on substructure techniques

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 2

Benchmark models for VV and V γ resonances

1 Bulk Randall-Sundrum model

Model of warped extra dimensions

Spin-2 Kaluza-Klein graviton (G*)

G∗ →WW ,ZZ

BR(G* →WW /ZZ) ≈ 20/10%

g

g

G∗

W−

W+

q

q̄�

W �

Z

W

1

/Z

/Z

2 Heavy Vector Triplet

Simplified phenomenological Lagrangian

Spin-1 gauge bosons (W ′, Z ′)

W ′ →WZ and Z ′ →WW

BR(W’ → WZ) ≈ 2%

g

g

G∗

W−

W+

q

q̄�

W �

Z

W

1

3 Heavy Higgs

Spin-0 H boson, narrow width approx.

H →WW /ZZ

Naive dimensional analysis andunsuppressed gluon coupling

4 Scalar boson X

gg fusion production

X → Z + γ

Intrinsic decay width of4 MeV to Z + γ

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 3

Boosted boson tagging in Run-II searches in ATLAS

1 Jet algorithm: anti-kt jets with radius parameter R = 1.0

2 Grooming algorithm: trimming with Rsub = 0.2 and fcut = 5%(subjets are re-clustered with kt algorithm)

3 Boson tagging: 50% flat signal efficiency (∼ 2% QCD eff.)large-radius jet mass (±15 GeV window around boson mass)Energy correlation variable Dβ=1

2

Eve

nts

/ 1

0 G

eV

0

500

1000

1500

2000

2500

3000ATLAS Preliminary

L = 13.2/fb∫ = 13 TeV, s

Signal & W+jets Regions (HP)

Data (2015+2016)

W+jets

Top

Single­t

Dibosons

Z+jets

SM total

[GeV]J leadingM

60 80 100 120 140 160 180 200 220 240

Data

/ M

C

0.5

1

1.5

Eve

nts

/ 0

.2

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000ATLAS Preliminary

L = 13.2/fb∫ = 13 TeV, s

Signal Regions (HP & LP)

Data (2015+2016)

W+jets

Top

Single­t

Dibosons

Z+jets

SM total

= 1β2

D

0 0.5 1 1.5 2 2.5 3 3.5 4

Data

/ M

C

0.5

1

1.5

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 4

ZV → ``qq

Event selection

2 isolated same flavour leptons,m`` compatible with Z boson mass

Merged (one large-R jet) and resolved(two R = 0.4 jets) analyses

High and low purity signal regions based on D2√p2T(``) + p2T(jj)/m``jj > 0.4(0.5) for H (W ′,G∗) 30

040

050

060

070

080

090

010

0012

0014

0016

0018

0020

0022

0024

0026

0028

0030

00

mH [GeV]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Acc

epta

nce×

Effi

cien

cy

ATLAS Preliminarygg → H → ZZ → ``qq

Merged analysisResolved analysisCombined

10−4

10−3

10−2

10−1

1.0

101

102

103

Eve

nts

/GeV

ATLAS Preliminary√

s = 13 TeV, 13.2 fb−1

H → ZZ → ``qqMerged high-purity ZCR, ggF

DataZ + jetsSM DibosonTop QuarksStat.

⊕Syst. Uncert.

Pre-fit background

500 1000 1500 2000 2500 3000m(``J) [GeV]

0.5

1.0

1.5

Dat

a/P

red

Background estimation

Shape estimated from MC

Z+jets and tt̄ normalisation estimated in CR

tt̄ CR: diff. flavour leptons, 2 b-tagged jets

Z+jets CR: invert Z boson mass window

Dominating systematic uncertainties

Jet energy & D2 scale and resolution unc.

Z+jets modelling

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 5

ZV → ``qq - Results

Observable: invariant mass of decay products m``jj , m``J

No significant deviations from SM prediction: 95% CL upper limits on σ× BR

Exclude RS Graviton with masses below 1035 GeV (∼ 200 GeV improvementwith respect to 2015 analysis based on 3.2 fb−1)

Exclude W ′ with mW ′ < 2225 GeV (∼ 800 GeV improvement)

10−4

10−3

10−2

10−1

1.0

101

102

103

Eve

nts

/GeV

ATLAS Preliminary√

s = 13 TeV, 13.2 fb−1

H → ZZ → ``qqMerged high-purity SR, ggF

DataH 1.6 TeV (10 fb)Z + jetsSM DibosonTop QuarksStat.

⊕Syst. Uncert.

Pre-fit background

500 1000 1500 2000 2500 3000m(``J) [GeV]

0.5

1.0

1.5

Dat

a/P

red

[GeV]W’

m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

BR

(WZ

) [p

b]

×(H

VT

W’)

σ 9

5%

C.L

. lim

it

3−10

2−10

1−10

1

10

Observed (CLs)Expected (CLs)

σ 1±

σ 2±

=1v

HVT Model A, g

llqq→WZ→HVT

PreliminaryATLAS

­1 = 13 TeV, 13.2 fbs

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 6

ZV → ννqq

Event selection

Veto leptons, EmissT > 250 GeV

Multijet and non-collision bkg suppression

pmissT > 50 GeV, ∆Φ(~pmiss

T , ~EmissT ) < 1

min[∆Φ(~EmissT , small−R jet)] > 0.4

Only merged analysis

High and low purity signal regions based on D2 [GeV]HM

0 500 1000 1500 2000 2500 3000 3500

Acce

pta

nce

x e

ffic

ien

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sum

High Purity

Low Purity

ATLAS Preliminary

qqνν → ZZ → H →gg

10−4

10−3

10−2

10−1

1.0

101

102

103

Eve

nts

/GeV

ATLAS Preliminary√

s = 13 TeV, 13.2 fb−1

1 lep. high-purity Top CR

DataTop QuarksW + jetsSM DibosonZ + jetsStat.

⊕Syst. Uncert.

Pre-fit background

500 1000 1500 2000 2500 3000 3500mT (ννJ) [GeV]

0.5

1.0

1.5

Dat

a/P

red

mT =

√(ET,J + Emiss

T )2 − (~pT,J + ~EmissT )2

ET,J =√m2

J + p2T,J

Background estimation

Normalisation of Z+jets, W+jets and tt̄ insignal region determined in control regions

Z+jets CR: Z → µµ + J with new EmissT

definition (muon contribution removed)

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 7

ZV → ννqq - Results

Simulataneous fit to two signalregions and six control regions

No significant deviations observedfrom SM prediction→ 95% CL upper limits on σ× BR

10−4

10−3

10−2

10−1

1.0

101

102

103

Eve

nts

/GeV

ATLAS Preliminary√

s = 13 TeV, 13.2 fb−1

0 lep. high-purity SR

DataZ + jetsW + jetsTop QuarksSM DibosonStat.

⊕Syst. Uncert.

Pre-fit background

500 1000 1500 2000 2500 3000 3500mT (ννJ) [GeV]

0.5

1.0

1.5

Dat

a/P

red

[GeV]G*m500 1000 1500 2000 2500 3000 3500 4000 4500 5000

ZZ

) [pb]

→ G

*) x

BR

(G*

→(p

p

σ

4−10

3−10

2−10

1−10

1

10 ATLAS Preliminary­1 = 13 TeV, 13.2 fbs

qqνν → ZZ → G* →pp

Observed Limit

Expected Limit

σ 1 ±Expected

σ 2 ±Expected

RS G*

m < 1100 GeVexcluded

[GeV]W’

m500 1000 1500 2000 2500 3000 3500 4000 4500

WZ

) [pb]

→ H

VT

W’) X

(B

R

→ (

pp

σ 3−10

2−10

1−10

1

10ATLAS Preliminary

­1 = 13 TeV, 13.2 fbs

qqνν → WZ →HVT

Observed Limit

Expected Limitσ 1 ±Expected

σ 2 ±Expected =1

vHVT Model A, g

m < 2400 GeVexcluded

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 8

WV → `νqq

Event selection

Only merged analysis

One lepton and EmissT > 200 GeV

≥ 1 large-R jet

pT(J)/m`νJ > 0.4, pT(`ν)/m`νJ > 0.4

Reject events with close-by small-R b-tagged jet

Eve

nts

/ 1

0 G

eV

0

500

1000

1500

2000

2500

3000ATLAS Preliminary

L = 13.2/fb∫ = 13 TeV, s

Signal & W+jets Regions (HP)

Data (2015+2016)

W+jets

Top

Single­t

Dibosons

Z+jets

SM total

[GeV]J leadingM

60 80 100 120 140 160 180 200 220 240

Data

/ M

C

0.5

1

1.5

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

En

trie

s /

10

0 G

eV

3−10

2−10

1−10

1

10

210

310

410

510

610

710Data 2015­16

W+jets

tt

Single­t

Dibosons

Z+jets

Post­fit uncertainty

HVT m = 2.0 TeV

PreliminaryATLAS

= 13 TeV, 13.2/fbs

W+jets Control Region (LP)

[GeV]Jνlm500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Da

ta /

MC

0.5

1

1.5

Background estimation

Shape estimated from MC

W+jets & tt̄ normalisation estimated in CR

tt̄ CR: require close-by b-tagged jet

Dominating systematic uncertainties

Energy, mass and D2 scale and resolutionuncertainties

Modelling of background shape

∼ 10-20% effect on signal strength8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 9

WV → `νqq - Results

No significant deviations observedfrom SM prediction→ 95% CL upper limits on σ× BR

∼ 1 (0.2) TeV improvement in massexclusion limits for HVT (Graviton)with respect to 3.2 fb−1 analysis

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Entr

ies / 1

00 G

eV

3−10

2−10

1−10

1

10

210

310

410

510

610 Data 2015­16

W+jets

tt

Single­t

Dibosons

Z+jets

Post­fit uncertainty

HVT m = 2.0 TeV

PreliminaryATLAS

= 13 TeV, 13.2/fbs

WZ Signal Region (HP)

[GeV]Jνlm500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Data

/ M

C

0.5

1

1.5

m(Z’) [GeV]

500 1000 1500 2000 2500 3000 3500 4000 4500

WW

) [pb]

→ Z

’ →

(pp

σ

3−10

2−10

1−10

1

10

Observed 95% CL upper limit

Expected 95% CL upper limit

)σ 1±Expected limit (

)σ 2±Expected limit (

=1V

WW) HVT Model A, g→ Z’→(pp σ

=3V

WW) HVT Model B, g→ Z’→(pp σ

PreliminaryATLAS

­1 = 13 TeV, 13.2 fbs

[GeV]Scalarm

500 1000 1500 2000 2500 3000

WW

) [pb]

→ B

R (

Scala

r ×

σ

3−10

2−10

1−10

1

10

210Observed 95% CL upper limit

Expected 95% CL upper limit

)σ 1±Expected limit (

)σ 2±Expected limit (

Scalar Singlet (NDA)

Scalar Singlet (Unsupp.)

PreliminaryATLAS

­1 = 13 TeV, 13.2 fbs

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 10

VV→JJ

Event selection

Require two large-R boson-tagged jets

Additional criteria on number of tracksghost-associated to ungroomed jet: ntrk

Efficiency of ntrk measured in V+jets data

Overlap between WW ,WZ ,ZZ selection|

12y∆|

Even

ts /

2.00

200

400

600

800

1000

1200Data

Multi-jet MC = 1500 GeVW’m

PreliminaryATLAS-1 = 13 TeV, 15.5 fbs

WZ→HVT W’

trk Leading jet N

0 20 40 60

Dat

a/M

C

0.51

1.5

1.5 2 2.5 3 3.5

Eve

nts

/ 0.1

TeV

1

10

210

310

410

510

610ATLAS Preliminary

-1 = 13 TeV, 15.5 fbs

High sideband mass VR

Data 2015+2016

Fit bkg estimation

Fit exp. stats error

[TeV]JJM1.5 2 2.5 3 3.5

Pul

l

2−0

2

Dominating background: QCD dijets

Background parameterised by:

dn

dx= p1(1− x)p2+ξp3xp3 , x = mjj/

√s

p1: normalisation, p2, p3 dimensionlessshape parameters, ξ constant

Binned maximum-likelihood fitperformed to data to estimate bkg

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 11

VV→JJ - Results

1 1.5 2 2.5 3 3.5

Eve

nts

/ 0.1

TeV

1−10

1

10

210

310

410ATLAS Preliminary

-1 = 13 TeV, 15.5 fbs

WW selection

Data 2015+2016

Fit bkg estimation

HVT Model A m=1.5 TeV

HVT Model A m=2.4 TeV

Fit exp. stats error

[TeV]JJM1 1.5 2 2.5 3 3.5

Pul

l

2−0

2

1 1.5 2 2.5 3 3.5

Eve

nts

/ 0.1

TeV

1−10

1

10

210

310

410ATLAS Preliminary

-1 = 13 TeV, 15.5 fbs

ZZ selection

Data 2015+2016Fit bkg estimationG* m=1.5 TeVG* m=2.4 TeV * 10Fit exp. stats error

[TeV]JJM1 1.5 2 2.5 3 3.5

Pul

l

2−0

2

No significant deviations from SMprediction observed→ 95% CL upper limits on σ× BR

For gV = 1 (3), exclude

1.2 < mZ ′ < 1.8 (1.9) TeV1.2 < mW ′ < 1.9 (3.0) TeVNo sensitivity to excludegravitons with studied parameters

[GeV]Z'm1500 2000 2500 3000

WW

) [fb

]→

BR

(Z'

×Z

'+X

)→

(pp

σ

1

10

210

310ATLAS Preliminary

-1 = 13 TeV, 15.5 fbsObserved 95% CLExpected 95% CL

σ 1±σ 2±

= 1v

Model A, g = 3

vModel B, g

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 12

V γ → ``γ

Event selectionZ-boson candidate:

2 opposite-sign, same-flavour leptons within ± 15 GeV of Z-boson mass

Choose photon with highest pTX mass resolution improvement by kinematic Z-boson mass constraint fit

Two categories based on lepton flavour

[GeV]γZm

750 800 850

]-1

[GeV

γZ

1/N

dN

/dm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08 Simulation PreliminaryATLASγ Z→ X →gg

= 800 GeV Xm = 13 TeVs

-e+ e→Z-µ+µ →Z

Signal and background modelling:

Signal: double-sided Crystal Ball function

Bkg: non-resonant production of aprompt photon & Z boson, Z+jets(smoothly falling background)

Bkg parameterised with:

dn

dx= N (1− xk)p1xp2, x = mZγ/

√s

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 13

V γ → ``γ - Results

[GeV]γZm

210×3 210×4 310 310×2

Eve

nts

/ 20.

0 G

eV

3−10

2−10

1−10

1

10

210

310

410

data

bbackground,

-µ+µ, -e+ e→Z, γZ→X→pp

-1 = 13 TeV, 13.3 fbs

PreliminaryATLAS

[GeV]γZm210×3 310 310×2

data

- b

40−20−0

2040

[GeV]Xm

210×3 310 310×2 310×3

Loca

l p-v

alue

4−10

3−10

2−10

1−10

1 PreliminaryATLAS

σ+1

σ+2

σ+3

-µ+µ, -e+ e→Z, γZ→X→pp-1 = 13 TeV, 13.3 fbs

Selected 306 (485) candidates forZ → e+e−/µ+µ−

No significant deviations from bkgprediction→ 95% CL upper limits on σ× BR

Results dominated by stat. uncert.

[GeV]X m

210×3 310 310×2 310×3

)[fb

Z→

BR

(X× σ

95%

CL

limit

on

1

10

210

310Observed

Expected

σ 1±σ 2±

PreliminaryATLAS-µ+µ, -e+e→, ZγZ→X→pp

-1 = 13 TeV, 13.3 fbs

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 14

Summary

The diboson and Z + γ final state provides a direct key to new physics beyondthe Standard Model

The diboson resonance searches rely on using jet substructure techniques toreconstruct boosted hadronically decaying W /Z bosons (challenging whengoing to higher transverse momenta)

No significant deviation from background expectation observed at 13 TeV→ set upper limits on cross-section × BR for benchmark models

The increased luminosity allowed to improve the exclusion limits of thebenchmark models significantly with respect to previous analyses

Analyses using the full 2015+2016 dataset will allow to extend the mass reachof these searches even further

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 15

Backup

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 16

Challenges of final states with hadronic decays

1 How do we handle the high transverse momentum?

2 How can we handle the high pile-up?

Jet mass depends on pile-up and mass resolution diminishes with 〈µ〉Grooming techniques remove soft gluon radiation and pile-up effectsTrimming: remove subjets of size Rsubjet if psubjet

T < fcut × plarge−RT

3 How can we suppress the enormous QCD dijet background?

σdijet � σBSM → use internal structure of large-R jet

Low pT vector bosons

Decay products well separated

Two small-R jets (R ≈ 0.4)

High pT vector bosons

Decay products are collimated

One large-R jet (R ≈ 1.0)

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 17

Challenges of final states with hadronic decays

1 How do we handle the high transverse momentum?2 How can we handle the high pile-up?

Jet mass depends on pile-up and mass resolution diminishes with 〈µ〉Grooming techniques remove soft gluon radiation and pile-up effectsTrimming: remove subjets of size Rsubjet if psubjet

T < fcut × plarge−RT

3 How can we suppress the enormous QCD dijet background?

σdijet � σBSM → use internal structure of large-R jet

Jet mass [GeV]

0 100 200 300 400 500

Nor

mal

ised

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

= 80⟩µ⟨

= 140⟩µ⟨

= 200⟩µ⟨

ATLAS Simulation Preliminary R=1.0 jetstanti-k

No jet grooming, no jet pileup correction < 1000 GeV

T | < 2.0, 750 < pη|

t t→ = 14 TeV, Z' s

trimming−−−−−→

Jet mass [GeV]

0 100 200 300 400 500

Nor

mal

ised

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

= 80⟩µ⟨

= 140⟩µ⟨

= 200⟩µ⟨

ATLAS Simulation Preliminary R=1.0 jetstanti-k

Trimmed, no jet pileup correction < 1000 GeV

T | < 2.0, 750 < pη|

t t→ = 14 TeV, Z' s

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 17

Challenges of final states with hadronic decays

1 How do we handle the high transverse momentum?2 How can we handle the high pile-up?

Jet mass depends on pile-up and mass resolution diminishes with 〈µ〉Grooming techniques remove soft gluon radiation and pile-up effectsTrimming: remove subjets of size Rsubjet if psubjet

T < fcut × plarge−RT

3 How can we suppress the enormous QCD dijet background?

σdijet � σBSM → use internal structure of large-R jet

Quark/gluon jet W/Z jet

One region with high energy density

Mass from wide-angle radiation

Two regions with high energy density

mjet ≈ mW/Z

Balanced subjet pT

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 17

Energy correlation variables

Energy correlation D2

Dβ2 =

E 3CF1(β)

E 3CF2(β)

× ECF3(β)

N-point energy correlation function

ECF1(β) =∑

i∈JpTi , ECF2(β) =

i<j∈JpTipTj (∆Rij)

β,

ECF3(β) =∑

i<j<k∈JpTipTjpTk

(∆Rij∆Rik∆Rjk)β ,

=1)β(

2D

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

No

rma

lise

d E

ntr

ies

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22 ATLAS Simulation

=8 TeVs

|<1.2Truthη|

< 500 GeVTruth

T350 < p

M Cut

R=1.0 jetst

anti­k

=0.2)sub

=5%,Rcut

Trimmed (f

WZ)→W­jets (in W’

Multijets (leading jet)

= 50% G & T W

0 0.5 1 1.5 2 2.5 3 3.5 4

Events

/ 0

.2

0

1000

2000

3000

4000

5000ATLAS

­1=8 TeV, 20.3 fbs

R=1.0 jetst

anti­k

=0.2)sub

=5%,Rcut

Trimmed (f

> 200 GeVT

| < 1.2, pη|

Data (W) (POWHEG+Pythia)tt

Single Top (W) (non­W) (POWHEG+Pythia)tt

Single Top (non­W)W+jets

Z+jets

DibosonQCD Multijet

Uncertainty (Stat. Only)Uncertainty (Stat.+Syst.)

=1)β(

2D

0 0.5 1 1.5 2 2.5 3 3.5 4

Data

/MC

0.6

0.8

1

1.2

1.4 0 0.5 1 1.5 2 2.5 3 3.5 4

Events

/ 0

.2

0

200

400

600

800

1000

1200

1400

1600

1800

2000ATLAS

­1=8 TeV, 20.3 fbs

R=1.0 jetst

anti­k

=0.2)sub

=5%,Rcut

Trimmed (f

> 200 GeVT

| < 1.2, pη|

Mass Cut

Data (W) (POWHEG+Pythia)tt

Single Top (W) (non­W) (POWHEG+Pythia)tt

Single Top (non­W)W+jets

Z+jets

DibosonQCD Multijet

Uncertainty (Stat. Only)Uncertainty (Stat.+Syst.)

=1)β(

2D

0 0.5 1 1.5 2 2.5 3 3.5 4

Data

/MC

0.6

0.8

1

1.2

1.4

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 18

Z+jets CR for resolved H → ZZ analysis

Z+jets control region for resolved analysis (same event selection apart fromZ -boson mass constraint):

50 < mjj < 62 GeV or 105 < mjj < 150 GeV

Resolved analysis is divided in two categories: two b-tagged jets (tagged) andevents with fewer than two b-tagged jets (untagged)

10−3

10−2

10−1

1.0

101

102

103

Eve

nts

/GeV

ATLAS Preliminary√

s = 13 TeV, 13.2 fb−1

H → ZZ → ``qqTagged ZCR, ggF

DataZ + jetsTop QuarksSM DibosonStat.

⊕Syst. Uncert.

Pre-fit background

400 600 800 1000 1200 1400 1600 1800 2000m(``j j) [GeV]

0.5

1.0

1.5

Dat

a/P

red

10−3

10−2

10−1

1.0

101

102

103

104

Eve

nts

/GeV

ATLAS Preliminary√

s = 13 TeV, 13.2 fb−1

H → ZZ → ``qqUntagged ZCR, ggF

DataZ + jetsTop QuarksSM DibosonStat.

⊕Syst. Uncert.

Pre-fit background

400 600 800 1000 1200 1400 1600 1800 2000m(``j j) [GeV]

0.5

1.0

1.5

Dat

a/P

red

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 19

Z+jets CR for merged H → ZZ analysis

Z+jets control region for resolved analysis (same event selection apart fromZ -boson mass constraint):

mJ < 65 GeV or mJ > 106 GeV

Merged analysis divided in two categories: events where jet passed/failed theD2 criteria

10−4

10−3

10−2

10−1

1.0

101

102

103

Eve

nts

/GeV

ATLAS Preliminary√

s = 13 TeV, 13.2 fb−1

H → ZZ → ``qqMerged high-purity ZCR, ggF

DataZ + jetsSM DibosonTop QuarksStat.

⊕Syst. Uncert.

Pre-fit background

500 1000 1500 2000 2500 3000m(``J) [GeV]

0.5

1.0

1.5

Dat

a/P

red

10−4

10−3

10−2

10−1

1.0

101

102

103

104

Eve

nts

/GeV

ATLAS Preliminary√

s = 13 TeV, 13.2 fb−1

H → ZZ → ``qqMerged low-purity ZCR, ggF

DataZ + jetsSM DibosonTop QuarksStat.

⊕Syst. Uncert.

Pre-fit background

500 1000 1500 2000 2500 3000m(``J) [GeV]

0.5

1.0

1.5

Dat

a/P

red

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 20

ZV → ``qq - data/MC agreement of number of events

Comparison of predicted and observed number of events in MC and data forthe merged and resolved ``qq analysis

ProcessMerged analysis Resolved analysis

high purity low purity tagged untaggedSignal regions

Z+jets 576± 22 1230± 33 409± 18 19900± 140Diboson 49± 7 51± 5 54± 6 670± 40Top quark 4± 1 5.9± 1.0 131± 6 291± 28

Total background 629± 22 1287± 34 594± 18 20861± 140

Data 606 1270 608 20857

H (400 GeV) 1.6± 0.2 4.3± 0.7 107± 6 626± 21H (700 GeV) 168± 4 88.2± 2.9 20.0± 1.2 71.4± 3.3H (1600 GeV) 35.9± 0.8 24.0± 0.6 1.00± 0.09 1.60± 0.08

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 21

Resolved H → ZZ signal region

Resolved analysis is divided in two categories: two b-tagged jets (tagged) andevents with fewer than two b-tagged jets (untagged)

10−3

10−2

10−1

1.0

101

102

103

Eve

nts

/GeV

ATLAS Preliminary√

s = 13 TeV, 13.2 fb−1

H → ZZ → ``qqTagged SR, ggF

DataH 700 GeV (0.1 pb)Z + jetsTop QuarksSM DibosonStat.

⊕Syst. Uncert.

Pre-fit background

400 600 800 1000 1200 1400 1600 1800 2000m(``j j) [GeV]

0.5

1.0

1.5

Dat

a/P

red

10−3

10−2

10−1

1.0

101

102

103

104

Eve

nts

/GeV

ATLAS Preliminary√

s = 13 TeV, 13.2 fb−1

H → ZZ → ``qqUntagged SR, ggF

DataH 700 GeV (0.1 pb)Z + jetsSM DibosonTop QuarksStat.

⊕Syst. Uncert.

Pre-fit background

400 600 800 1000 1200 1400 1600 1800 2000m(``j j) [GeV]

0.5

1.0

1.5

Dat

a/P

red

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 22

Merged H → ZZ signal region

Merged analysis divided in two categories: events where jet passed/failed theD2 criteria

10−4

10−3

10−2

10−1

1.0

101

102

103

Eve

nts

/GeV

ATLAS Preliminary√

s = 13 TeV, 13.2 fb−1

H → ZZ → ``qqMerged high-purity SR, ggF

DataH 1.6 TeV (10 fb)Z + jetsSM DibosonTop QuarksStat.

⊕Syst. Uncert.

Pre-fit background

500 1000 1500 2000 2500 3000m(``J) [GeV]

0.5

1.0

1.5

Dat

a/P

red

10−4

10−3

10−2

10−1

1.0

101

102

103

Eve

nts

/GeV

ATLAS Preliminary√

s = 13 TeV, 13.2 fb−1

H → ZZ → ``qqMerged low-purity SR, ggF

DataH 1.6 TeV (10 fb)Z + jetsSM DibosonTop QuarksStat.

⊕Syst. Uncert.

Pre-fit background

500 1000 1500 2000 2500 3000m(``J) [GeV]

0.5

1.0

1.5

Dat

a/P

red

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 23

Statistical interpretation of H → ZZ analysis

95% upper cross-section limits on the σ×BR of H → ZZ

Left: gluon-gluon fusion, Right: VBF

σ× BR exclusion limits range from 1.28 (0.6) pb at 300 GeV to 6.2 (5.2) fb at3000 GeV for ggF and VBF

[GeV]H

m

500 1000 1500 2000 2500 3000

ZZ

) [p

b]

→B

R(H

×H

)→

(gg

σ 9

5%

C.L

. lim

it

3−10

2−10

1−10

1

10

Observed (CLs)

Expected (CLs)

σ 1±

σ 2±

llqq→ZZ→H→gg

PreliminaryATLAS

­1 = 13 TeV, 13.2 fbs

[GeV]H

m

500 1000 1500 2000 2500 3000

ZZ

) [p

b]

→B

R(H

×H

)→

(qq

σ 9

5%

C.L

. lim

it

3−10

2−10

1−10

1

10

Observed (CLs)

Expected (CLs)

σ 1±

σ 2±

llqq→ZZ→H→qq

PreliminaryATLAS

­1 = 13 TeV, 13.2 fbs

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 24

Statistical interpretation of search for W ′ and G ∗

95% upper cross-section limits on the σ×BR of H → ZZ

σ× BR exclusion limits range from

1.10 pb at 500 GeV to 13.9 fb at 5000 GeV for HVT730 fb at 500 GeV to 6.7 fb at 5000 GeV for RS graviton

Observed (expected) limits exclude mW ′ < 2225 (2075) GeV and mG∗ < 1035(1045) GeV

[GeV]W’

m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

BR

(WZ

) [p

b]

×(H

VT

W’)

σ 9

5%

C.L

. lim

it

3−10

2−10

1−10

1

10

Observed (CLs)Expected (CLs)

σ 1±

σ 2±

=1v

HVT Model A, g

llqq→WZ→HVT

PreliminaryATLAS

­1 = 13 TeV, 13.2 fbs

[GeV]G* m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

ZZ

) [p

b]

→B

R(G

G*)

→(p

95

% C

.L.

limit

3−10

2−10

1−10

1

10

Observed (CLs)Expected (CLs)

σ 1±

σ 2±

=1PIMBulk RS G*, k/

llqq→ZZ→G*→pp

PreliminaryATLAS

­1 = 13 TeV, 13.2 fbs

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 25

Z+jets CR for ZV → ννqq analysis

Z → µµ + jets eventsLarge-R jet required to be outside of Z -mass window (mJ < 65 or mJ > 106GeV)Merged analysis divided in two categories: events where jet passed/failed theD2 criteriaModified definition of Emiss

T used (without muon contribution)

10−4

10−3

10−2

10−1

1.0

101

102

103

Eve

nts

/GeV

ATLAS Preliminary√

s = 13 TeV, 13.2 fb−1

2 lep. high-purity ZCR

DataZ + jetsSM DibosonTop QuarksStat.

⊕Syst. Uncert.

Pre-fit background

500 1000 1500 2000 2500 3000 3500mT (ννJ) [GeV]

0.5

1.0

1.5

Dat

a/P

red

10−4

10−3

10−2

10−1

1.0

101

102

103

Eve

nts

/GeV

ATLAS Preliminary√

s = 13 TeV, 13.2 fb−1

2 lep. low-purity ZCR

DataZ + jetsSM DibosonTop QuarksStat.

⊕Syst. Uncert.

Pre-fit background

500 1000 1500 2000 2500 3000 3500mT (ννJ) [GeV]

0.5

1.0

1.5

Dat

a/P

red

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 26

Top control region for ZV → ννqq analysis

Exactly one muon candidate and at least one large-R jet

At least one b-tagged jet is required

Large-R jet required to be consistent with W boson decay

Merged analysis divided in two categories: events where jet passed/failed theD2 criteria

10−4

10−3

10−2

10−1

1.0

101

102

103

Eve

nts

/GeV

ATLAS Preliminary√

s = 13 TeV, 13.2 fb−1

1 lep. high-purity Top CR

DataTop QuarksW + jetsSM DibosonZ + jetsStat.

⊕Syst. Uncert.

Pre-fit background

500 1000 1500 2000 2500 3000 3500mT (ννJ) [GeV]

0.5

1.0

1.5

Dat

a/P

red

10−4

10−3

10−2

10−1

1.0

101

102

103

Eve

nts

/GeV

ATLAS Preliminary√

s = 13 TeV, 13.2 fb−1

1 lep. low-purity Top CR

DataTop QuarksW + jetsSM DibosonZ + jetsStat.

⊕Syst. Uncert.

Pre-fit background

500 1000 1500 2000 2500 3000 3500mT (ννJ) [GeV]

0.5

1.0

1.5

Dat

a/P

red

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 27

W+jets CR for ZV → ννqq analysis

Exactly one muon candidate and at least one large-R jet

At least one b-tagged jet is required

Large-R jet required to be outside of W boson mass window

Merged analysis divided in two categories: events where jet passed/failed theD2 criteria

10−4

10−3

10−2

10−1

1.0

101

102

103

Eve

nts

/GeV

ATLAS Preliminary√

s = 13 TeV, 13.2 fb−1

1 lep. high-purity WCR

DataW + jetsTop QuarksSM DibosonZ + jetsStat.

⊕Syst. Uncert.

Pre-fit background

500 1000 1500 2000 2500 3000 3500mT (ννJ) [GeV]

0.5

1.0

1.5

Dat

a/P

red

10−4

10−3

10−2

10−1

1.0

101

102

103

104

Eve

nts

/GeV

ATLAS Preliminary√

s = 13 TeV, 13.2 fb−1

1 lep. low-purity WCR

DataW + jetsTop QuarksSM DibosonZ + jetsStat.

⊕Syst. Uncert.

Pre-fit background

500 1000 1500 2000 2500 3000 3500mT (ννJ) [GeV]

0.5

1.0

1.5

Dat

a/P

red

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 28

ZV → ννqq - data/MC agreement of number of events

Comparison of predicted and observed number of events in MC and data forthe high and low purity signal region of the ννqq analysis

ProcessMerged analysis

high-purity low-purityZ+jets 1251 ± 56 3130 ± 79W+jets 881 ± 45 2092 ± 75Diboson 202 ± 14 227 ± 10tt̄ + single top 557 ± 85 610 ± 100

Total background 2891± 50 6059 ± 76

Data 2859 6044

H (1600 GeV) 63.7 ± 1.9 46.2 ± 1.4

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 29

ZV → ννqq signal region

Merged analysis divided in two categories: events where jet passed (highpurity) and failed (low purity) the D2 criteria

10−4

10−3

10−2

10−1

1.0

101

102

103

Eve

nts

/GeV

ATLAS Preliminary√

s = 13 TeV, 13.2 fb−1

0 lep. low-purity SR

DataZ + jetsW + jetsTop QuarksSM DibosonStat.

⊕Syst. Uncert.

Pre-fit background

500 1000 1500 2000 2500 3000 3500mT (ννJ) [GeV]

0.5

1.0

1.5

Dat

a/P

red

10−4

10−3

10−2

10−1

1.0

101

102

103

Eve

nts

/GeV

ATLAS Preliminary√

s = 13 TeV, 13.2 fb−1

0 lep. high-purity SR

DataZ + jetsW + jetsTop QuarksSM DibosonStat.

⊕Syst. Uncert.

Pre-fit background

500 1000 1500 2000 2500 3000 3500mT (ννJ) [GeV]

0.5

1.0

1.5

Dat

a/P

red

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 30

Statistical interpretation of ZV → ννqq analysis

[GeV]G*m500 1000 1500 2000 2500 3000 3500 4000 4500 5000

ZZ

) [

pb

]→

G*)

x B

R(G

* →

(pp

σ

4−10

3−10

2−10

1−10

1

10 ATLAS Preliminary­1 = 13 TeV, 13.2 fbs

qqνν → ZZ → G* →pp

Observed Limit

Expected Limit

σ 1 ±Expected

σ 2 ±Expected

RS G*

[GeV]W’

m500 1000 1500 2000 2500 3000 3500 4000 4500

WZ

) [

pb

]→

HV

T W

’) X

(B

R

→ (

pp

σ 3−10

2−10

1−10

1

10ATLAS Preliminary

­1 = 13 TeV, 13.2 fbs

qqνν → WZ →HVT

Observed Limit

Expected Limitσ 1 ±Expected

σ 2 ±Expected =1

vHVT Model A, g

[GeV]H

m500 1000 1500 2000 2500 3000

ZZ

) [

pb

]→

H)

x (

BR

(gg

σ

3−10

2−10

1−10

1

10ATLAS Preliminary

­1 = 13 TeV, 13.2 fbs

qqνν → ZZ → H →gg

Observed Limit

Expected Limit

σ 1 ±Expected

σ 2 ±Expected W ′ →WZ excluded formW ′ < 2400 GeV with gV = 1

G∗ → ZZ excluded formG∗ < 1100 GeV

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 31

WV → `νqq - data/MC agreement of number of events

Event selection criteria for the signal region and W+jets and tt̄ control region

Selection SR: HP (LP) W CR: HP (LP) tt̄ CR: HP (LP)

W → `ν selection

Number of signal leptons 1Number of vetoed leptons 0Number of vetoed leptons 0

EmissT > 100GeV

pT(`ν) > 200GeV

W/Z → J selectionNumber of large-R jets ≥ 1

Passing the D(β=1)2 cut yes (no) yes (no) yes (no)∣∣mW/Z −mJ

∣∣ < 15 GeV > 15 GeV < 15 GeV

Topology cutspT(`ν)/mWV > 0.4pT(J)/mWV

Top-quark veto Number of b-tagged jets 0 ≥ 1

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 32

W+jets CR for WV → `νqq analysis

Mass of large-R jet required to be outside of 15 GeV window around mW

Zero b-tagged jets

Merged analysis divided in two categories: events where jet passed (highpurity) and failed (low purity) the D2 criteria

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

En

trie

s /

10

0 G

eV

3−10

2−10

1−10

1

10

210

310

410

510

610 Data 2015­16

W+jets

tt

Single­t

Dibosons

Z+jets

Post­fit uncertainty

HVT m = 2.0 TeV

PreliminaryATLAS

= 13 TeV, 13.2/fbs

W+jets Control Region (HP)

[GeV]Jνlm500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Data

/ M

C

0.5

1

1.5

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

En

trie

s /

10

0 G

eV

3−10

2−10

1−10

1

10

210

310

410

510

610

710Data 2015­16

W+jets

tt

Single­t

Dibosons

Z+jets

Post­fit uncertainty

HVT m = 2.0 TeV

PreliminaryATLAS

= 13 TeV, 13.2/fbs

W+jets Control Region (LP)

[GeV]Jνlm500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Data

/ M

C

0.5

1

1.5

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 33

tt̄ CR for WV → `νqq analysis

Large-R jet required to be compatible with W -boson decay

At least one b-tagged jet

Merged analysis divided in two categories: events where jet passed (highpurity) and failed (low purity) the D2 criteria

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

En

trie

s /

10

0 G

eV

3−10

2−10

1−10

1

10

210

310

410

510

610Data 2015­16

W+jets

tt

Single­t

Dibosons

Z+jets

Post­fit uncertainty

HVT m = 2.0 TeV

PreliminaryATLAS

= 13 TeV, 13.2/fbs

Top Control Region (HP)

[GeV]Jνlm500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Data

/ M

C

0.5

1

1.5

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

En

trie

s /

10

0 G

eV

3−10

2−10

1−10

1

10

210

310

410

510

610Data 2015­16

W+jets

tt

Single­t

Dibosons

Z+jets

Post­fit uncertainty

HVT m = 2.0 TeV

PreliminaryATLAS

= 13 TeV, 13.2/fbs

Top Control Region (LP)

[GeV]Jνlm500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Data

/ M

C

0.5

1

1.5

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 34

WW → `νqq signal region

Merged analysis divided in two categories: events where jet passed (highpurity) and failed (low purity) the D2 criteria

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

En

trie

s /

10

0 G

eV

3−10

2−10

1−10

1

10

210

310

410

510

610 Data 2015­16

W+jets

tt

Single­t

Dibosons

Z+jets

Post­fit uncertainty

HVT m = 2.0 TeV

PreliminaryATLAS

= 13 TeV, 13.2/fbs

WW Signal Region (HP)

[GeV]Jνlm500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Data

/ M

C

0.5

1

1.5

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

En

trie

s /

10

0 G

eV

3−10

2−10

1−10

1

10

210

310

410

510

610Data 2015­16

W+jets

tt

Single­t

Dibosons

Z+jets

Post­fit uncertainty

HVT m = 2.0 TeV

PreliminaryATLAS

= 13 TeV, 13.2/fbs

WW Signal Region (LP)

[GeV]Jνlm500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Data

/ M

C

0.5

1

1.5

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 35

WZ → `νqq signal region

Merged analysis divided in two categories: events where jet passed (highpurity) and failed (low purity) the D2 criteria

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

En

trie

s /

10

0 G

eV

3−10

2−10

1−10

1

10

210

310

410

510

610 Data 2015­16

W+jets

tt

Single­t

Dibosons

Z+jets

Post­fit uncertainty

HVT m = 2.0 TeV

PreliminaryATLAS

= 13 TeV, 13.2/fbs

WZ Signal Region (HP)

[GeV]Jνlm500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Data

/ M

C

0.5

1

1.5

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

En

trie

s /

10

0 G

eV

3−10

2−10

1−10

1

10

210

310

410

510

610Data 2015­16

W+jets

tt

Single­t

Dibosons

Z+jets

Post­fit uncertainty

HVT m = 2.0 TeV

PreliminaryATLAS

= 13 TeV, 13.2/fbs

WZ Signal Region (LP)

[GeV]Jνlm500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Data

/ M

C

0.5

1

1.5

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 36

WW → `νqq - data/MC agreement of number of events

Comparison of predicted and observed number of events in MC and data forthe WW signal and control regions `νqq analysis

WW signal region W+jets control region tt̄ control regionHigh-purity category

W+jets 1810 ± 63 3182 ± 65 215 ± 12tt̄ 654 ± 50 1020 ± 33 2940 ± 70Single-t 163 ± 14 200 ± 15 322 ± 23Z+jets 18.0 ± 3.8 53 ± 6 12 ± 2Diboson 192 ± 31 70 ± 11 19.0 ± 3.8Total SM 2830 ± 80 4530 ± 80 3500 ± 80Data 2822 ± 53 4534 ± 67 3509 ± 59

Low-purity categoryW+jets 5630 ± 94 7320 ± 110 706 ± 37tt̄ 730 ± 50 1410 ± 47 3100 ± 89Single-t 178 ± 14 290 ± 22 420 ± 31Z+jets 66.6 ± 4.8 134.1 ± 7.7 17.7 ± 2.8Dibosons 215 ± 34 150 ± 23 22 ± 4Total SM 6820 ± 80 9310 ± 125 4260 ± 120Data 6849 ± 83 9276 ± 96 4270 ± 65

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 37

WZ → `νqq - data/MC agreement of number of events

Comparison of predicted and observed number of events in MC and data forthe WZ signal and control regions `νqq analysis

WZ signal region W+jets control region tt̄ control regionHigh-purity category

W+jets 1810 ± 92 3050 ± 120 194 ± 28tt̄ 830 ± 87 1130 ± 82 2300 ± 100Single-t 160 ± 23 221 ± 26 312 ± 38Z+jets 18.1 ± 5.1 50.7 ± 8.4 11.5 ± 2.6Dibosons 165 ± 43 68 ± 18 19.8 ± 5.5Total SM 2990 ± 70 4520 ± 97 3510 ± 94Data 2972 ± 55 4534 ± 67 3509 ± 59

Low-purity categoryW+jets 4003 ± 130 7250 ± 196 670 ± 85tt̄ 670 ± 72 1505 ± 120 3150 ± 125Single-t 153 ± 21 284 ± 33 409 ± 46Z+jets 54.1 ± 4.0 126 ± 12 16.7 ± 3.3Dibosons 155 ± 40 135 ± 34 19.2 ± 6.1Total SM 5035 ± 100 9300 ± 180 4260 ± 95Data 5059 ± 71 9276 ± 96 4270 ± 65

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 38

Statistical interpretation of WV → `νqq analysis

Resonance masses below 2400 GeV are excluded for model-A

Resonance masses below 2540 GeV are excluded for model-B

Graviton masses below 1240 GeV are excluded

m(W’) [GeV]

500 1000 1500 2000 2500 3000 3500 4000 4500

WZ

) [

pb

]→

W’

→(p

p

σ

3−10

2−10

1−10

1

10

Observed 95% CL upper limit

Expected 95% CL upper limit

)σ 1±Expected limit (

)σ 2±Expected limit (

=1V

WZ) HVT Model A, g→ W’→(pp σ

=3V

WZ) HVT Model B, g→ W’→(pp σ

PreliminaryATLAS

­1 = 13 TeV, 13.2 fbs

m(G*) [GeV]

500 1000 1500 2000 2500 3000 3500 4000 4500

WW

) [

pb

]→

G*

→(p

p

σ

3−10

2−10

1−10

1

10

Observed 95% CL upper limit

Expected 95% CL upper limit

)σ 1±Expected limit (

)σ 2±Expected limit (

= 1Pl

WW) k / M→ G* →(pp σ

PreliminaryATLAS

­1 = 13 TeV, 13.2 fbs

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 39

Number of ghost-associated tracks ntrk

Study the jet mass distribution in enriched W /Z+jets events

D2 criteria applied to select jets and ntrk varied

Scale factor of 1.06 → 6% systematic uncertainty on ntrk

Improvement of 20-30% of expected sensitivity

Eve

nts

/ 5 G

eV

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

-1=13 TeV, 15.5 fbs

<30trkN

ATLAS Preliminary

DataMulti-jet MCW+jets MCZ+jets MCFitted s+bFitted bkd.

[GeV]Jm40 60 80 100 120 140 160 180 200 220 240

Dat

a-fit

0500

1000 450±Signal=6599

trk N

0 10 20 30 40 50 60 70 80 90

Fra

ctio

n of

W/Z

eve

nts

/ tra

ck

0

0.01

0.02

0.03

0.04

0.05

Data

W/Z MC

W/Z reweighted

ATLAS Preliminary

-1=13 TeV, 15.5 fbs

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 40

Rapidity difference

Rapidity difference is used to suppress QCD dijet background (t-channelproduction)

Discriminating power changes with pT

10% window around mW ′ mass

|12

y∆|

Even

ts /

0.15

20

40

60

80

100

120310×

Data

Multi-jet MC = 1500 GeVW’m

PreliminaryATLAS-1 = 13 TeV, 15.5 fbs

WZ→HVT W’

|12 y∆ | 0 1 2 3

Dat

a/M

C

0.51

1.5 |12

y∆|

Even

ts /

0.15

2

4

6

8

10

12

14

16

18310×

Data

Multi-jet MC = 2400 GeVW’m

PreliminaryATLAS-1 = 13 TeV, 15.5 fbs

WZ→HVT W’

|12 y∆ | 0 1 2 3

Dat

a/M

C

0.51

1.5

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 41

Control regions for VV → JJ search

Background parameterisation is tested in different control regions

large-R jets required to be outside of W /Z boson mass window

1.5 2 2.5 3 3.5

Eve

nts

/ 0.1

TeV

1

10

210

310

410

510

610ATLAS Preliminary

-1 = 13 TeV, 15.5 fbs

High sideband mass VR

Data 2015+2016

Fit bkg estimation

Fit exp. stats error

[TeV]JJM1.5 2 2.5 3 3.5

Pul

l

2−0

21.5 2 2.5 3 3.5

Eve

nts

/ 0.1

TeV

1

10

210

310

410

510

610ATLAS Preliminary

-1 = 13 TeV, 15.5 fbs

Mixed sideband mass VR

Data 2015+2016

Fit bkg estimation

Fit exp. stats error

[TeV]JJM1.5 2 2.5 3 3.5

Pul

l

2−0

2

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 42

Signal regions for VV → JJ search

1 1.5 2 2.5 3 3.5

Eve

nts

/ 0.1

TeV

1−10

1

10

210

310

410ATLAS Preliminary

-1 = 13 TeV, 15.5 fbs

WW selection

Data 2015+2016

Fit bkg estimation

HVT Model A m=1.5 TeV

HVT Model A m=2.4 TeV

Fit exp. stats error

[TeV]JJM1 1.5 2 2.5 3 3.5

Pul

l

2−0

21 1.5 2 2.5 3 3.5

Eve

nts

/ 0.1

TeV

1−10

1

10

210

310

410ATLAS Preliminary

-1 = 13 TeV, 15.5 fbs

WZ selection

Data 2015+2016

Fit bkg estimation

HVT Model A m=1.5 TeV

HVT Model A m=2.4 TeV

Fit exp. stats error

[TeV]JJM1 1.5 2 2.5 3 3.5

Pul

l

2−0

2

1 1.5 2 2.5 3 3.5

Eve

nts

/ 0.1

TeV

1−10

1

10

210

310

410ATLAS Preliminary

-1 = 13 TeV, 15.5 fbs

ZZ selection

Data 2015+2016Fit bkg estimationG* m=1.5 TeVG* m=2.4 TeV * 10Fit exp. stats error

[TeV]JJM1 1.5 2 2.5 3 3.5

Pul

l

2−0

2

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 43

Statistical interpretation of VV → JJ results

95% upper cross-section times Branching ratio limits on the HVT model

Z ′ →WW excluded for masses 1.2 - 1.8 (1.2-1.9) TeV for HVT model A (B)

W ′ →WZ excluded for masses 1.2 - 1.9 (1.2 - 3.0) TeV for HVT model A (B)

[GeV]Z'm1500 2000 2500 3000

WW

) [fb

]→

BR

(Z'

×Z

'+X

)→

(pp

σ

1

10

210

310ATLAS Preliminary

-1 = 13 TeV, 15.5 fbsObserved 95% CLExpected 95% CL

σ 1±σ 2±

= 1v

Model A, g = 3

vModel B, g

[GeV]W'm1500 2000 2500 3000

WZ

) [fb

]→

BR

(W'

×W

'+X

)→

(pp

σ

1

10

210

310ATLAS Preliminary

-1 = 13 TeV, 15.5 fbsObserved 95% CLExpected 95% CL

σ 1±σ 2±

= 1v

Model A, g = 3

vModel B, g

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 44

Statistical interpretation of VV → JJ results

Analyses not sensitive enough to RS gravitons with the studied parameters here

[GeV]RS

Gm1500 2000 2500 3000

ZZ

) [fb

]→

RS

BR

(G×

+X

)R

SG

→(p

1

10

210

310ATLAS Preliminary

-1 = 13 TeV, 15.5 fbsObserved 95% CLExpected 95% CL

σ 1±σ 2±

=1Pl

MZZ, k/→RSG

[GeV]RS

Gm1500 2000 2500 3000

WW

) [fb

]→

RS

BR

(G×

+X

)R

SG

→(p

1

10

210

310ATLAS Preliminary

-1 = 13 TeV, 15.5 fbsObserved 95% CLExpected 95% CL

σ 1±σ 2±

=1Pl

MWW, k/→RSG

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 45

Signal efficiency for Zγ search

Signal efficiency as a function of the resonance mass for Z → µµ and Z → eechannel separately

[GeV]Xm

0 500 1000 1500 2000 2500

Sig

nal e

ffici

ency

0

0.1

0.2

0.3

0.4

0.5

0.6 Simulation PreliminaryATLAS

γ Z→ X →gg = 13 TeVs

-e+ e→Z-µ+µ →Z

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 46

Data/MC comparison for the Zγ signal region

Data/MC comparison of invariant Zγ mass for the Z → ee and Z → µµchannel

(GeV)γllM

310

Eve

nts

/ 25

GeV

3−10

2−10

1−10

1

10

210

310

410data

+ jetZ

γ + Z

PreliminaryATLAS-1= 13 TeV, 13.3 fbs

-e+ e→Z, γZ → X → pp

[GeV]γZm210×3 310 310×2

Dat

a/M

C

0.5

1

1.5

2 (GeV)γllM

310E

vent

s / 2

5 G

eV

3−10

2−10

1−10

1

10

210

310

410data

+ jetZ

γ + Z

PreliminaryATLAS-1= 13 TeV, 13.3 fbs

-µ+µ →Z, γZ → X → pp

[GeV]γZm210×3 310 310×2

Dat

a/M

C

0.5

1

1.5

2

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 47

Invariant Zγ mass distributions

Comparison of invariant Zγ mass distribution for two different resonancemasses

Width of X mass distributions degrades significantly in muon channel forhigher resonance masses

[GeV]γZm

280 300 320

]-1

[GeV

γZ

1/N

dN

/dm

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18 Simulation PreliminaryATLAS

γ Z→ X →gg = 300 GeV Xm = 13 TeVs

-e+ e→Z-µ+µ →Z

[GeV]γZm

1400 1500 1600

]-1

[GeV

γZ

1/N

dN

/dm

0

0.01

0.02

0.03

0.04

0.05 Simulation PreliminaryATLASγ Z→ X →gg

= 1500 GeV Xm = 13 TeVs

-e+ e→Z-µ+µ →Z

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 48

Background parameterisation

Background parameterisation for the Z → ee and Z → µµ channel separately

[GeV]γZm

310

Eve

nts

/ 20.

0 G

eV

3−10

2−10

1−10

1

10

210

310

data

bbackground,

- e+ e→Z, γZ→X→pp

-1 = 13 TeV, 13.3 fbs

PreliminaryATLAS

[GeV]γZm210×3 310 310×2

data

- b

10−0

10 [GeV]γZm

310

Eve

nts

/ 20.

0 G

eV

3−10

2−10

1−10

1

10

210

310

410

data

bbackground,

-µ +µ →Z, γZ→X→pp

-1 = 13 TeV, 13.3 fbs

PreliminaryATLAS

[GeV]γZm210×3 310 310×2

data

- b

20−0

20

8-10 May 2017 ATLAS Searches for VV and Vγ Resonances 49


Recommended