+ All Categories
Home > Documents > Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and...

Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and...

Date post: 20-Jan-2016
Category:
View: 223 times
Download: 0 times
Share this document with a friend
Popular Tags:
48
Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth and Planetary Science University of California at Berkeley [email protected]
Transcript
Page 1: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Atmospheric carbon-14 as a tracer of the contemporary

carbon cycle

Nir Y KrakauerNOAA Climate and Global Change Postdoctoral Fellow

Department of Earth and Planetary Science

University of California at Berkeley

[email protected]

Page 2: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

The atmospheric CO2 mixing ratio

Australian Bureau of Meteorology

Page 3: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Carbon cycle conundrums• Consistently, the

atmospheric CO2 increase amounts to 55-60% of emissions from fossil-fuel burning

• What are the sinks that absorb over 40% of the CO2 that we emit?

– Land or ocean? Where? What processes?

– Why the interannual variability?

• How will CO2 sinks change?

Page 4: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

In this presentation…

How can measuring 14C/12C isotope ratios help us map where carbon is going today?

a) Ocean carbon uptake

b) Carbon emissions from fossil-fuel burning

Page 5: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Measuring Δ14C : a short excursus

Challenge: The typical atmospheric 14C/12C ratio is 1.1 * 10–12

Fluctuations are O(1%) of that

Page 6: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

1) Liquid scintillation counting measures 14C decay

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

GMI

Page 7: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

2) Accelerator mass spectrometry measures (ionized) 14C atoms

Oxford Radiocarbon Accelerator Unit

Page 8: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

The 14C cycle at steady state

• 14C (λ1/2 = 5730 years) is produced in the upper atmosphere at ~6 kg / year

• Notation: Δ14C = 14C/12C ratio relative to the preindustrial troposphere

Stratosphere +80‰90 Pg C

Troposphere 0‰500 Pg C

Shallow ocean –50‰600 Pg C

Deep ocean –170‰37000 Pg C

Land biota –3‰1500 Pg C

Sediments –1000‰1000000 Pg C

14N(n,p)14C

Air-sea gas exchange

Page 9: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Steady-state Δ14C traces ocean circulation

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.QuickTime™ and a

TIFF (Uncompressed) decompressorare needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Orr (OCMIP report); NASA

Inferred timescale:~1000 y

(~1/5 of 14C half-life)

PacificAtlantic

Page 10: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Ocean CO2 uptake• The ocean must be responding to

the higher atmospheric pCO2; estimated ~2 Pg C/ year net uptake

• Actual uptake pattern is inferred from measurements of sea-surface pCO2 + estimates of the gas transfer velocity

• Air-sea CO2 flux is the product of

(1) the surface-water (minus atmopsheric) CO2 concentration (reasonably easy to measure sea-surface and atmospheric CO2 partial pressure) and (2) the gas transfer velocity (hard to measure)

LDEO

Page 11: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Wu 1996; Pictures: WHOI

Measured gas transfer velocities range widely…

• Gas transfer velocity, kw, usually plotted against windspeed (roughly correlates w/ surface turbulence)

• Many other variables known/theorized to be important: wave development, surfactants, rain, air-sea temperature gradient…

• Several measurement techniques have been used (tracer release, eddy covariance, …) – all imprecise, sometimes seem to give systematically different results

• What’s the effective mean transfer velocity in a particular region?

Page 12: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

..as do parameterizations of kw versus windspeed

• Common parameterizations assume kw to increase with windspeed v (piecewise) linearly (Liss &

Merlivat 1986), quadratically (Wanninkhof 1992) or cubically (Wanninkhof &

McGillis 1999) • Large differences in

implied kw, particularly at high windspeeds (where there are few measurements)

– My approach: Are these formulations consistent with ocean tracer (14C) distribution?Feely et al 2001

Page 13: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Idea: Track where the ocean took up carbon-14

• Massive production in nuclear tests ca. 1960 (“bomb 14C”)

• The ocean took up ~half of the bomb 14C by the 1980s

• The 14C taken up by the ocean stands up more against the natural background than the fossil-fuel CO2 taken up, so is easier to measure;

• The gas transfer velocity would be the same for both processes!

bomb spikedata: Levin & Kromer 2004; Manning et al 1990; Druffel 1987; Druffel 1989; Druffel & Griffin 1995

Page 14: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Inferring gas transfer from measured ocean bomb 14C

(2) Gas transfer at the turbulentair-seainterface

(3) Ocean circulation

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Hokusai via OceanWorld; Britannica

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

14CO2

[14CO2]aq

(1) 14C in the atmosphere from bombs

(4) Measured elevated ocean

Δ14C:Includes gas

transfer + ocean circulation

Page 15: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Modus operandi• Simulate ocean 14C

uptake with an ocean-circulation model (MITgcm-ECCO) assuming some gas transfer velocity for each region

• Compare with ocean Δ14C measurements from the 1970s-1990s

• Adjust gas transfer velocities until the simulated fields match observations (as well as possible!)

Krakauer et al., Tellus, 58B(5), 390-417 (2006)

Page 16: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Previous work on ocean bomb 14C

• Broecker and Peng (1985; 1986; 1995) used 1970s (GEOSECS) measurements of 14C in the ocean to estimate a global ocean inventory and thus the global mean gas transfer velocity (21±3 cm/hr)

• My work builds on this by – Adding measurements from more recent cruises

– Using the spatial distribution of bomb 14C in the ocean together with a model of transport of 14C by ocean circulation to estimate not only the global mean transfer velocity but also how it varies regionally

Page 17: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Results: Gas transfer velocities by region

• Higher transfer velocities in tropical ocean regions than previously assumed(for each map region: top line: velocity

estimated from relationship with windspeedbottom lines: inferred from 14C uptake

• Less apparent dependence on regional wind speed (dashed line), usually taken to be the factor with the biggest influence on gas transfer velocity, than expected

Page 18: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Implications for ocean CO2 uptake• We can apply the new

parameterization of gas exchange to pCO2 maps:– uptake by the

Southern Ocean [high windspeed] is lower than previously calculated (fitting inversion results better)

– outgassing near the Equator [low windspeed] is higher (reducing the required tropical land source)

Page 19: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

To be determined…

• Can 14C uptake help test models based on boundary-layer turbulence theory of what processes control gas exchange beside wind speed?

• How might climate change affect these processes, and hence ocean uptake of CO2?

Page 20: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Atmospheric Δ14C:Mapping CO2 from fossil-fuel

burning

Page 21: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

“Inverse modeling” from atmospheric CO2 patterns

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Transport

+ocean uptake, plant growth

Fossil-fuel burning

CO2 concentrations

(Carbontracker)Infer emissions, sinksfrom concentrations?

Page 22: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Why doesn’t inverse modeling work (better)?

• Limited number of accurate CO2 measurements• Imperfect models of atmospheric transport• Large seasonal and interannual variations in carbon flux

As a result, the transport model and methodology used strongly affect one’s findingsland vs. ocean sinkstropical vs. midlatitude landNorth America vs. Eurasiaetc.

“While attractive in principle, this approach is subject to several serious limitations.”

-Martin Heimann

Page 23: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Can isotopes help by tracing processes?

CO2

13C

∆14C

Page 24: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

The contemporary budget for atmospheric Δ14C

Contribution (‰/yr)Biosphere +4Fossil fuels −10Cosmogenic +6Ocean −6

Total −6

Page 25: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Modeled gradients in atmospheric Δ14C

Fossil-fuelburning

Ocean uptake

(‰)

Forestrelease

For 2004;

MATCH-NCEP,

CASA biosphere

Page 26: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Hsueh et al., Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America, GRL (2007)

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

UCI

Growing-season Δ14C over the USAfrom corn leaves

Page 27: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Home > News > Press Releases & Media Advisories > Press Release

Scientists map air pollution using corn grown in U.S. fields

New method uses plants to monitor carbon dioxide levels from fossil fuels

Irvine, Calif., January 22, 2007

Scientists at UC Irvine have mapped fossil fuel air pollution in the United States by analyzing corn collected from nearly 70 locations nationwide.

Page 28: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

How might Δ14C help carbon-flux inversions?

basic idea: knowing what the fossil-fuel component is of an observed high CO2 concentration, we don’t

have to model it

Page 29: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

1) Transport model testing: what’s the N-S gradient due to fossil-fuel burning?

• “The ratio of largest fossil fuel interhemispheric difference to smallest IHD is 1.5 …” (Gurney et al 2003)

• Ongoing analysis of Scripps air archive (Heather Graven)

• Combine with the time evolution of the N-S Δ14C gradient to fix fossil vs. ocean contributions

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Levin and Hesshaimer 2000

Page 30: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

2) Vertical dispersion of fossil fuel CO2

• Comparison of actual with modeled vertical CO2 profiles suggests that most current models keep too much fossil-fuel CO2 near the surface, creating a bias in flux estimation from predominantly surface data so that spurious sinks are attributed to fossil-burning regions (Yang et al, GRL; Stephens et al, Science (2007))

• Vertical profiles of Δ14C enable distinguishing plant from fossil CO2 fluxes

Turnbull et al, GRL (2006)

Page 31: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

3) Verification of fossil-fuel burning figures

• Given transport errors, regional fossil-fuel burning can be estimated from Δ14C measurements only to within ~20%; is this ever useful?

• Time series of Δ14C depletion can reveal trends in fossil fuel use more accurately, though, with accuracy of up to perhaps ~5%

Levin et al 2003

Page 32: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Conclusion

• Δ14C measurements have helped inform on many aspects of the carbon cycle, and promise to continue to be helpful

• Precise new air measurement programs will no doubt raise more questions

e.g. can we explain the Δ14C seasonal cycle with current understanding of carbon sources and transport?

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

1985-1991;Meijer et al, Radiocarbon

(2006)

Stratospheric air?

NH fossil carbon?

Respired bomb carbon?

Fossil emissions/transport?

Page 33: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Acknowledgements• Advisors: Inez Fung, Jim Randerson, Tapio Schneider• Δ14C measurements and interpretation: Stanley Tyler,

Sue Trumbore, Xiaomei Xu, John Southon, Jess Adkins, Paul Wennberg, Yuk Yung, Heather Graven, François Primeau, Dimitris Menemenlis, Nicolas Gruber

• NOAA, NASA, and the Betty and Gordon Moore Foundation for fellowships

Page 34: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Extra slides

Page 35: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Physical models of air-sea gas exchange

• Stagnant film model: Air-sea gas exchange is limited by diffusion across a thin (<0.1 mm) water-side surface layer; more turbulent energy thinner layer

• Surface renewal model: the surface layer is periodically replaced by new water from below; more turbulent energy more frequent renewal

• The air-sea interface becomes complicated (sea spray, bubbles), and physically poorly understood, in stormy seas

• Common parameterizations assume kw to increase with windspeed v (piecewise) linearly (Liss & Merlivat 1986), quadratically (Wanninkhof 1992) or cubically (Wanninkhof & McGillis 1999)

• Large differences in implied kw, particularly at high windspeeds (where there are few measurements)

– My approach: Are these formulations consistent with ocean 14C distribution?

J. Boucher, Maine Maritime Academy

100 μm

Page 36: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Windspeed varies by latitude

Climatological windspeed estimated from satellite measurements (SSM/I; Boutin and Etcheto 1996)

Page 37: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

CO2 isotope gradients are excellent tracers of air-sea gas exchange

• Because most (99%) of ocean carbon is ionic and doesn’t directly exchange, CO2 air-sea gas exchange is slow to restore isotopic equilibrium

• Thus, the size of isotope disequilibria is uniquely sensitive to the gas transfer velocity kw

Ocean carbonate speciation (Feely et al 2001)

O2 14 d

N2O 17 d

CFC-11 21 d

CO2 295 d

C isotopes 2926 dSample equilibration times with the atmosphere of a perturbation in tracer concentration for a 50-m mixed layer

ppm

μmol/kg

Page 38: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Ocean bomb 14C uptake: previous work

• Broecker and Peng (1985; 1986; 1995) used 1970s (GEOSECS) measurements of 14C in the ocean to estimate the global mean transfer velocity, <k>, at 21±3 cm/hr

• This value of <k> has been used in most subsequent parameterizations of kw (e.g. Wanninkhof 1992) and for modeling ocean CO2 uptake

• Based on trying to add up the bomb 14C budget, suggestions have been made (Hesshaimer et al 1994;

Peacock 2004) are that Broecker and Peng overestimated the ocean bomb 14C inventory, so that the actual value of <k> might be lower by ~25%

Page 39: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Optimization schemeAssume that kw scales with some power of climatological

windspeed u:

kw = <k> (un/<un>) (Sc/660)-1/2,

(where <> denotes a global average, and the Schmidt number Sc is included to normalize for differences in gas diffusivity)

find the values of<k>, the global mean gas transfer velocity

andn, the windspeed dependence exponent

that best fit carbon isotope measurements

using transport models to relate measured concentrations to corresponding air-sea fluxes

Page 40: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Results: simulated vs. observed bomb 14C by latitude – 1970s

• For a given <k>, high n leads to more simulated uptake in the Southern Ocean, and less uptake near the Equator

• Observation-based inventories seem to favor low n (i.e. kw increases slowly with windspeed)

• 1990s (WOCE) observations are also most compatible with a low value of n

Simulations for <k> = 21 cm/h and n = 3, 2, 1 or 0Observation-based estimates (solid lines) from Broecker et al 1995; Peacock 2004

Page 41: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Simulated-observed ocean 14C misfit as a function of <k> and n

• The minimum misfit between simulations and (1970s or 1990s) observations is obtained when <k> is close to 21 cm/hr and n is low (1 or below)

• The exact optimum <k> and n change depending on the misfit function formulation used (letters; cost function contours

are for the A cases) , but a weak dependence on windspeed (low n) is consistently found

Page 42: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Simulated mid-1970s ocean bomb 14C inventory vs. <k> and n

• The total amount taken up depends only weakly on n, so is a good way to estimate <k>

• The simulated amount at the optimal <k> (square and

error bars) supports the inventory estimated by Broecker and Peng (dashed line and gray shading)

Page 43: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Other evidence: atmospheric Δ14C

• I estimated latitudinal differences in atmospheric Δ14C for the 1990s, using observed sea-surface Δ14C, biosphere C residence times (CASA), and the atmospheric transport model MATCH

• The Δ14C difference between the tropics and the Southern Ocean reflects the effective windpseed dependence (n) of the gas transfer velocity

°N

Page 44: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Observation vs. modeling• The latitudinal gradient in

atmospheric Δ14C (dashed line) with the inferred <k> and n, though there are substantial uncertainties in the data and models (gray shading)

• More data? (UCI measurements)

• Similar results for preindustrial atmospheric Δ14C (from tree rings)

• Also found that total ocean 14C uptake preindustrially and in the 1990s is consistent with the inferred <k>

n<

k> (

cm/h

r)

(‰ difference, 9°N – 54°S)

Page 45: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Acknowledgements• Advisors and collaborators: Jim Randerson, Tapio

Schneider, François Primeau, Dimitris Menemenlis, Nicolas Gruber

• Δ14C measurements and interpretation: Stanley Tyler, Sue Trumbore, Xiaomei Xu, John Southon, Jess Adkins, Paul Wennberg, Yuk Yung

• Inez Fung and the Keck Hydrowatch team• NOAA, NASA, and the Betty and Gordon Moore

Foundation for fellowships• The Earth System Modeling Facility for computing

support

Page 46: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Warming is underway

Dragons Flight (Wikipedia)Data: Hadley Centre

Page 47: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

Global Observing Network

Page 48: Atmospheric carbon-14 as a tracer of the contemporary carbon cycle Nir Y Krakauer NOAA Climate and Global Change Postdoctoral Fellow Department of Earth.

CO2 Inversions: (1) Forward Step

• Premise: Atm CO2 = linear combination of response to each source or sink

• Divide surface into “basis regions”

• Specify unitary source (e.g. 1 PgC/month) each month from each region

• Simulate atm CO2 “basis” response with atm general circulation model


Recommended