+ All Categories
Home > Documents > ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes:...

ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes:...

Date post: 14-Mar-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
34
DEPARTMENT OF PHYSICS ATMOSPHERIC,OCEANIC AND PLANETARY PHYSICS A Fast Stratospheric Aerosol Microphysical Model (SAMM): H SO -H O Aerosol Development and Validation S. N. Tripathi Department of Civil Engineering, Indian Institute of Technology Kanpur, India X. P. Vancassel, R. G. Grainger Atmospheric, Oceanic, and Planetary Physics, Clarendon Laboratory, University of Oxford, U.K. H. L. Rogers Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, U.K. AOPP Memorandum 2004.1 27 May 2004 University of Oxford
Transcript
Page 1: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

DEPARTMENT OF PHYSICS

ATMOSPHERIC,OCEANICAND PLANETARY PHYSICS

A FastStratosphericAerosolMicrophysical Model(SAMM): H � SO� -H � O AerosolDevelopment and

Validation

S.N. TripathiDepartment of Civil Engineering, Indian Institute of Technology Kanpur, India

X. P. Vancassel,R. G. GraingerAtmospheric, Oceanic, and Planetary Physics, Clarendon Laboratory, University of Oxford, U.K.

H. L. RogersCentre for Atmospheric Science, Department of Chemistry, University of Cambridge, U.K.

AOPPMemorandum2004.1

27May 2004

Universityof Oxford

Page 2: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations
Page 3: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

Abstract

A Fast Stratospheric Aerosol Microphysical Model (SAMM) hasbeendeveloped to studyaerosol behaviour in the lower stratosphere. This modelsimulateshomogeneousbinary nucle-ation, condensational growth, coagulation, andsedimentation of sulphuric acid-waterparticlesin order to predict the composition andsize-distribution of stratospheric aerosols. The princi-pal advantageof SAMM is that it is non-iterative, i.e. computing time is reducedby findingsemi-implicit solutionsto aerosol processes. Condensation andcoagulation aresolvedusing theoperator-split method. Hencethe effect of coagulation is determinedin a single iteration. Thesemi-implicit solution for coagulation agreeswell with Smoluchowski’s solution for a constantcoagulation kernel. Similarly, starting from the fundamentalgrowth equation, a solution forcondensational growth is derived that doesnot require iteration. The solution conserves massexactly, andis unconditionally stable. In SAMM, homogeneousnucleation andcondensation arecoupled in a mannerthatallowsrealistic competition betweenthe two processesfor the limitedamount of vapour. With geometrically relatedsizebins(around40 binsfor sulphuric acid-waterparticles in therange0.3nm to 1.5 � m) andan1800s time-step, SAMM takesabout3 minutesCPUon a 1.4 GHz computer to calculate thebackground stratospheric aerosol sizedistribution.HenceSAMM allows aerosol processesto be includedin global modelsfor a relatively smallcomputational expense.SAMM hasbeenusedto simulatebackgroundstratosphericaerosolsandvolcanically disturbedaerosol andhasbeenshown to be in good agreementwith observationsandother modelling studies.

Page 4: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations
Page 5: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

1 INTRODUCTION

1 Introduction

Stratosphericaerosolscanaffecttheglobalclimatesystemin avarietyof ways.Theseaerosolsplayasignificantrolein theEarth’sradiativebalance(Lacisetal.,1992)andtheattenuationof UV radiation(Michaelangelietal.,1992).Also, they provideasurfacefor heterogeneouschemicalreactions:theseareimportantfor ozonelossin themiddleatmosphere(Solomonetal.,1986;HofmannandSolomon,1989; Rodriguezet al., 1991). The magnitudeof theseeffects is significantlyenhancedwhenthebackgroundaerosollayer is perturbedby strongvolcaniceruptions,or possiblyby high-speedciviltransportaircraft(Tie et al., 1994;Weisenteinet al., 1997;Bekki andPyle,1992;Pitari etal., 1993).

Stratosphericaerosolsaremainly composedof supercooledsulphuric acid droplets(SteeleandHamill, 1981). They mayalsocontainsmallamountsof othercomponentssuchasammonium sul-phate(Bigg, 1975;CadleandKiang, 1977). The sulphuric acid fraction of the droplets,which isin the rangeof 50-80%, is a strongfunctionof the relative humidity andthe ambienttemperature(SteeleandHamill, 1981),andthereforevarieswith latitudeandseason.

Severalmodelshave beendevelopedin orderto understandtherole of stratosphericaerosolsintheatmosphericsystem.A one-dimensionalmodelwasdevelopedby Turcoet al. (1979)andlaterrefinedby Toonet al. (1988)andZhaoet al. (1995).Anotherclassof aerosolmicrophysical model(0D models)includingaircraftplumedynamicshasbeendevelopedin thelasttenyears(e.g.Brownet al., 1996; Yu andTurco 1997; Karcher, 1998). Recently, several studieshave beenperformedwhereaerosolmicrophysicshasbeenaddedto the existing 2D and3D models. Thesestudiesareconcernedwith the impact of either aircraft emissions(e.g. Bekki and Pyle, 1992; Pitari et al.,1993)or volcaniceruptions(Tie et al., 1994;Bekki andPyle,1994;Weistensteinet al., 1997)on thebackgroundstratospheric aerosoldistribution.

Theonly 3D studysimulatingtheformationanddevelopmentof stratosphericaerosolsis thatre-portedby Timmreck(2001).In thatpaper, theemphasiswason theevolution andseasonalvariationof stratosphericaerosolsusingtheHamburg climatemodelECHAM4. Thereis a needfor 3D simu-lationsof theeffectsof aircraftemissionson backgroundstratosphericaerosols,includingradiativeandchemistryeffects. Global studiesare importantbecauseof the complex interactionsbetweenradiation,chemistryandaerosolmicrophysics.Furthermore,severalauthors(e.g.Pitari et al., 1993)have pointedout the role of transportwhensimulating the effectsof aircraft sulphuremissionsonbackgroundstratospheric aerosols.

This paperdescribesa StratosphericAerosol Microphysical Model (SAMM) that is a micro-physicalbox modelof sulphuric acid-wateraerosols.SAMM hasbeendevelopedfor inclusion inglobalmodels.While eachof thestratosphericmicrophysicalmodelsdescribedearlierwassuccess-ful at reproducingtheobservedbackgroundaerosolsizedistributionparameters,they wereall basedon iterative methods. Computerprocessingtime and memoryuseare importantissuesin globalsimulations of atmosphericprocesses:Keepingthis in mind, non-iterative solutions to growth andcoagulationequationsareusedin SAMM. Thesearebasedon techniquesdevelopedby Jacobson(1997,1999,2002)andJacobsonandTurco(1995).Jacobson(2002)hassuccessfullyappliedthemto troposphericaerosols,and this is the first time the techniqueshave beenextendedto simulatestratosphericaerosols.

1

Page 6: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

2 MODEL DESCRIPTION

2 Model Description

2.1 Model Overview

Theevolution of thesizedistributionof stratosphericaerosolsis describedby thecontinuity equation������� ������ � ���������������������� � �"!$#&% �% �('*),+.-/10 (1)

where�

denotesthenumberconcentrationof particlesin theradiusinterval�

and� �32 �

at time�,

andthesecondtermdenotestheadvectionof particlesdueto wind motion( � is thewind velocity).Thetermontheright handsideof theequationis therateof changeof particlenumberconcentrationdueto microphysicalprocesses,i.e.# % �% �4' ),+.-/50 !6# % �% �('*7�8 - � # % �% �4' -0:9<; � # % �% �(' -0 7>=4� # % �% �4' ?5@A=B� # % �% �C'D= + E (2)

wherethesubscriptsnuc,coag,cond,sed,anddiff standfor homogeneousnucleationof sulphuricacid-water, coagulationof particles,condensationof sulphuric acid/waterontoparticles,sedimenta-tion of particles,anddiffusion,respectively. Following Turcoetal. (1979)andTimmreckandGraf’s(2000)assessmentsof therelative importanceof theseprocesses,SAMM includes:

- homogeneousheteromolecularnucleationof H F SOG /H F O,- condensationandevaporationof H F SOG andH F O,- coagulationamongtheparticles,- sedimentation removal. Figure1 shows a schematicof thevariousprocessesusedin SAMM.

It canbe seenthat all the sulphuricacid gasis availablefor nucleationat the beginning of simula-tion. Oncenew particlesareformed,they undergo sulphuricacidcondensation. As particlegrowthoccurs,all particlesarebroughtto thermodynamic equilibrium with respectto watervapourpres-sure.Condensationandcoagulationarecoupledin anoperator-split manner. Numberconcentrationsdeterminedfrom thecondensation solution areusedto initialisevaluesbeforecoagulation.Finally,largerparticlesareremovedasthey undergoasedimentationprocessdueto gravity effects.

Stratosphericparticledistributionsusuallyhaveradii spanningmany ordersof magnitude.SAMMhasbeenimplementedusing

�IHgeometricallyincreasingsizebins,andtheparticleshave beendis-

tributedin thesebinsasafunctionof thenumberof sulphuricacidmoleculesJLK they contain(Sorokinet al., 2001).

2.2 Condensation of Sulphuric Acid

If thevapourpressureof H F SOG is in excessof theequilibriumvapourpressurethencondensationwill occur. In thelower stratosphere,wheretheatmosphereis generallysupersaturatedwith respectto sulphuricacid,condensationoccurs,whereasin theupperstratospheresulphuricacid moleculesevaporatefrom the particles. Jacobson(1997,1999)givesan equationdescribingcondensationalgrowth of H F SOG ontoparticlesin thesizebin M as:��N K1O P��� !RQ K1O PTS�UVPVW XYP[Z]\[K1O PTS�UVPAX ? 9_^K1O PTS�U[Pa` (3)

2

Page 7: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

2 MODEL DESCRIPTION 2.2 Condensationof SulphuricAcid

N(r, t-dt)

Nucleation

H2SO4 condensation Temperature

Relative Humidity

Sulphuric acid concentration Coagulation

Pressure

Sedimentation

N(r, t)

Figure1: Schematicof thevariousmicrophysicalprocessessimulatedin themodel.

In theseandthefollowing equations,thesubscriptsb , c and c�dfegc refer respectively to thesizebinb considered,the time c andtheprevioustime chdiegc at which calculationsarecarriedout. On theleft handside, jlk1m n is theparticlemoleconcentrationof H o SOp (molem q�r ). We canalsowrite it ass k1m ntukvxw , where

s k5m n is the particlenumberconcentration(m q�r ) and w is Avogadro’s number. Onthe right handsideof the equation,y�k5m n q�z n is the transferrate(sq�{ ) betweenthe gasphaseandallparticlesin the bin i. We alsouse |Cn , the ambientH o SOp vapourmole concentration(mole m q�r ),which is expressedas}�v�~�� , where} is thesulphuricacidvapourpressure(in Pa), ~ is theuniversalgasconstant(J moleq�{ K q�{ ) and � is theair temperaturein Kelvin. Finally, |��T�_�k1m n q�z n is thesaturationvapourmoleconcentrationof condensingH o SOp above a flat surfacehaving thesamecompositionasthe droplet in bin b (molesm q�r ). It is alsodefinedas } �T�_�"�*� kTv�~�� , where } �T�_� is the saturationvapourpressureabovea flat surfaceof puresulphuric acid,determinedfrom Ayerset al. (1980)andcorrectedfor low temperaturesby KulmalaandLaaksonen(1990),and� k is thesulphuric acidactivitycorrespondingto thecomposition of particlesin bin b . Themostrigorousmethodfor evaluatingtheactivity coefficientof asolutionincludingionic soluteshasbeengiven by Clegg(1995)andCleggetal. (1998).However, it is computationally slow andonly valid upto asulphuric acidmolefractionof0.42.More recentlyNoppeletal. (2002),havecomparedthethermodynamicmodelof Clegg(1995)andClegget al. (1998)with theliquid phaseactivity modelof Zeleznik(1991).They foundthattheresultingsulphuricacidhydratesdistribution andnucleationrates,aspredictedfrom thetwo models,do not differ significantly. Hencewe have usedthecomputationally fastactivity coefficientsgivenby Zeleznik(1991)in the SAMM. Finally, ��k1m n q�z n is the saturationratio of sulphuric acid above acurvedsurfaceof puresulphuricacid.This ratio is definedby theKelvin equation:

�[k5m n q�z n,���l��������� kA���Lm k� ka~����&� (4)

3

Page 8: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

2.2 Condensationof SulphuricAcid 2 MODEL DESCRIPTION

where��� and ��� arerespectively thesurfacetension(J m ��� ) andtheradiusof aparticle(m), and  �¡L¢ �is the volume of sulphuric acid per mole (m £ mole��¤ ) in a solution having the samecompositionasa dropletof the consideredbin ¥ . The saturationratio given by Equation4 takes into accountthe fact that the saturationvapourpressureabove a curved surfaceis greaterthan that over a flatsurface.Therearevariousothercorrectionsto thesaturationratiobecauseof radiativecoolingeffects(Jacobson,1999). However, thesearesmall comparedto curvatureeffectsandhencewe have notincludedthemat present.Surfacetensionhasbeencalculatedfrom Vehkamaki et al. (2002)andiswrittenas: ���§¦�¨©�_ª «�¬�­¯®u¦_¨°�¬,±²«�³�¦�¨©�A¬&ª (5)

where°� is thesulphuricacidweightfractionfor aparticlein bin ¥ . ®u¦_¨´�¬ and ³µ¦�¨©�a¬ arerespectivelytheoffsetandslopecoefficientsfor thelineardependenceof thesurfacetensionontemperature.Con-densationof H � SO¶ moleculesontothedropletsurfaceoccurswhenthetermin bracketsontherighthandsideof Equation3 is positive,otherwiseH � SO¶ moleculesevaporatefrom thesurface.Equation3 is avariantof thecommonly-usedgrowth equationfor stratosphericaerosolsthatis writtenas· ���·D¸ ­�¹ ���»º�¼¾½°¼�¿TÀ_Á� ª (6)

where ¹ is a prefactorsimilar but not equalto à �1¢ Ä ��Å Ä (Turcoet al., 1979,Weisensteinet al., 1997,TimmreckandGraf,2000).

To conserve the massof sulphuricacid betweenthe gasphaseandall sizebins of the particlephase,thegas-conservationequationmustbewrittenasÆ�Ç ÄÆ ¸ ­ ½]È�ÉÊ�ÌË ¤hÍ Ã��1¢ Ä ��Å Ä º Ç Ä ½fÎ �1¢ Ä ��Å Ä Ç ¿1À_Á�1¢ Ä ��Å Ä ÂµÏÑÐ (7)

Themasstransferrateusedin Equations7 and3 canbeapproximatedasÃ��1¢ Ä ��Å ÄÒ­ÔÓ�Õ,Ö»�1¢ Ä ��Å ÄT���×ÙØaÚ� ª (8)

where × ØaÚ� is aneffective diffusion coefficient (m� s��¤ ) takenfrom JacobsonandTurco(1995)anddefinedas × ØÚ� ­ ×g�TÛ��Ü ± Í ¤ÞÝ £Þ£:ß�à Ý á�¤�âÞãåä�æ¤ ß ¤�âÞãåä�æ ± ¶>ç ¤ ß�è æ5é£Þè æ Ï ¹°ê � Ð (9)

Here, ×�� is thediffusion coefficient of H � SO¶ molecules(m� s��¤ ), ¹°ê � is theKnudsennumber,Û�� is the ventilation factor, and ëÑ� is the sticking coefficient of sulphuricacid gasmolecules.Theexpressionfor ×ì� is givenby (Davis, 1983):

×ì�V­ íî�ï · �ñð Àòñó «õô Àö Õ ÷ ôùø�úÞû>ü�ýѱfô ÀôùøþúÞû>ü�ý ÿ����ú ª (10)

where·

is thediameterof a sulphuricacidmolecule,commonlytakenas Ó Ð���� Ü� ��¤ à m, ô ø ú û ü ý isits molecularweight(kg mole��¤ ), ô À is themassof air permole(kg mole��¤ ) and ð À is thedensityofair (kg m � £ ). TheKnudsennumber, ¹°ê � , with respectto particlesize � � , is given by

¹°ê �V­��x� ª (11)

4

Page 9: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

2 MODEL DESCRIPTION 2.2 Condensationof SulphuricAcid

wherethe meanfree pathof sulphuric acid gasis given by �� ������������������! (FuchsandSutugin,1971).Here, �"� � ��� is thethermalvelocity of H # SO$ molecules(m s%'& ).

Thestickingcoefficient ()� isanuncertainparameterbecausenoexperimentshavebeenconductedunderstratosphericconditions. Laboratoryexperimentsundernormalconditions(VanDingenenandRaes,1991)havequantifiedastickingcoefficient in therangeof *�+,*.-�/102()�)03*�+,*54�6 with anaveragevalueof 0.04.Clementetal. (1996)from theoreticalconsiderationsdeterminedastickingcoefficient(7�8 :9 . We have usedthis last assumption andmadea sensitivity studyto seethe impactof thechoiceof sucha value(seesection3). To correctthe increasedrateof vapourandenergy transferto theupstreamsurfaceof a largeparticle( ; 5< m), a ventilation factorfor vapour( =�� ) needsto beincludedin theexpressionfor aneffectivediffusion coefficient. Thesizesof particlesencounteredinstratosphericsimulationsaresmallandtherefore=>�? @9 in thiscase.

Equations3 and7 togetherrepresentA1BDCE9 ordinarydifferentialequations. Most of themicro-physicalmodelsto dateuseiterative schemes(suchasdifferentialequationsolvers)to solve thesegrowth equations.Theseiterative schemestake considerablecomputer time. However, our primaryconcernhereis to develop a fast microphysical model that is computationally the leastdemand-ing whencoupledwith largemodels.We usethenon-iterative schemeproposedby Jacobson(1997,1999)to solvetheseequations. Assumingthatthefinal concentrationcanbeintegratedfrom equation7, wegetanexplicit expression:F �HG IJ F �HG I %LK I!CNM1OQP��HG I %LK ISRQTUI?VXWY�HG I %LK IZT\[H]_^�HG I %LK I�`ba (12)

wherethefinal H # SO$ gasconcentration,TcI , is currentlyunknown. Fromthemass-balanceequationwe canwrite: TUI�Cedgfh�ji & F �HG IJ kTUI %LK I!Cedgfh�li & F �HG I %LK I�+ (13)

Substituting 12 into 13andsolving for final gasconcentrationgivesTUIS TUI %LK I!CNMmO!n dgf�ji & P��HG I %LK IZWY�HG I %LK IZT [o]_^�HG I %LK I9pCNMmO n d f�ji & P��HG I %LK I + (14)

Substituting Equation12 into Equation14givesF �HG IS F �HG I %LK I!C M1OQP��HG I %LK I9pCXM1O n dgf�li & P��HG I %LK Irqts a (15)

wheres ETUI %LK I!CNMmO dufh�ji & P��HG I %LK IvWY�HG I %LK IZT [o]_^�wG I %LK I VxWY�HG I %LK IvT [o]_^�HG I %LK Izy 9pCNMmO dufh�ji & P��HG I %LK I|{ (16)

Two limits, however, areusedto containthe artificially growing solutions,assuggestedby Ja-cobson(1997).Theseare TUI} ~��H� y TUI a T�{ (17)F �HG I} ~��"� y F �HG I a *5{ (18)

whereC is thetotalsulphuric acidconcentration(liquid+gas,in molem %L� ). A third limit derivedfromJacobson(2002)hasbeenaddedto the previous onesin order to avoid sulphuricacid evaporationexceedingthetotalamountof acidincludedin a particle.

5

Page 10: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

2.3 Condensationof Water 2 MODEL DESCRIPTION

2.3 Condensation of Water

Thesaturationwatervapourpressure�'�o�_��!��� over a solution droplet(containingsulphuricacidasso-lute) is givenas(Nair andVohra,1975)�H� � �H�_������>�|���v�>����� �!���Y� ��r��� �H�5� �'¡p¢ ����5�¤£ �5�£ �¥�§¦ ¨� �¥��5�¥£ � �£ �¥�ª©«¢ �H� � �!����¬ (19)

whereall thesymbolsusedhave alreadybeendescribedexcept �­� which is thedensityof a particlein thesizebin ® (kg m ¯L° ) determinedfrom Vehkamaki et al. (2002),and � � � � (kg mole'± ) whichis themolecularmassof water. In thecaseof H ² SO³ , SteeleandHamill (1981)demonstratedthat,understratosphericconditions,the water-vapourpressureover the H ² SO³ -H ² O droplet is equaltothe ambientpartial pressureof water, i.e. the sulphuricacid weight fraction of a solution dropletis principally a function of water vapourconcentration. If environmentalconditions change(forexamplethetemperature)sodoesthewatersaturationvapourpressure,andthis resultsin a changeof sulphuricacidweight fractionanddropletsize. However, thesolution dropletalwaysremainsinequilibriumwith respectto atmosphericwatervapour(SteeleandHamill, 1981).Therateof collisionof watermoleculeson a stratosphericparticleis muchhigherthanthatof gaseoussulphuricacid,soparticlesareassumedto reachwaterequilibrium instantaneously(foundby solvingEquation19).

2.4 Homogeneous Heteromolecular Nucleation

Theprocessof new particleformation(homogeneousnucleation)becomesimportantonly in areasoflow temperatureandhighambientsulphuricacidconcentration(Yue,1981;YueandDeepak,1982).The modelusesthe homogeneousnucleationtheoryto describenew particleformation. Althoughclassicaltheoryhasnever beendemonstratedto be accuratelyableto matchobserved ratesof nu-cleation,it hasbeena useful tool to predict trendsof new particleformationin the uppertropicaltroposphereandlowerstratosphere(Brocketal., 1995).Indeed,aftermajorvolcaniceruptions,suchasMt. Pinatubo,98% of theobservedaerosolis volatile (e.g. Deshleret al., 1992)indicatingthathomogeneousnucleationis themostimportantprocessfor stratosphericaerosolformation.Further-more,the large-scalefeaturesof the stratosphericaerosollayer arenot very sensitive to the rateofnucleationbut arecontrolledmoreby coagulationandgrowth processes(Weisensteinet al., 1997).This justifiesour choiceof modellingstratosphericaerosolsasconsistingsolelyof H ² SO³ -H ² O liq-uid droplets.Here,webriefly describetheclassicalnucleationtheory. For amoredetaileddescriptionthereaderis referred to, for instance,Kulmalaetal. (1998)andNoppeletal. (2002).

Theclassicalnucleationtheorydescribestheformationof a new phasefrom a motherphasethatis becomingunstable.The formationof new particlesis assumedto result from the formationofstableclustersthatwill be ableto grow spontaneouslyafter they reacha critical size. This criticalsizerepresents,in thecaseof homomolecularnucleationinvolving only onecondensingvapour, thesizeor thenumberof moleculesproviding themaximum of theGibbsfreeenergy change,resultingfrom the phasetransition. This maximumis thencalledthe free energy of formationof a particle.In the caseof a binarynucleation(herewaterandsulphuricacid), theGibbsfree energy changeisa functionof thenumberof sulphuric acidandwatermoleculesandis representedby a surface.Tobecomestable,a clusterwill have to follow thepathof leastenergy on this surface,thusleadingtotheso-calledsaddlepoint (Reiss,1950).Findingthesaddlepointusingiterativemethodsis compu-tationallydemanding.This is why we usedtheparameterizationof Kulmala et al. (1998),updated

6

Page 11: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

2 MODEL DESCRIPTION 2.5 Coagulation

by Vehkamaki et al. (2002). This schemeprovidesthenucleationrate ´'µ�¶�·�¸!¹ªºLµ�¶�¸ (numberof newparticlesformedpersecondandpercubicmeter)in thewater/sulphuricacidmixture,andthecriticalclustercomposition (total numberof moleculesandsulphuricacidmolefraction). This parameteri-zationis valid at temperaturesbetween190.15K and305.15K, relative humiditiesbetween0.01%and100%,andsulphuricacidconcentrationfrom »¼.½ to »¼¿¾�¾ cmºLÀ . This rangeof relative humiditycoversthevariationfound in theglobalstratosphericrelative humidity. Theseparameterizedequa-tionsreducethecomputingtime by a factorof 500comparedto non-parameterizednucleationratecalculations.

Sincein thepresentmicrophysicalmodelnucleationandgrowth arecoupled,thenucleationrateis first convertedtoamasstransferratebetweengasandparticle,andis thenaddedto thegrowthmasstransferrate(definedin section2.2) in thesizebin Á . More precisely, when Â�ÃoºLÄYÃÆÅÈÇYÉHÊ ÃoºLÄ?Ã�Â\ËHÌ_ÍÉHÊ ÃoºLÄ?Ãand ´.µ�¶�·�¸!¹ªºLµ!¶_¸NÅȼ thenthenucleationrateis convertedto a gas-phasetransferrateas(Jacobson,2002) ÎLÏÑÐ�ÒÉHÊ ÃoºLÄ?ÃSÓ ´.µ ¶ ·�¸ ¹ ºLµ ¶ ¸pÔ µ!¶�·�¸!¹ÖÕ!ÉZ×ÉØ µ ¶ ·ª¸ ¹ Ù »ÂUÃoºLÄ?ÃYÚXÇYÉHÊ ÃoºLÄ?ÃZ ËoÌ_ÍÉHÊ ÃoºLÄYÃ�Û¥Ü (20)

where Ô µ ¶ ·ª¸ ¹ is thedensityof puresulphuricacid (kg m ºLÀ ), Õ!É is thevolumeof a single nucleatedparticle (mÀ ), and ×ÝÉ is the volume fraction of sulphuricacid in a nucleateddroplet. The mass-transferratecalculatedfrom equation20 is thenaddedto thegrowth masstransferrate,calculatedfrom equation8, for theappropriatesizebin whereall thenucleatedparticlesareplaced.

After solving equations14-18 with the new transferrates(growth + nucleation),the numberconcentrationof new H Þ SO½ -H Þ O particlesformeddueto homogeneousnucleationin the bin Á iscalculatedas ß ÉHÊ Ã Ó ß ÉHÊ ÃoºLÄYÃ'àâáäã"åSævç Ü ¼.è Ü (21)

where ç Ó ævéÖÉHÊ ÃYÚxéêÉHÊ ÃoºLÄ?Ã|è Ø µ ¶ ·�¸ ¹Ô µ�¶�·�¸!¹ÖÕ!ÉZ×ÉÎ ÏÑÐ�ÒÉHÊ ÃoºLÄ?ÃÎ Íwë�ÍÉHÊ ÃoºLÄ?à (22)

and

Î Íwë�ÍÉHÊ ÃoºLÄ?Ã Ó Î ÏÑÐ�ÒÉHÊ ÃoºLÄ?à à ÎLì�í ë|î­ÍwïÉHÊ ÃoºLÄ?à .2.5 Coagulation

Aerosolcoagulationis importantbecauseit altersthe sizedistribution andthe composition of par-ticles,primarily thosesmallerthanonemicron in diameter. Sincemostof thebackgroundaerosolsfound in the stratosphereareof this size, it is necessaryto includecoagulationwithin the model.Atmosphericparticlescollideasa resultof Brownianmotion, differencesin fall velocities,turbulentmotionandinter-particleforces. Differentapproacheshave beendevelopedin the pastto simulatecoagulation,dependingupontheneedandavailability of computerresources.Sincethemodelhastobeincorporatedinto a 3D globalchemicaltransportmodel,wehaveconcentratedonasemi-implicitschemewhich is computationally fast. Aerosolcoagulation, in the discreteform, is given by (e.g.Friedlander, 2000) ð ß�ñ Ê Ãð'ò Ó »ó ñ º ¾ôõQö ¾L÷ õ Ê ñ º õ ß�ñ º õ Ê Ã ß õ Ê ÃuÚ ßøñ Ê Ãúùôõªö ¾�÷ ñ Ê õ ß õ Ê Ã Ü (23)

where ÷ ñ Ê õ is thecoagulationkernelof two colliding particles(m À sº ¾ ). Usingsemiimplicit finitedifferencing,we obtaina generalformulafor a volume-conservingsolution of uniform composition

7

Page 12: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

2.5 Coagulation 2 MODEL DESCRIPTION

(Jacobsonet al., 1994)ûgüþý�ü ÿ ���û'üþýøü ÿ ������� ��� �

ü������� �

ü� �������� � ÿ � ÿ ü � � ÿ � û � ý � ÿ � ý � ÿ ���������� ���� ���! �"����# �%$ �ü ÿ � ÿ ü & � ü ÿ � ý � ÿ ������� ' (24)

where

û'üis thevolumeof the ( -monomerparticle. In equation24 it canbeseenthatno production

occursin the first bin, ( � �, since ( $)� �+* . Thusall

ý� ÿ � termsareknown while calculating

ý�ü ÿ � . The intermediateparticlesbetweentwo binsarepartitionedusing � � ÿ � ÿ ü , givenby Jacobsonetal. (1994)as

� � ÿ � ÿ ü �,-----------. -----------/�10325476 � 098�: ;0 2<4=6 � 0 2 � 0 2098�: ; >

û'ü?û� ÿ � ? ûgü

@ � > ( ?ýA�%$ � � ÿ � ÿ ü � � >

û'ü� � ?

û� ÿ � ? ûgü

> (CB �� >û� ÿ �ED ûgü

> ( �ýA

* F1G"H IKJ(25)

where

û� ÿ � � û

� �û� . The generalisedBrownian coagulationkernel,

� � ÿ � , is taken from Fuchs’(1964)interpolation formula� � ÿ � � L1M #ON � � N � & #QPSR� � PTR� &U 8 @ U ;U 8 @ U ; @�VXW5Y8 @ W<Y;[Z 6]\ Y � ^ V`_ba8 @c_ba;dZV U 8 @ U ; Z VeV 0 a8fZ Y @�V 0 a;�Z Y Z 6]\ Y ' (26)

wheretheparticlediffusioncoefficient P R� is givenby

P R� � ( A�gihkjl M N �]m1n ' (27)

wheretheCunningham-slip factor, h%j , is definedashkj � � � �po � � �1q`r L7s � * q L r I ��t"u vxwzy5{ |~} � q (28)

The Knudsennumber�po � ��� n9� N � is determinedfrom the meanfree pathof air molecules,� n ,

which is givenby � n � r m1n3���=n9��n ' (29)

where m�n is thedynamicair viscosity(kg m � � s� � ) calculatedfrom List (1984):

m�nk� �1qX�7����� * ��w�� L �dl�qe�dlg � ��r *!� � gr s l�q]��l �E�Y > (30)�=n is theair densityand �7n is thethermalvelocityof air molecules(m s� � ) calculatedfrom��n �)� � (7� g%� M�� n (31)

8

Page 13: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

2 MODEL DESCRIPTION 2.5 Coagulation

Figure2: Browniancoagulationkernel(cm� s�c� ) plottedasa functionof particleradiusat 216K.

where �7� is the Boltzmannconstant.The meandistancefrom the centreof a spherereachedby aparticleleaving thesurfaceof the sphereandtravelling a distanceof particlemeanfree path, ��� , isfoundfrom �[���¡ <¢�£ ��¤¥c¦��§ �©¨  Oª7£�«� ¤   ¥c¦�d§ « § �x¬ «­ £ �®¥ ¦� ¨ ¢�£ �5¯ (32)

wheretheparticlemeanfreepath ¥ ¦� is defined¥ ¦� �±°1² ¦�³�´ ¦� ¯ (33)

where ¦� is theparticlethermalvelocity(m s�c� ) . Othercoagulationkernels(gravitationalcollection,turbulentinertialmotion andturbulentshearmotions)arenotincludedbecausethey aremuchsmallercomparedto theBrowniankernelin typicalstratosphericconditions.

The coagulationequationsfor particlesof different composition (for example water-sulphuricacid)canbewritten in asimilarmannerto Equation24:µf¶K·¸¶º¹ » � µc¶K·¼¶º¹ » ��½ » ¤¾�¿ À ¶Á� ��à À ¶ �c��  ��Ä � ¹ Á ¹ ¶KÅ � ¹ Á µ � · � ¹ »®· Á ¹ » ��½ »�ÆÇ ¤�¾�¿cÀ�È!ÉÁ" �   Ç ¨ Ä ¶[¹ Á ¹ ¶ § ÅT¶º¹ Á · Á ¹ » ��½ » Ê (34)

Browniancoagulationkernelsobtainedfrom equation26 at 216K areplottedin figure2. Fromthis plot, it is clearthat thesmallestvalueof thekernelsoccurswhenbothparticlesareof thesamesize. The coagulationkernelrisesrapidly whenthe ratio of the particlesradii divergesfrom unity.This increaseis dueto the interplaybetweensizeandvelocity of two colliding particles. A largeparticlehasasmallvelocitybut it providesalargesurfaceareacomparedto averyfastsmallparticle,thustheresultis alargecoagulationrate.In theeventof two smallparticlescolliding,thecoagulationkernelis smallbecauseof their smallcross-sectionalarea.

9

Page 14: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

2.6 Sedimentation 3 SELECTIONOF MODEL PARAMETERS

2.6 Sedimentation

Thesedimentationmechanismis responsiblefor thedescentof particlesfromonelayertoanotherandthusit affectsthesizedistribution of stratosphericparticlesundertheinfluenceof gravity. Assumingthat all the particlesarespherical,sedimentationvelocity, ËcÌÎÍ®ÏÐ , is given as(PruppacherandKlett,1997) Ë ÌÎÍ®ÏÐ Ñ±Ò Ó®Ô Ð!Õ Ô=Ö[×�ØkÙzÚ�ÛÐ[ÜÝ1Þ Ö ß (35)

whereÜ is thegravitationalconstantin m sà Û .3 Selection of Model Parameters

Computerprocessingmemoryis animportantissuein globalsimulations.Thepresentmicrophysicalmodelis intendedto beincludedin a 3D globalchemicalmodel(SLIMCAT) to simulate theeffectsof aircraftemissionsonbackgroundaerosols.Keepingthis in mind,wehaveperformedseveralsen-sitivity studiesin orderto seetheeffectsof thechoiceof thenumberof sizebinsusedonthepredictedaerosolsizedistribution features.The upperandlower sizelimits adoptedfor SAMM areroughly1.5 á m and0.3nmrespectively. Thisuppersizelimit is basedonthefactthatin typicalstratosphericconditionsvery few water-sulphuricacid particlesbecomelarger thanthis size,and thosethat dorapidlysediment.Thelowersizelimit is setby thesizeof thenewly formedparticlesestimatedfromclassicalnucleationtheory. Whenusingalargernumberof sizebins,theaerosoldistribution is betterresolved.But theintegrationtimestepis alsoa very importantparameter. Thesmallerthetimestep,themoreaccuratetheresultsthatareexpected.Weperformedabenchmarkcalculationusingroughly300sizebins(against44, for example,in TimmreckandGraph’s runs,2000)anda relatively smalltimestepof integration(600s,whichis 3 timessmallerthantypicaldynamicaltimestepsusedin 3Dmodels).Suchacalculationprovidesaccurateresultsbut is computationallyslow anddemanding. Inorderto find thebestcompromisebetweenaccuracy andcomputing time required,we performedasensitivity study:thiswasdoneby changingthenumberof binsandtimesteps.Results(surfaceareadensity, particlenumberconcentration,volume density)have thenbeencomparedto our referencecase,the benchmarkrun. Figure3 (top) plots the backgroundaerosolsurfaceareadensity(SAD,surfaceper unit volume of air) asa function of the numberof sizebins and the integrationtime-stepfor conditionstypical of analtitudeof 20 km. ThecalculatedSAD lie between0.5â 10 à�ã and6.5â 10à�ã cmÛ cmà�ä (0.5and0.65 á mÛ cmà�ä ). Thesevaluesarecomparableto thoserecommendedfor heterogeneouschemicalreactionsof atmosphericimportance.Tie et al. (1994)reporteda valueof 0.6 á mÛ cmà�ä for aerosolSAD at 20 km from their 2D modelcalculations. It canbe seenthatlittle accuracy is gainedby decreasingthemodeltimestepbelow about2000s.

Thereforeall thestandardmodelrunsusedan1800s time-stepwhich is indicatedon thefigure(dashedline). It canalsobeseenthat thenumberof sizebinsdoesnot have a pronouncedeffect onthecalculatedaerosolSAD, sincethemodelresultsdiffer by only 25%using10or 300bins.Figure3 (bottompanel)plotsthevariationof particlesurfacedensitywith numberof sizebinsfor an1800s time-step.Thesurfaceareadensityreachesits asymptotic valuewhenthenumberof binschosenis greaterthan åçædè1è . Fromthisplot, wecanestimatethedifferenceof aerosolSAD betweenthe40binscaseandthebenchmark(300bins)to bearound5%.

Figure4 shows theeffectsof numberof sizebinsandintegration time-stepon threemoments ofparticlesizedistribution.

10

Page 15: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

3 SELECTIONOF MODEL PARAMETERS

Figure3: Top: Aerosolsurfaceareadensity(mé m ê�ë ) plottedasa function of the numberof sizebinsusedandtheintegrationtime-step.Bottom:Aerosolsurfaceareadensityvsnumberof sizebinsfor an integration time-stepof 1800s. Initial parametersadoptedare: temperature= 216K, watervapourpressure= 3.68mb,sulphuric acidconcentration= 0.048 ì g m ê�ë .

11

Page 16: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

3 SELECTIONOF MODEL PARAMETERS

Figure4: Top: Percentagedifferencein total particlevolumedensityrelative to benchmarkvalue.Thebenchmarkvalueis thebestestimateof particledistribution using306sizebinsand600s inte-grationtimestep.Middle: Sameastheplot at thetopexceptfor aerosolsurfaceareadensity. Bottom:Sameasthetoponeexceptfor numberconcentration.

12

Page 17: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

3 SELECTIONOF MODEL PARAMETERS

Figure5: Rootmeansquareerrorasa functionof numberof sizebinsandintegrationtime-stepfor asizedistribution relative to thebenchmarksizedistribution.

In figure 4 (top) we plot the percentagedifferencefrom thebenchmarkrun of the total particlevolumedensityobtainedusingdifferentnumbersof binsandintegration time-steps.

First, thepercentagedifferencedoesn’t dependon the numberof binsor the time stepused,aswe find thesamevalueusing20 or 200binsat thesametime step(e.g.0.0014around2000s). Thesecondpoint is thatthepercentagedifferenceis verysmall(lessthan0.5%)andshows how accuratethe numericalschemeis as it conserves volume. Theseobservations indicatethat the differenceobserved betweenthe benchmarkrun and other calculationsis not significant. Figure 4 (middlepanel),shows the percentagedifference(from thebenchmark)of theaerosolSAD asa functionofthe numberof sizebins and the integration time-stepused. The percentagedifferencein surfaceareadensityincreasesas the numberof bins decreases,which is as expected,but remainsfairlysmall(maximum of í)î1ï7ð of difference).Figure4 (bottompanel)shows thepercentagedifferencein particle numberconcentration( ñ7ò�ó moment)plotted as a function of numberof size bins andintegrationtime-step.We seethatpercentagedifferenceincreasesasnumberof sizebinsdecreases.This clearlyindicatesthatusingcoarseresolutionbinsresultsin only asmallerrorwhencalculatingtotal numberconcentrations,surfaceandvolumedensities.Our mainconcernremainstheability togetanaccuratevaluefor theSAD, asheterogeneouschemistrystronglydependson it. Hence,thesetestsaresatisfactorybut wehaveto keepin mindthatthetail of theaerosolsizedistribution couldbeartificially broadenedwhenusingasmallnumberof bins.

Figure 5 shows this result more explicitly, giving the ( ð ) root meansquare(rms) differencebetweenthecalculatedsizedistribution at20km andthebenchmarkdistribution. For an1800stimestep,the% rmsdifferenceis ashighas40% whenthenumberof binsis about40.

A sensitivity studywasalsoperformedto seetheeffect of theH ô SOõ molecules’stickingcoeffi-

13

Page 18: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

4 VALIDATION

cient ( öø÷ ) on themodelledsizedistribution. Changingöù÷ from 0.01to 1 did not make a significantdifferenceto themodelledsizedistribution. Hence,we usea fixedvalueof 1 for öú÷ in SAMM. Thesamevaluehasbeenusedto describethestickingcoefficient betweencolliding particles(i.e. theircollisionefficiency), assulphuricacid-waterparticlesarelikely to attachveryefficiently.

A time stepof 1800s and a bin numberof approximately40 (dependingon the geometricalincreaseused)wasadoptedfor SAMM. Basedon this evaluation,we expectcomputationalerrors û0.005%, 5 % and40% in thevolume,surfaceareaandnumberdensitiesrespectively.

4 Validation

The coagulationschemeandits efficiency asa functionof the numberof sizebinsusedhave beeninvestigated.Figure6 comparesthesemi-implicit solution after12hoursof simulationto theSmolu-chowski’sanalyticalsolution givenbyü¸ýºþ ÿ������ ü ÿ���� �1ü¼ÿ�� ÷ þ ������� ý������������ �1ü¼ÿ�� ÷ þ ������� ý ���"! (36)

wheretheconstantcoagulationkernel� ÷ þ �#�%$'&'(*),+.-0/.1

.Figure6 showsthatthesolution from thesemi-implicit numericalapproachmatchesveryclosely

theanalyticalsolutionwhenthenumberof binsusedis large. It confirmsalsothatthetail of thesizedistribution is dramaticallymodifiedwhenusingasmallnumberof bins.

Figure7 (top) shows theevolution of particles’sizespectrafor coagulationalone,usinga timestepof 600s. Figure7 (bottom)plotstheevolution of particlesizedistribution dueto all processeshappeningtogether. Comparingfigures7 top andbottom,onecannotethatdueto growth, particlesarebecominglarger andthesizespectrumis shifting moretowardsthe largerparticles. It canalsobe seenthat large particlesareremovedandthesizedistribution shifts towardssmallersizeswhensedimentationis included. An importantfinding is that resultsappearedto be very sensitive to thesedimentationschemeused. In particular, whenusinga single box model, whenmasshasto beconserved, the questionof replacementof the sulphuricacid lost by sedimentationis important.Replacingit by gaseoussulphuricacidcanleadto aburstof nucleation(TimmreckandGraf,2000).In reality, the lossof massby sedimentationis balancedby falling particlesfrom upperlayersandalsoby advectionor evenconvection.In thepresentstudy, transportphenomenahavebeenneglected.Hence,all the sulphuricacid lost by sedimentation hasbeenreplacedby the samemassin the gasphase.

We have performeda numberof validationstudieswith this modelandcomparedthecalculatedsize-distributionparameterswith someobservedvalues,ananalyticalsolutionandabenchmarkrun.Thesestudiesareimportantat thispointandhaveservedto testtheability of themodelto reproducetheparametersof stratosphericaerosolsbeforecouplingit to globalmodels.

Severalmeasurementsof stratosphericaerosolsizedistributionexist, from in situ(opticalparticlecounter)to remotesensing(e.g. satellite,lidar). To retrieve particlesizedistribution, remotesens-ing techniquesrely on additional information from theoreticalmodels;hencewe choseto comparethe modelledaerosolpopulation parameterswith only in situ observations andpreviousmodellingstudies.

Sincetheearlyseventies,a continuous time seriesof regularly flown verticalballoonprofilesisavailablefor Laramie,Wyoming (412 N) (Hofmannet al., 1975;HofmannandRosen,1981;Deshler

14

Page 19: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

4 VALIDATION

0.0001 0.001 0.01Aerosol radius, µm

100

1000

10000

100000

dN/d

logr

, cm-3

Semi-implicit (nbin = 44)Semi-implicit (nbin = 74)Semi-implicit (nbin = 162)Smoluchowski (12h)

Figure6: Comparisonof semi-implicit resultswith Smoluchowski’s analyticalsolution for differentnumbersof sizebins.

15

Page 20: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

4 VALIDATION

Figure7: Top: Evolution of particlesizedistributionundergoingBrowniancoagulationonlyatdiffer-enttimes.Bottompanel:Evolutionof nucleatedparticlesizedistribution by condensationalgrowth,coagulationandsedimentationat differentsimulation times,1 year, 2 yearsand3 years(1y, 2y, 3y).

16

Page 21: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

4 VALIDATION

Figure8: Top: Zonally averagedtemperatureprofile for Laramie,Wyoming taken from ECMWFreanalysisdata.Middle: Sameasthetoppanelexceptfor watervapourpressure.Bottom:Sulphuricacidconcentrationprofile astakenfrom Toonet al. (1979).

et al., 1992;Deshleret al., 1993). Thesearebasedon opticalparticlecounting techniquesandgivevertical profilesof particlemixing ratios(numberof particleswhoseradiusis larger than0.15 3 mand0.25 3 m permgof air). Also, anumberof observationalprofilesareavailablefor theArctic andtheAntarctic(HofmannandSolomon,1989;Hofmannet al., 1992)andfrom globalobservationsofaerosolsizedistribution (e.g.Rosenet al., 1975).

In the following experiments,we usedzonallyaveragedtemperatureandrelative humidity pro-files from ECMWF reanalysisdatafor Laramie,Wyomingasgivenin figure8, topandmiddlepanelrespectively, wheremostof the stratosphericaerosolobservationsarebeingcarriedout. Thereisno consensusassuchwith respectto the sulphuric acid gaseousconcentrationin the stratosphere,mostof which is foundin particlephase.Thereareseveralwaysto initialisethemodelfor sulphuricacidgaseousconcentration:for exampleby coupling theaerosolmodelanda chemicalmodelwithsulphurchemistry. However, at eachaltitudewe usedthesulphate concentrationdatafrom Toonetal. (1979),plottedin figure8 (bottom).

Thefigure9 plotsshow theevolution of theaerosolfeatureswith altitude. Thesurfaceareaandthe volumedensities decreasewith altitude as temperaturerisesand sulphuric acid concentrationdecreases.Undersuchconditions,nucleationis thenlessefficientatproducingnew particles,andthecalculatedprofilesobtainedasa functionof altitudewereasexpected.

In figure 10 we plot model-simulatedaerosolmixing ratios (N15, number of particleslargerthan0.15 3 m permassof air) togetherwith observedvaluesfrom HofmannandRosen(1981)andpreviousmodelresults(notethatfor particleslargerthan0.25 3 m,themixing ratioisN25). Whatever

17

Page 22: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

4 VALIDATION

Figure9: Top: Aerosolvolume densityvs altitudefor Laramie,Wyoming. Middle: Sameastopexceptfor aerosolsurfaceareadensity. Bottom:Sameastopexceptfor numberconcentration.

thealtitude,themodelseemsableto reproducethetrendsfor JanuaryandApril. Theaccuracy of theJulyandOctoberresultsis lowerbut remainssatisfying,excluding thecaseof July, at25km. As themixing ratio is a functionof particlenumberdensityandalsoof air density, thesteepincreaseat thisaltitudedoesn’t necessarilymeanthatmoreparticlesareformedathigheraltitudes.Our calculationsindicatethatfewerparticlesareformedat higheraltitudes(asexpectedfrom largertemperaturesandlower sulphuric acid concentrations)but the decreasein the air densityleadsto an increaseof theparticlemixing ratio. For JanuaryandApril, the modelis ableto broadlyreproducethe changeinaerosolmixing ratio with altitude, asobserved by HofmannandRosen(1981)andpredictedfromToon et al. (1979)using the Turco et al. (1979)model. In figure 11 we plot the predictedsizeratio (N15/N25)asa function of altitude. It is clear that modelledvaluesof sizeratio matchwellwith observedvaluestakenfrom HofmannandRosen(1981)exceptfor thecaseof April at 25 km.The main differencesbetweenour calculationsandTimmreck andGraf’s model (2000)probablylie in the methodusedto determinethe gaseoussulphuric acid concentration.We useda profiledeterminedfrom Toon et al. (1979), as Timmreck and Graf (2000) useda 3D model output todeterminethe main initial mixing ratios(watervapour, sulphurdioxide), andalsocalculateda rateof transformationof SO4 into H 4 SO5 . As nucleationschemesaresensitive to the initial amountofsulphuricacid (e.g. Vehkamaki et al., 2002), large differencescould comefrom differentH 4 SO5initialisations.Moreover, discrepanciesbetweenour resultsandmeasurementsmaycomefrom thefact we usedzonally averagedtemperaturefrom ECMWF to get the atmosphericconditions, andnot exactly the experimentalones,in Laramie. Finally, figure 12 illustratesthe behaviour of themixing andthe sizeratio (MR andSR respectively) asa function of the gasphasesulphuric acidconcentration.Whentheinitial amountof acidis high,bothnucleationandthesubsequentgrowth of

18

Page 23: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

4 VALIDATION

Figure 10: Top left panel: Numericalvaluesof particle mixing ratio (MR), ( 6 ( 798 0.15 : m)),as a function of altitude for Januaryconditions. Also shown are observed valuestaken from themeasurementsof Hofmannand Rosen(1981) and modelled valuesfrom Toon et al. (1979) andTimmreckandGraf (2000). Thesameresultsarepresentedfor April (top right), July (bottomleft)andOctober(bottomright) conditions.

19

Page 24: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

4 VALIDATION

Figure11: Topleft panel:Numericalvaluesof particlesizeratio(SR), ( ; ( <>= 0.15 ? m)/;A@B<C= 0.25? m)), asa functionof altitude for Januaryconditions. Also shown areobservedvaluestaken fromthemeasurementsof HofmannandRosen(1981)andmodelledvaluesfrom Toonet al. (1979)andTimmreckandGraf (2000). Thesameresultsarepresentedfor April (top right), July (bottomleft)andOctober(bottomright) conditions.

20

Page 25: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

4 VALIDATION

0.02 0.04 0.06 0.08 0.1 0.12 0.14

Sulfuric acid concentration µg/m3

2

4

6

8

10

12

14

Mix

ing

ratio

(nu

mbe

r/m

g ai

r) a

nd S

ize

ratio

Mixing ratioSize ratio

Figure12: Evolutionof themixing andthesizeratioof particles,asafunctionof theinitial gasphaseH D SOE concentration,at16km.

21

Page 26: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

4 VALIDATION

0 6 12 18Time after eruption (m)

0.1

1

10

100

1000

Aer

osol

sur

face

are

a,

µm2 cm

-3

SO2, t=0

=4.95µgm-3

SO2,t=0

=15µgcm-3

Timmreck’s box model resultsObservation from Deshler et al. (1993)

Figure13: Evolutionof themixing andthesizeratioof particles,asafunctionof theinitial gasphaseH F SOG concentration,at16km.

22

Page 27: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

6 CONCLUSIONS

particlesareenhanced,producinghighnumberconcentrationsof particleslargerthan0.15 H m (N15).Thesolid line plot showsthistrendfor analtitudeof 16km. As moresulphuricacidis available,N25increasesfasterthanN15, leadingto a total decreaseof thesizeratio (SR),asplottedby thedashedline andasexpected.

5 Simulation of Mt. Pinatubo Volcanic Aerosols

After major volcaniceruptions,large amountsof watervapour, SOI andashparticlesare injectedinto theatmosphere.

An enhancedSOI concentrationhasa major impacton the stratosphericbackgroundaerosol.Changesin H I O andOH concentrationcanalsoinfluencethe aerosolsizedistribution. Neverthe-less,thereis no agreementasto the amountof watervapourreachingthe stratosphere.Therefore,changesin H I O concentrationsareneglectedwhensimulatingvolcaniceruptions.Theinitial aerosolsizedistribution is assumedto belog-normalfor a totalnumberconcentrationJLK = 10M m NPO , a stan-darddeviation Q = 1.8 anda meanradiusr R 7.10NPS m. Typical stratosphericatmosphericaerosoldistributionscanberepresentedby:JUTWV JXKY T[Z]\^Q0_ `badc�egf hikjml�n oqp Zr\ts Y T�u Y RwvZr\^Q x Izy{ n

(37)

A comparisonbetweenthe calculatedevolution of aerosolsurfaceareaand measurementsbyDeshleret al. (1993)at 20 km height is given in figure 13. We seethat, for initial SOI concen-trationsof 4.95 H g m NPO , simulatedaerosolsurfaceis a reasonablematchcomparedto theobservedvalues.However, for larger initial concentrationsof SOI themodelfails to reproducetheobserveddevelopmentof aerosolsurfacearea.

6 Conclusions

A fastaerosolmicrophysicalmodelfor thestratospherehasbeendeveloped. It simulateshomoge-neousnucleationof sulphuricacid-wateraerosols,condensationalgrowth, coagulationamongparti-clesandsedimentation. Themodelusesa non-iterative schemeto solve final numberconcentrationof particlesundergoing theseprocesses.It is computationally fast: this makesthe model ideal forimporting into 3D globalmodels. Thepresentmodelhasbeenusedto simulatebackgroundstrato-sphericaerosolsizedistribution. The modelled sizedistribution parametersmatchwell within therangeof observedandearlierreportedvalues.Two typesof sensitivity studiesareperformedto seetheeffectsof (a)changesin numberof sizebinsandtimestepand(b) changesin environmentalinputparameterson aerosolsizedistribution. We find that themodelis sensitive to thechoiceof numberof sizebins used. However, changein backgroundaerosolsurfaceareais not significantbetweenhighandlow timeandsizeresolvedexperiments.Themodelledsizedistribution is foundto bemostsensitive to sulphuric acid gaseousconcentration.A simplified caseof Pinatubovolcaniceruptionis usedto simulatethe aerosoltemporaldevelopment. Thesefirst resultsareencouragingandwillbe followedby furtherdevelopment. Themodelthathasbeenconceived,keepingin mind theneedfor computing efficiency, will soonbe includedin SLIMCAT, andwill provide a powerful tool foraircraftemissionsglobalimpactstudies.

23

Page 28: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

6 CONCLUSIONS

Notation

a Offsetfor | lineardependenceon temperature.A Avogadronumber.b Slopefor | lineardependenceon temperature.c}]~ � Mole concentrationof H � SO� in aparticlefrom bin i at time t, in molem �P� .C� Mole concentrationof gaseousH � SO� in theatmosphereat time t in molem �P� .C�]���}r~ � Mole concentrationof saturatedH � SO� vapourin theatmosphereattimet, above

aparticlefrom bin � , in molem �P� .Cc Cunninghamslip factor.� } Meaninter-particledistance(centreto surface),for bin � , in m.d Diameterof amoleculeof H � SO� in m.D } , D �} H � SO� andparticlediffusioncoefficient, in m� s��� .f } Volumefractionof H � SO� in acritical clusterplacedin bin i.F} Ventilationfactorfor aparticlein bin � .g Gravitationalconstantin m s� � .� } H � SO� activity in asolution having thesamecompositionasadropletin bin � .k }]~ � Masstransferrates��� of gaseousH � SO� ontoaparticlefrom bin � .k ���z�}]~ � , k ���r�� �]�}]~ � Sameask }]~ � for nucleationandgrowth (for bothsimultaneously, thesuperscript���[�

is used).

k � Boltzmannconstantin JK ��� .K }]~ � Coagulationkernelfor acollisionbetweenparticlesfrom binsi andj, in m � s��� .K Prefactor similar to k.Kn } Knudsennumberfor aparticlein bin � .�

,� � , � �} Respectively air, sulphuric acidandparticlemeanfreepath,in m.� � Dynamicviscosityof air in kg m ��� s��� .

m� , m���¡ z¢�£ Molecularweightof air andsulphuricacidrespectively, in kg mole��� .n} Numberof H � SO� moleculescontainedin aparticlefrom bin � .N, N }]~ � Respectivelyparticlenumberdensityandparticlenumberdensityin bin � , at time

t in m �P� .N ¤ Particletotalnumberdensity, in m �P� .p����¢ Watervapourpressure,in Pa.p�¥�������¢ Watersaturationvapourpressureaboveadroplet,in Pa.p H � SO� vapourpressurein Pa.p�¥��� H � SO� saturationvapourpressureaboveaflat surfaceof pureH � SO� in Pa.

24

Page 29: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

6 CONCLUSIONS¦'§,

¦"¨�©�ªz«�¬,

¦®­Densityof air, puresulphuricacidandparticlein bin ¯ respectively, in kg m °P± .

r

­Radiusof aparticlein bin ¯ , in m.

r ² Meanradiusof thelognormalsizedistribution, in m.R UniversalgasconstantJmole°�³ K °�³ .´ ­ Particle(bin i) surfacetensionin J m °Pµ .s Standarddeviation for a lognormal distribution.S

­]¶ ·Saturationratio of H µ SO above a particle (bin i, time t) composedof pureH µ SO .¹ ­]¶ º�¶ »Bin partitioning function.

t Time in s.T Temperaturein K.v Wind velocity in m s°�³ .v ¼r½B¾­ Sedimentationvelocityof aparticle,in m s°�³ .v

§, v

¨ © ªz« ¬, v ¿­ Thermalvelocity respectively of air, sulphuricacidmoleculesandparticlesin m

s°�³ .À ² ¶ ­Volumeof H µ SO permolein a solutionhaving thesamecomposition asa par-ticle from bin ¯ , in m± mole°�³ .

V

­Volumeof aparticlefrom bin ¯ , in m ± .

W

­Sulphuricacidweightfractionin aparticlefrom bin ¯ .

Acknowledgments

Theauthorsacknowledgefundingof thisworkbyaNERCUTLS-OzoneGrantNER/T/S/2000/01032.Theauthorswouldalsolike to thankH. Vehkamaki for providing hernucleationmodelandfor help-ful discussions.

References

Ayers,G. P., R. W. Willet, andJ. L. Gras,On thevapourpressureof sulphuricacid,Geophys. Res.Lett., 7, 433-436,1980.Bekki, S.,andJ.A. Pyle,Two-dimensionalassessmentof theimpactof aircraftsulphuremissionsonthestratosphericsulphateaerosollayer, J. Geophys. Res., 97, 15839-15847,1992.Bekki, S., andJ. A. Pyle, A two-dimensional modelling studyof the volcaniceruptionof MountPinatubo,J. Geophys. Res., 99, 18861-18869,1994.Bigg, K. E.,Stratosphericparticles,J. Atmos. Sci., 32, 910-917,1975.Brock,C. A., P. Hamill, J.C. Wilson,H. H. Jonhson,andK. R. Chan,Particleformationin theuppertropicaltroposphere:A sourceof nucleifor thestratosphericaerosol,Science, 270, 1650-1653, 1995.Brown, R. C., R. C. Miake-Lye, M. R. Anderson,C. E. Kolb, andT. J. Resch,Aerosoldynamicsinnear-field aircraftplumes,J. Geophys. Res., 101, 22939-22954, 1996.

25

Page 30: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

6 CONCLUSIONS

Cadle,R. D., andC. S. Kiang, StratosphericAitken particlesnearthe tropopause,Rev. Geophys.Space Phys., 15, 195-202,1977.Clegg,S.L., Applicationof amulti-componentthermodynamicmodelto activitiesandthermalprop-ertiesof 0-40mol kg Á� aqueoussulphuric acidfrom à 200to 328K, J. Chem. Eng. Data, 40, 43-64,1995.Clegg,S.L., P. Brimblecombe,andA. S.Wexler, A Thermodynamicmodelof thesystemH Ä -NH ÄÅ -SOÆ ÁÅ -NO ÁÇ -H Æ O at tropospherictemperatures,J. Phys. Chem., 102A, 2137-2154,1998.Clement,C. F., M. Kulamala,andT. Vesala,Theoreticalconsiderationson stickingprobabilities,J.Aerosol Sci., 27, 869-882,1996.Davies,E. J., Transportphenomenawith singleaerosolparticles,Aerosol Sci. Technol., 2, 121-44,1983.Deshler, T., D. J. Hofmann,B. J. Johnson, andW. R. Rozier, Balloonbornemeasurementsof thePinatuboaerosolsizedistribution andvolatility at Laramie,Wyoming during the summerof 1991,Geophys. Res. Lett., 19, 199-203,1992.Deshler, T., B. J. Johnson, andW. R. Rozier, Balloonbornemeasurementsof the Pinatuboaerosolduring1991and1992at 41È N: Verticalprofiles,sizedistributionandvolatility, Geophys. Res. Lett.,20, 1435-1438,1993.Friedlander, S. K., Smoke, Dust and Haze. Fundamentals of Aerosol Dynamics, Oxford UniversityPress,New York, 2000.Fuchs,N. A., The Mechanics of Aerosols, PergamonPress,New York, 1964.Fuchs,N. A., andA. G. Sutugin,Highly dispersedaerosols,Topics in Current Aerosol Research, 2,PergamonPress,New York, 1-60,1971.Hofmann,D. J.,S.J.Oltmans,J.M. Harris,S.Solomon,T. Deshler, andB. J.Johnson, Observationandpossiblecausesof new ozonedepletionin Antarcticain 1991,Nature, 359, 283-287,1992.Hofmann,D. J.,andS.Solomon,Ozonedestructionthroughheterogeneouschemistryfollowing theeruptionsof El Chichon,J. Geophys. Res., 94, 5029-5041,1989.Hofmann,D. J.,andJ.M. Rosen,On thebackgroundstratosphericaerosollayer, J. Atmos. Sci., 32,1446-1456,1981.Hofmann,D. J.,T. J. Pepin,andR. G. Pinnick,Stratosphericaerosolmeasurements.I: Time varia-tionsat northernmidlatitudes,J. Atmos. Sci., 32, 1446-1456,1975.Jacobson,M. Z., Numericaltechniquesto solve condensationalanddissolutionalgrowth equationswhengrowth is coupledto reversible reactions,Aerosol Sci. Technol., 27, 491-498,1997.Jacobson,M. Z., Fundamentals of Atmospheric Modelling, CambridgeUniversity Press,Cambridge,UK, 1999.Jacobson,M. Z., Analysisof aerosolinteractionswith numericaltechniquesfor solvingcoagulation,nucleation,condensation,dissolution, andreversible chemistryamongmultiple sizedistributions,J.Geophys. Res., 107, doi:10.1029/2001JD002044,2002.Jacobson,M. Z., R. P. Turco,E. J. Jensen,andO. B. Toon,Modelling coagulationamongparticlesof differentcomposition andsize,Atmos. Environ., 28, 1327-1328,1994.Jacobson,M.Z., andR. C.Turco,Simulatingcondensationalgrowth,evaporation, andcoagulationofaerosolsusingmoving andstationarysizegrid, Aerosol Sci. Technol., 22, 73-92,1995.Karcher, B., Physicochemistry of aircraft-generatedliquid aerosols,soot,andiceparticles,1. Modeldescription,J. Geophys. Res., 103, 17111-17128,1998.Kulmala,M., A. Laaksonen,Binary nucleationof water-sulphuricacidsystem: Comparisonof clas-sicaltheorieswith differentH Æ SOÅ saturationvaporpressures,J. Chem. Phys., 93, 696-701,1990.

26

Page 31: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

6 CONCLUSIONS

Kulmala, M., A. Laaksonen,and L. Pijrola, Parameterisationfor sulphuricacid/water nucleationrates,J. Geophys. Res., 103, 8301-8308,1998.Lacis,A., J. Hansen,andM. Sato,Climateforcing by stratosphericaerosols,Geophys. Res. Lett.,19, 1607-1610,1992.List, R.J.ed.,SmithsonianMeteorologicalTables,6thed.,SmithsonianInstitutionPress,WashingtonDC, 1984.Michaelangeli,D., M. Allen, Y. L. Yung,R. L. Shia,D. Crisp,andJ.Eluszkiewicz, Enhancementofatmosphericradiationby anaerosollayer, J. Geophys. Res., 97, 865-974,1992.Nair, P. V. N., andK. G. Vohra,Growth of aqueoussulphuric aciddropletsasa functionof relativehumidity, J. Atmos. Sci., 6, 265,1975.Noppel,M., H. Vehkamaki,andM. Kulamala,An improved modelfor hydrateformationin sulphuricacid-waternucleation,J. Chem. Phys., 116, 218-228,2002.Pitari, G., V. Rizi, L. Ricciardulli, andG. Visconti,High-speedcivil transportimpact: Roleof sul-phate,nitric acidtrihydrate,andiceaerosolsstudiedwith atwo-dimensionalmodelincludingaerosolphysics,J. Geophys. Res., 98, 23141-23164,1993.Pruppacher, H. R. and J. D. Klett, Microphysics of Clouds and Precipitation, Kluwer AcademicPublishers,Dordrecht,1997.ReissH., Thekineticsof phasetransitionsin binarysystems,J. Chem. Phys., 18, 840-848,1950.Rodriguez,J.M., M. K. W. Ko,andN. D. Sze,Roleof heterogeneousconversionof N É OÊ onsulphateaerosolsin globalozonelosses,Nature, 352, 134-137,1991.Rosen,J. M., D. J. Hofmann,and J. Laby, Stratosphericaerosolmeasurements.The worldwidedistribution,J. Atmos. Sci., 32, 1457-1462,1975.SolomonS.,R. R. Garcia,F. S.Rowland,andD. J.Wuebbles,On thedepletionof Antarcticozone,Nature, 321, 755,1986.SorokinA., X. Vancassel,andP. Mirabel, On volatile particleformationin aircraftexhaustplumes,Phys. Chem. Earth (C), 26, 557-561,2001.Steele,H. M., andP. Hamill, Effectsof temperatureandhumidity onthegrowth andopticalpropertiesof sulphuricacid-waterdropletsin thestratosphere,J. Aerosol Sci., 12, 517-528,1981.Tie, X., L. Lin, andG. Brasseur, Two-dimensionalcoupleddynamical/chemical/microphysicalsim-ulationsof globaldistribution of El Chichonvolcanicaerosols,J. Geophys. Res., 99, 16779-16792,1994.Timmreck,C., andH. F. Graf, A microphysical modelfor simulation of stratosphericaerosolin aclimatemodel,Meteorolog. Zeit., 9, 263-282,2000.Timmreck,C, Three-dimensional simulationsof stratosphericbackgroundaerosol:First resultsof amultiannualGCM simulation,J. Geophys. Res., 106, 28313-28332,2001.Toon, O. B., R. P. Turco, P. Hamill, C. S. Kiang, and R. C. Whitten, A one-dimensionalmodeldescribingaerosolformationandevolution in thestratosphere:II. Sensitivity studiesandcomparisonwith observations,J. Atmos. Sci., 36, 718-736,1979.Toon, O. B., R. P. Turco, D. Westphal,R. Malone,andM. S. Liu, A multidimensionalmodelforaerosols:Descriptionof computationalanalogs,J. Atmos. Sci., 45, 2123-2143, 1988.Turco,R. P., P. Hamill, O. B. Toon,R. C. Whitten,andC. S. Kiang, A one-dimensional modelde-scribingaerosolformationandevolution in thestratosphere,I. Physicalprocessesandmathematicalanalogs,J. Atmos. Sci., 36, 699-717,1979.VanDingenen,R., andF. Raes,Determinationof thecondensationaccomodationcoefficient of sul-phuricacidonwater-sulphuricacidaerosol,Aerosol Sci. Tech., 15, 93-106,1991.

27

Page 32: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

6 CONCLUSIONS

Vehkamaki, H., M. Kulmala, I. Napari,K. E. J. Lehtinen,C. Timmreck,M. Noppel,andA. Laak-sonen,An improvedparameterisationfor sulphuricacid/waternucleationratesfor tropospheric andstratosphericconditions,J. Geophys. Res., 107, doi: 10.1029/2002JD002184, 2002.Weisenstein,D. K., P. K. Yue, G. K. W. Ko, N. D. Sze,J. M. Rodriguez,and C. J. Scott, Two-dimensionalmodelof sulphurspeciesandaerosol,J. Geophys. Res., 102, 13019-13053,1997.Yu, F., andR. P. Turco,Theroleof ionsin theformationandevolutionof particlesin aircraftplumes,Geophys. Res. Lett., 24, 1927-1930, 1997.Yue,G. K., The formationandgrowth of sulfateaerosolsin thestratosphere,Atmos. Environ., 15,549-556,1981.Yue, G. K., andA. Deepak,Temperaturedependenceof the formationof sulphateaerosolsin thestratosphere,J. Geophys. Res., 87, 3128-3134, 1982.Zeleznik,F. J.,Thermodynamic propertiesof theaqueoussulphuricacidsystemto 350K, J. Phys.Chem. Ref. Data, 20, 1157-1200,1991.Zhao,J. X., R. P. Turco,andO. B. Toon,A modelsimulation of Pinatubovolcanicaerosolsin thestratosphere,J. Geophys. Res., 100, 7315-7328,1995.

28

Page 33: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations
Page 34: ATMOSPHERIC, OCEANIC AND PLANETARY PHYSICS...2012/03/08  · simulations of atmospheric processes: Keeping this in mind, non-iterative solutions to growth and coagulation equations

Recommended