+ All Categories
Home > Documents > ATOMIC ENERGY §KS& L'ENERGIE ATOMIQUE OF CANADA … · Solubilité du ferrite de cobalt et de...

ATOMIC ENERGY §KS& L'ENERGIE ATOMIQUE OF CANADA … · Solubilité du ferrite de cobalt et de...

Date post: 23-May-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
87
AECL-4582 ATOMIC ENERGY §KS& L'ENERGIE ATOMIQUE OF CANADA LIMITED \m£9 DU CANADA LIMITEE SOLUBILITY OF NICKEL AND COBALT FERRITE IN WATER UP TO 300°C by R.E. VON MASSOW, G.R. SULLIVAN and G.N. WAUGH Whiteshell Nuclear Research Establishment Pinawa, Manitoba June 1975
Transcript

AECL-4582

ATOMIC ENERGY §KS& L'ENERGIE ATOMIQUEOF CANADA LIMITED \m£9 DU CANADA LIMITEE

SOLUBILITY OF NICKEL AND COBALT FERRITE

IN WATER UP TO 300°C

by

R.E. VON MASSOW, G.R. SULLIVAN and G.N. WAUGH

Whi teshe l l Nuc lea r Research Establ ishment

P inawa, Man i toba

June 1975

ATOMIC ENERGY OF CANADA LIMITED

SOLUBILITY OF NICKEL AND COSALT FERRIlf

IN WTER UP TO 3OQ°C

by

R.E. von Wassow

G.R. Sullivan*

G.N. Wauoh*

*Ci.-<>p stiidents

•Jhiteshell NucUar Research Establ

Pinawa, Manitoba ROE 1L0

June 19 75

Solub i l i té du f e r r i t e de cobalt et de nickeldans Teau jusqu'à 300°C

par

R.E. von Massow, G.R. Sullivan* et G.N. Waugh*•Etudiants en stage de co-op.

Résume

On s'est servi des données thermodynamiques dis-ponibles dans les publications pour calculer les concentra-tions d'ions métalliques dans une solution aqueuse en équi-libre avec les spinelles NiFe2Û4 et CoFe20 4 a des températuresallant jusqu'ï 300°C en fonction du pH st de l'H2 dissous.Les résultats font l'objet de commentaires en rapport avecle transport des produits de corrosion dans les centralesnucléai res.

L'Energie Atomique du Canada, LimitéeEtablissement de Recherches Nucléaires de Whiteshell

Pinawa, Manitoba, ROE 1L0Juin 1975

AECL-4582

SOLUBILITY OF NICKEL AND COBALT FERRITE IN WATER

UP TO 300°C

by

R.E. von MassowG. R. Sullivan*

G. N. Waugh*

ABSTRACT

Thermodynamic data available in the literature are useii 10

compute metal ion concentrations in aque.>us solution in equilibrium with

the spinels NiFe^O^ and CoFepO,, at temperatures up to 300°C as a function

jf pH and dissolved H?. The results are discussed in relation to the

transport of corrosion products in nuclear power plants.

*Co-op students

Chemical Technology Branch,

Atoaic Energy of Canad.i Limited

Vhlteshell Nuclear Research Establ i shiner.t

Pinawa, Manitoba ROE 1L0

197 5

CONTFNTS

P.icr

1. INTRODUCTION

2. THEORY

3. METHOD OF CALCULATION

3.1 Determination of the Stable Phase of M3.2 Other Ion Concentrations

4. INPUT DATA

5. RESULTS

6. DISCUSSION

7. APPLICATION OF TABLES

REFERENCES

TABLES

APPENDIX A

APPENDIX B

APPENDIX C

- 1 -

1. INTRODUCTION

The primary cooling water in nuclear reactors corrodes

the metals it comes in contact with and some of the corrosion products

are dispersed throughout the circuit. If deposited in-core, these

corrosion orodmts can foul fuel and decrease heat transfer. Subse-

quently, activated corrosion products can redeposit out-core

and create undesirable radiation fields. The movement of corrosion

products is thus of considerable importance to the reactor designer

and reactor operator. Movement may occur in a particuLate or a

solution state. We have calculated ;he equilibrium concentration of

ions in water in contact with some spinels and metal oxides, under

various conditions, in order to provide data to enable us to better

understand solution transport in reactors.

Dissolution of a metal oxide in water generally comprises

a number of chemical reactions resulting in the formation of various

ionic species. The hydrogen and oxygen concentration as well as pH and

temperature of the water control the equilibrium concentration of the

ions.

The solubility of a metal oxide is defined as the sum

of the equilibrium molar concentrations of the various ions. The

solubility of many metals and metal oxides in water has been calculated

by Macdonald et al . The same treatment has been largely followed

in this work and has been extended to two spinels, NiFejO^ and CoFe,(>...

Corrosion products in practical systems frequently consist of spinels

dxti(O

, where N i s a mixture of Fe, Ni, Co, etc . and M a

mixture of Fe, Cr, Al, etc .

We have limited ourselves to the treatment of stoichion**ri<

NiFe2Oi, and CoFejOi,, disregarding any non-stoichiometric spinels althouRh

they are known to exist.

- 2 -

In accordance with the phase rule, if the solution composition

in equilibrium with an oxide is set by temperature, pll, and hydrogen concen-

tration, the addition of another component adds another degree of freedom

and requires one more specification before the solution composition is

singularly defined. Thus for stoichiometric, two-metal spinels, only the

naxima and minima of the individual metal ion concentrations can be given.

Any solution which falls within these extremes and satisfies the solubility

product of the spinel is in equilibrium with it.

The solution maxima and minima have been computed for chemistry

conditions which are relevant for Canadian power reactors. They should be

helpful'7»8/ in the interpretation and prediction of activity transport.

Some uncertainties persist, as pointed out in the text. As better experi-

mental data become available5 the computation will be up-dated. However,

to our knowledge, the presented tables give the best available solubility

data.

- 3 -

2. THEORY

The highlights of Macdonald's treatment are recalled:

1. Metals and metal oxides react with water containing dissolved

hydrogen and hydrogen ions. In doing so, they form a varietv of

ions of different degrees of hydrolyzation and even of different

oxidation states. The relative concentration of each ion tvpe

depends on the pH, dissolved hydrogen concentration and

temperature of the water.

2. The equilibrium concentration of each ion may be calculated if tlio

standard free energy of the reaction leading to its formation is

known since

AG = 0 = AG - RT £a t P r o d u c t Sjo [Reactants]

3. To obtain the standard free energy of the reac-ion as a function

of temperature, the free energy, entropy and specific heat of the

products and reactants are required. For solid phases, these data

are generally available. For ionic species, some entropies have to

be estimated by empirical equation. The variation of the entropies

with temperature is predicted by the Criss and Cobble correspondence

principle w'uich says that the variation with temperature is the

saae for all ions of one type. With these aids, the standard free

energies of reaction are computed.

To simplify the calculation, the free energy of the elements is not

taken to be zero at all temperatures, as is conventional, but rather

a free energy variation is calculated based on zero free energy at

25°C and the specific heat of the element. Since the standard free

energy of reaction is the difference between the free energies of

products and reactants, the above deviation from convention cancels

out. The obtained standard free energies of reaction have the

conventional values.

- 4 -

4. From the standard free energy of reaction, the equilibrium

concentration of each ion may be calculated if the hydrogen

activity and pH of the solution are given;

M2O3 + H2 + 4H+ = 2M** + 3H2O (1)

AG = - RT £n — L \ (2)[H2][H"V

(where [ ] denotes activity; the activity of solidphases and water are assumed equal to unity)

5. The solubility is the sum of the equilibrium concentrations of

the individual ion species.

Thus Macdonald calculates the solubility of metal oxides.

However, if the oxide contains two or more metals, as is

the case with most spinels, solubility is not that easily defined. The

extra component provides an extra degree of freedom.

A spinel N M2 0i» may dissolve by the reaction:

TT TTT + 11 11

N n\2 0H + H2 + 6H = N + 2M + 4H2O

and the equilibrium concentrations are controlled by the equation:

AG = - RT Jin -^—Jl" J (3)

[H2][H+]6

This means that another variable has been introduced in the equation. At

constant hydrogen partial pressure and pH, the concentrations of N and1 1

M are not singularly defined but rather are related to each other by a

constant productK = [N + +] 1 / 3[M + +] 2 / 3

This is not the solubility product of the spinel, since both metals will

be present in solution as many other ionic species. Only after the

- 5 -

reactions of formation of all other ions have been considered can a

product be calculated which governs the balance in metal concentrations

in solution as determined by chemical analysis.

KsP -

The variation of the solubility product with temperature

and water chemistry conditions provides information about dissociation

or precipitation of the spinel.

The variability of the solution composition in equilibrium

with CoFezOi, is demonstrated in Figure 1. Shown are the partial molar

free energies of the metal ions in the reactions:

CoO + 2H+ -»• Co"*"*" + H20

Co + 2H+ •*• Co"*"*" + H2

+ 2H+ + V3H2 + '/sCo4"*" + 2/3Fe++ + V3H2O

+ 2H+ + V2H2 •+ Fe*4" + 3

+ 2H+ + l/3H2 •* Fe*4"

under the conditions of:

temperature 298 K

hydrogen content 446 pmol/kg H20

pH 10

Under these conditions, the sum of the partial molar free energies

'/sG. ++ + 2/3<L ++ is 56 kJ. Any two values of partial molar freeCo Fe

energies of Co4"*" and Fe44" which satisfy this equation fall on a straight

line through the point 56 kJ at 2/sFe mol fraction.

- 6 -

no1

^100

9 0

8 0

7 0

6 0

5 0

4 0

30

CoO • 2H • id*

Co + 2H* - Co* * •

\ . uMax C o "

\ \

\ \

\ \

: \

X \

\ \

~ - • • - . . ,

= ^ - — -

— • — — —

SH1n C(f+

-

l i

• H

H2

\

\

• — ~ - .

|

?°C

X

\

-.—

^—

i

\

N\

\\: \<^\

^ ^

• i

+

+0,Urn

+

o

t

+

+

\l/3

C

oFe,

|

\

\

\

\\NV\Slin F^+

1 1

Fe

1/2

1/3

+ ZH* - fi*'

Fez03 • 2H+ +

Fe304 + ZH* *

Co O.I 02 Q3 Q4 Q5 0.6 0.7 0.8 0.9 Fe

FIGURE 1: REACTION FREE ENERGIES AT 298K, W8 pROL H 2/KG ^ 0 AND PHIOVERSUS IRON METAL ATOP! FRACTION

- 7 -

However, the maximum G ++ is given by the reaction

Co + 2H+ = Co4"* + H2

since under these conditions, cobalt metal is the stable cobalt phase.

The maximum G ++ is given by the reaction

VaFesO., + 2H+ + V3H2 = Fe++ + "/sHjO

Thus the variability of the solution composition of CoFe201< is limited by

the stability of the separate metal phases.

If the partial molar free energy for the spinel reaction falls

above the line connecting the two separate stable phases, the spinel is

unstable and will not form. This occurs with NiFe2Oi4 at 298 K and

446 umol Ih/kg H2O. Iu this case, there are no minimum partial molar free

energies, as indicated in Table 7, where minimum concentrations are not

given when NiFejOi, is unstable.

- 8 -

3. METHOD OF CALCULATION

The object of this computation is to establish the solution

composition limits of NiFe2Oi» and CoFeaOt, for a wide range of water

chemistry conditions which are of interest in reactor technology.

Variables

TEMPERATURE

Temperature is varied from 25 to 300°C with smaller Intervals

between 200 and 300°C.

pB

The pH at 25°C is varied from pH 9 to 12 in intervals of 0.2

from 9.4 to 10.6. The variation of pH with temperature was calculated

on the basis of constant L10H content. The method of calculating the pH

was taken from Wright et al .

The partial pressure of hydrogen as a function of temperature

was calculated on the basis of constant hydrogen content for use in out-

core conditionsi and on the basis of constant oxygen content for in-core(12)

use

The concentrations used were:

Hydrogen 0.446 mmol/kg (10 cm3/kg) Tables 6,8,14,16 andleft side of 7,9,15 and 17

0.0446 mmol/kg (1 cm3/kg) (

and 0.00446 mmol/kg (0.1 cm3/kg) [Tables 1 0 " 1 3

OxTfien °'125 Wmol/kg right side of Tables 7,9,15,17.

- 9 -

Since all equations used were written on the basis of hydrogen, the oxygen

content was converted to hydrogen partial pressure assuming equilibrium^L K

The resulting hydrogen partial pressure fits the equation:

log P u (Pa) = -92.86 + 0.2545T + 0.19A27xl0~3T2

112

The computational process which leads to the solution composition

of maximum M and minimum N in equilibrium with a spinel NMjOi, is described

below.

3.1 DETERMINATION OF THE STABLE PHASE OF M METAL

Since the solution composition extremes are determined by the

free energy of the most stable separate metal phases (Figure 1) for each

of the two component metals, the stable phase under a particular set of

conditions has to be determined. This is done by calculating the equilibrium

ion concentration of just one ion; we chose M"*"*" for all possible phases. The

one with the lowest equilibrium M*"4" concentration is the stable phase.

For instance, for the reaction

M30,, + Stf1" + H2 -> 3M4"4" + 4H2O

the standard free energy of reaction is calculated and the M** concentration

determined using

AG = 0 = AG - RT HnfH+J6 x

where [H**] and [H?] have been set above.

- 10 -

I I

The equilibrium M concentration of the stable M phase becomes the

base for the calculation of the solution composition with M at maximum

and N at minimum concentration.

3.2 OTHER ION CONCENTRATIONS

To obtain the total metal concentration in solution,

the concentration of all other ions is required. There may be:1

cations of higher oxidation state M

oxy-anions M02~, M(0H)3~etc.

acid-oxyanions

hydrolyzed cations M(0H)+, M(0H)"H"

and others, depending on the metal.

Here they were all considered to be formed by reaction with

the M ion. The reactions considered for iron and nickel are listed in

Table 1.

As an example, the concentration of Fe(OH) icn may be

calculated from the standard free energy of reaction and the Fe and H

ion concentrations by the relationship

AG - 0 - AG - RT

The concentration of N ions is related to that of M ions only with respect

to the spine] dissolution reaction

NM20i, + 6H+ + H2 - N4* + ZM*"4" + 4H2O

which gives the relation between [N ] and [H ] as

A G - 0 - A G o - RTen

The other N ion concentrations are then calculated from the [K**]

concentration and the respective standard free energy of reaction.

- 11 -

TABLE 1

IONIC REACTIONS CONSIDERED FOR NICKEL AND IRON

Ni(OH)+ + H+

HNiO2~ + 3H+

Fe(OH)"*" + H+

2H.0 - HFeO2" + 3H+

•4- I I I

2H+ - — +++

2Fe+

2Fe+

2H+

2Fe + 2H2O - 2Fe(OH)

- 12 -

4. INPUT DATA

The input data for the calculation of standard free energies

of reaction by means of the FREB computer program (Appendix B) are

listed in Table 2 and Table 3. In general, they were taken from

Macdonald^2 '3>l4'. Exceptions are the standard free energy of Fe(OH)+

where the value of the Bureau of Standards^16) was chosen, and HFe(>2~,

where a value of -411.6 kJ was chosen, since these agree best with the

few experimental observations of magnetite solubility^22*23'.

The Criss and Cobble Constants^9' have originally been

determined only up to 150°C, 100°C for acid oxy-anions. In this report

we expressed these constants as a linear function of temperature and used

the resulting expressions, listed in table 3, to extrapolate to 300°C.

Ine standard free energy of reaction, which is part of the

output of FREB and is the input to the solubility program SO.F4 (Appendix A).

is expressed as a function of temperature as

AG = A + BTlogT + CT

The reactions and the input data A, B, and C are listed in Table 4.

- 13 -

TABLE 2

THERMODYNAMiC OATA FOR THE Ni-Fe-H 0 AND Co-Fe-H ,0 SYSTEMS

Species

H+ ;H2B 2 0

S i

a l t . *NiO :Si(OH)

s i - ;Si(OH)

1 H KiOT; SiFe26.,

i1

Co•It .*

CoO1 Co,0^

Co(OH);' alt.*

Co**CoOH*HCO05Co*JCoFe^O,,

alt.*

Fe1 FeO

•It.*

alt.*Fe z O 3

* " «•re{«rHFeOj

FeO 2 ~

t e fOfl)Fe(O»)?+reOh - -

StandardFree Energyof Formation

OcJ nol"1)

00

- 237.3

00

- 211.85- 4i7.57

- 45.64- 227.76- 349.45- 973.85

0

- 214.36- 774.56- 454.69- 462.64- 54.53- 235.72- 82.97- 13*.0-1033.1

0245.3

-1016.14

- 7*2.74- 78.92- 273.82- 411.56- 295.59- 4.61- 224.58- 438.36- 467.58

o

lef.

141414

16

1616

1616

416

16

16161619

1633

1416

1616

16

16

161616

2161616

2

Standard Entropy

(U*1 nol"1)

-20.9341.307

69.96

29.89

Ref.

141414

1629.81 i 1538.02 1687.92 ! 16

i-170.82- 92.11

44

62.8 13131.9 ! 16

i

30.06

53.0102.5879.5562.06

-151.91-136.91- 83.3ft-Ufi.44

16

16161620

163

1 314

134.81 16

27.357.5'J58.82

146.54151.5687.46

-179.61- 50.24

62.80- 56.45-378.91-191.76- 46.05

52.67

161615161516

161613

13

1616

713

Heat Capacity ConstantsC =

PA + BT +

(J sol"1 K"1)A

_

27.330.02

17.032.66

-20.8993.37

145.7169.6167.5

19.8521.3948.32

129.12"33.37

152.94131.5

12.7317.548.891.6

98.35

B

_

3.2710.72

29.48- 1.97147.34

1

1

,6.75U.32S.54

71.51

141.5

31.724.88.37

201.8

77.87

CT ;'

C

-

0 .50.33

0- 5.59

16.29 ;

- O.BB1.67

-23.95

2.51

- 2.81

-14.86

i

Ref.

41515

1

1 7 «

151716

9Q

9161519

1 7 i15 11 5 j1 5 '•

18 i

1« i9 ;9 i9

16 ,19

i

i1715 116 ,

1 16 i1 i! 16

9

9

9

9999

• alt.Means data froe» other sources, which have not heen used.

- 14 -

The temperature dependence of the dissociation constant

of water was taken from Fisher et al^21' and expressed as:

pKW = 50.253 - O.274T + 7.662xHr'*T2 - I.OUXIO-'T1* + 5.

for 298<T<573

The dissociation constant of LiOH was taken from Wright et al

and expressed as:

\iOll " 7.137 - 0.05T + O.996xlO"'fTz + 0.106xlO"6T3 - 0.185x10"*^ + n.l21xlO~12T

for 298<T<573.

TABLE J

CRISS ANO COBBLE*9) CONSTANTS ANO THEIR EXTRAPOLATION

Constants In S»a+bS0

ton Type

Simple cation

Simple anionand OH"

Oxy-anlons

Ac id-Oxy-.intons

J/nol K

a

b

a

b

a

b

a

b

Temperature In Degrees Celsius

25

0

1.000

0

1.000

0

1.000

0

1.000

60

16.3

0.955

-21.4

0.969

-58.6

1.217

-56.5

1.380

100

43.1

0.876

-54.5

1.000

-129.8

1.476

-126.9

1.894

150

67.8

0.792

-89.2

0.989

-194.3

1.687

(209)

(2.381)

200

(97.6)

(0.711)

(-126.4)

(0.981)

(-280.5)

(2.020)

(293)

(2.960)

250

[126J

[.6241

[-162.5]

[0.9711

1-3561

12.3]

I-377J

[3.52]

300

[1521

I.540J

[-185J

[0.961]

[-440]

[2.641

[-4611

(4.071

ExtrapolationFormula

a—169+0. 561T

b-1.5-.OO169T

a-21fl.9-0.729T

b-1.03B8-O.OO013T

a-467.7-l.5BT

b—O.6828+. OO57T

O-5O1-1.68T

b=-2. 32+0.01H7T

( ) - values extrapolated by Criss and Cobble

[ ] - values extrapolated by authors

- 16 -

TABLE 4

STANDARD FREE ENERGY OF REACTION

(J) = A + BTlogT + CT (298 <T <573)

Reaction

F6304 + 6H+ + H2 = 3¥e** + 4H2O

Fe2O3 + 4H+ + H2 = 2Fe

4+ + 3H2O

Fe44" + H2O = Fe(OH)+ + H +

Fe44" + 2H2O = HFeO2 + 3H

Fe44" + 2H2O = FeO" + 4H+

2Fe"H" + 2H+ = 2Fe'K+ + H2

2Fe++ + 4H2O = 2Fe(OH)| + H2 + 2H+

2Fe++ + 2H2O = Fe2(OH)f4 + H2

BFe""" + 8H2O = 2Fe3(OH)t5 + 3H2 + 2H

+

2Fe++ + 2H2O = 2Fe(OH)++ + H2

CoFe204+H2+6H+ = Co44" + 2Fe++ + 4H2O

NiFe2O4+H2+6H = Ni + 2Fe + 4H;>0

Co + 2H+ = Co""" + H2

CoO + 2H+ = Co4"4" + H2O

Co 301, + H2 + 6H+ = 3CO4"1" + 4H20

Co (OH) 2 + 2H+ = Co44" + 2H20

Co""" + H2O = Co (OH)+ + H +

Co44" + 2H2O = HCo02 + 3H+

ZCo""" + 2H+ = ZCo 4^ + H2

Si + 2H+ = Ni44" + H2

NiO + 2H+ = Ni44" + H2O

Ni(OH)2 + 2H+ » Ni44" + 2H2O

tU4"*" + H2O = Ni(OH)+ -»• H +

Ni44" + 2H2O = HN1O2 + 3H

A

-3.0079xl05

-2.2099x105

+4.5018x10"

+2.6275x105

+3.9859xlO5

+1.0426x105

-1.5376X101*

+2.0431xl05

+6.3111xlO5

+2.0408x105

-2.3454xlOb

-3.O2739xlO5

-4.6887xlO4

-1.0095xl05

-4.2691xlO6

-9.4691X101*

+9.9234x10

+2.4181xlO5

+3.1758xlO5

-4.57O7X1O1*

-9.7340x10^

-9.5716X101*

+3.1O43X1O4*

+2.8629xlO5

B

-1.1652xlO2

-1.0275xl02

-52.07123xlO:

+8.3541xlO2

+1.3118x103

+1.5505xl02

-7.2443xl02

+6.1005xl02

+2.O346xlO3

+2.3960xl02

-7.8052

-1.1640xl02

+6,9960x10

+2.2983x10

-6.8184x10

-5.7157x10

-2.3753xlO2

+5-0Sllxl02

+1.0816xl02

+4.9774x10

+3.1931

-8.0487x10

-1.3699xlO2

+8.1742xlO2

C

+7.2757xlO2

+5.6935xlO2

+I.2010xl02

-2.^716xlO3

-3.7167xlO3

-2.3463xlO2

+2.616OxlO3

-1.6394xlO3

-5.4378xlO3

-6.6244xl02

+3.75913xlO2

7.0347xl02

-1.9826xlOz

+2.2254x10

+4.6718xlO2

+2.1515xlO2

+7.7507xl02

-1.46O7xlO3

-6.8785x10

-1.2283xlO2

+8.0200x10

+2.7162xlO2

+4.1976xlO2

-2.4095xl03

- 17 -

5. RESULTS

The results of the computation are listed in Tables 6 to 17.

An overview of their presentation is given in Table 5.

Solubility products in the form (N)l' 3(M) 2^ 3, where N and M

are the sum of the ion concentrations, are presented as a function of

temperature and pH. They are thus calculated per mol of transition metal

and can be compared readily vith other solubility data. The solubility

products are presented in the even-numbered tables.

Solubility data for NiFezO). or CoFeaOi, are presented in the

odd-numbered tables which give the maximum and minimum concentration for

both constituent metals as follows:

Columns 1 and 15

Columns 2 - 7

Columns 2 - 4

Column 2

Column 3

Column 4

Columns 5 - 7

Column 5

Column 6

Column 7

Column 8

Columns 9 - 1 4

Columns 9 - 1 1

Columns 12 - 14

temperature• C

apply to the higher of two hydrogen concentrations

composition of a solution with nickel or cobalt atmaximum concentration

the nickel or cobalt phase which is stable

total maximum nickel or cobalt concentration of thestable nickel or cobalt phase (column 2)

total minimum iron concentration

composition of a solution with iron at maximumconcentration

the stable iron phase

the total minimum nickel or cobalt concentration

the total maximum iron concentration of the stableiron phase

the pHj for which the computation was made

repeat of the left hand side for the lower of thetwo hydrogen contents

composition of solution with nickel or cobalt atmaximum concentration

composition of solution with iron at maximumconcentration

- 18 -

TABLE 5

WHERE TO FIND THE RESULTS

(Table numbers are given for the function listed for thespinel at different gas contents and pH variations)

pHdependent on T

pH constant

Gas Contentin

Umol/kg H20

H2

Oz

H2

Hz

Hz

02

446

0.125

44.6

4.46

446

0.125

Solubility Product

m¥e20tt

6

6

10

10

14

14

CoFe20i»

xable

00 C

O

12

12

16

16

Solution Maxima and Minima

NiFe2O<»

Number

7 left

7 right

11 left

11 right

15 left

15 right

CoFe2Oi,

9 left

9 right

13 left

13 right

17 left

17 right

- 19 -

6. DISCUSSION

The equilibrium solution concentrations in contact with nickel

or cobalt ferrite ha\2 not been reliably measured for reactor coolant condi-

tions. The reason is that these measurements are experimentally difficult

and time consuming, because of the very low solubilities involved. However,

in reactor coolants, even small solubility variations can lead to signifi-

cant material transport due to the high flow rates involved.

Indirect experimental results are available which, with some

extrapolations and some assumptions, allow the theoretical calculation of

the solubility tables as presented.

Most directly, the data had to agree with determination of the

solubility of magnetite by Sweeton and Baes 2 2 and Styrikovich et al^ 2 3 .

For this reason, the partial molar free energy for the FeOH ion was

taken from the Bureau of Standards^16- values and not chat suggested by

Macdonald*2). At high pH, the two investigators above^22»23^ do not agree

well with each other, neither do they agree with the standard free enerpv

valueOS) for the HFeO2~ ion if it is assumed that the entropv of this ion

follows the Criss and Cobble^9' correspondence principle. Rather thar discar-

ding this principle for this ion, we chose to decrease the accepted^J 6 •* partial

molar free energy for HFeO2~ D V 8X to fit the high temperature solubility data

of Styrikovich^23^. With this base on high temperature experimental evidence,

we can offer the tables of solubility data with some confidence as guidelines

to corrosion product transport problems. A computer output which lists the

concentration of each ion is available but has not been included in this

report.

If the tables are to be used as suggested in the following

pages, the following limitations should be realized:

- 20 -

1. Under the non-equilibrium conditi ns due to radiolysis in-core,

the solubility is assumed to be controlled bv the oxygen

concentration and not by the hydrogen concentration. An oxygen concen-

tration of 0.125 pm/kg water has been analyzed, but from Tables 7 and 9

this would result in stable haematite in-core. Under pressurized

conditions this has not been found. It may be safer to use

Tables 11 right and 13 right for in-core, since these depict a

hydrogen content reduction by a factor of 100. Under these

conditions, it is still magnetite which is stable in-core.

2. Equilibrium conditions are assumed.

3. Heavy water is assumed to behave similarly to light water.

4. In applying Tables 6 to 13, it is assumed that the pH variation

with temperature is based on the changing dissociation of water

with temperature and is not affected by other reactions. If

this assumption cannot be made, Tables 14 to 17 have to be used.

- 21 -

7. APPLICATION OF TABLES

The use of the tables can be demonstrated by the following

examples.

QUESTION 1:

The reactor primary water has a PH25 of 9.8 and a hydrogen content of

0.446 mmol/kg (10 cm3/kg). At 29C°C, the water is contained by carbon

steel. Which metal or metal oxide phases should exist at this point?

What is the solution composition?

SEARCH Refer to Table 7, out-core conditions. Turn to the table for

PH25 =9.8. Go down to ?c0°C. Since containment is by carbon

steel, the solution is expected to be iron-rich at this point.

ANSWER Fe3Oj, is the stable iron phase. NiFezO* is also stable - as

seen by the fact that the nickel concentration is also specified.

The iron concentration is 10~6«6S or 2.2 x 10"7.

The nickel concentration is 10~7*95 or 1.12 x 10~8.

The pH at the temperature is 6.69.

qUESTION 2:

If this solution is cooled to 25O°C in a nickel environment, can

precipitation be e: pected? If yes, which phase will precipitate?

SEARCH Since neither pHzs nor hydrogen content changed, the same

table applies, but since the container is a nickel alloy,

the solution can be expected to become nickel-rich.

ANSWER The nickel content rises to 10~7*21 or 6.17 x 10~e. The

nickel in contact with the water will be metallic - nickel

oxide is not stable. The iron content will drop to 10"'* v

or 2.18 x 10" . Some precipitation will be in thi- form of

nickel ferrite. The extra nickel in solution is supplied

by oxidation-dissolution of nickel metal.

- 22 -

QUESTION 3:

A solution at pths 10.0 in carbon steel pipe at 0.4A6 mmol/kg H2 content

(10 cmVkg) and 25O°C enters the core and is heated to 300cC. What

are the solution concentrations and what will dissolve or precipitate?

SEARCH Again in Table 7, but at PH25 of 10.0, we find the solution

concentration for out-cor3 conditions, iron-rich in the right

part of the left side table. For in-core conditions, the right-

hand side table is used. Also Table 6 for in-core conditions

gives the new equilibrium concentration product.

A-1SWER The solution concentration has to change from

Ni 10~7'71 or 1.95 x 10"8 to Max 10~6'81 or 1.55 x 10"7

Min 10~8*62 or 1.51 x 10~9

Fe 10~6*19 or 6.46 x 10~7 to Max 10"13*6 or 2.57 x lO"1"

Min 10"11**5 or 3.16 x 10"15.

Since in-core the containment is zirconium, the solution is

not necessarily iron-rich or nickel-rich. Although the former

nickel content falls between the new maximum and minimum, both

nickel and iron have to decrease, since they are above the now

lower equilibrium concentration product of nickel ferrite.

Table 6 out-core for pH25 10 and 250°C gives the equilibrium

concentration product of NiFe20i» as -6.70.

Table 6 in-core for pH2s 10 and 300°C is -11.93.

Nickel ferrite will precipitate because of the assumed higher

oxygen content in-core. The final solution will be neither

iron- nor nickel-rich. Its composition falls within the limits

given.

- 23 -

QUESTION 4:

How does the solution composition change at pH 10.2 280°C in a nickel

environment when the hydrogen content drops from 0.446 mmol/kg

(10 cm3/kg) to 44.6 nmol/kg (1 cm3/kg)?.

SEARCH Refer to Tables 7 and 11 of nickel ferrite data. Table 11

provides data at the reduced hydrogen content. 44.6 umol

H2/kg is on the left-hand side.

ANSWER At 0.446 mmol H2 (Table 7) at pH 10.2 280°C nickel-rich,

Ni = 10~6-7 or 2.0 x 10"7, Fe = HT 6* 6 9 or 2.04 xlO"7.

At 44.6 umol H2 (Table 11) at pH 10.2 280°C nickel-rich,

Ni = 10"6-61 or 2.45 x 10"7, Fe = 10"7'23 or 5.89 x lCT8.

NOTE: At 290°C, the nickel concentration is independent of hydrogen

concentration, since at this temperature the stable nickel

phase under both conditions is NiO, which dissolves without

an oxidizing reaction.

5. QUESTION

What is the cobalt concentration of a solution at 27O°C at pH 10.6 at

0.446 mmol Ho/kg in a carbon steel pipe? How does it change when the

hydrogen content drops to 4.46 umol H2/kg?

SEARCH Refer to Tables 9 and 13 (right).

ANSWER Initial Co 1O~13«32 or 4.8 x lO""11*, CoFe20,, stable

Final Co io"13-98 or 1.05 x 10"14, COF620,, stable

NOTE; The change in concentration occurs due to the dependance

of the stability of CoFez0i, and Fe^O^ on H2 content.

- 24 -

REFERENCES

(1) D.D. Macdonald, G.R. Shierman and P. Butler, The Thermodynamiasof Metal-Water Systems at Elevated Temperatures, 1. The Waterand Copper-Water Systems, Atomic Energy of Canada Limited. ReportAECL-4136 (1972).

(2) D.D. Macdonald, G.R. Shierman and P. Butler, The Thermodynamicsof Metal-Water Systems at Elevated Temperatures, 2. The Iron-Water System. Atomic Energy of Canada Limited, Report AECL-4137 (1972),

(3) D.D. Macdonald, G.R. Shiertnan and P. Butler, The Thermodynamicsof Metal-Water Systems at Elevated Temperatures, 3. The Cobalt-Water System. Atomic Energy of Canada Limited, Report AECL-4138 (1972),

(4) D.D. Macdonald, The Thermodynamias of Metal-Water Systems atElevated Temperatures, 4. The Nickel-Water System. Atomic Energyof Canada Limited,Report AECL-4139 (1972).

(5) D.D. Macdonald and P. Butler, The Thermodynamias of the Alwiinum-Water System at Elevated Temperatures. Corrosion Science.

(6) T.E. Rummery, Chemical, Radioahemiaal and Structural Propertiesof Corrosion Products in CANDU Power Reactors. In preparation.

(7) D.E. Minns, The Contribution of Metal/Metal Oxide Solubilities toCorrosion Product Transport in Water Cooled Nuclear Reactors, 1.The Iron System, It preparation.

(8) D.E. Minns, The Contribution of Metal/Metal Oxide Solubilities toCorrosion Product Transport in Water Cooled Nuclear Reactors, 2.The Nickel/'Iron System. In preparation.

(9) CM. Criss and J.M. Cobble, The Thermodynamic Properties of HighTemperature Aqueous Solutions, V. The Calculation of Ionic HeatCapacities up to 200°C. Entropies and Heat Capacities above 200°C.J. Amer. Chem.Soc. 86,, 5390-93 (1964).

(10) T.E. Rummery and D.D. Macdonald, The Thermodynamics of SelectedTransition Metal Ferrites in High Temperature Aqueous Systems.Atomic Energy of Canada Limited, Report AECL-4577 (1973).

(11) J.M. Wright, W.T. Lindsay, Jr. and T.R. Druga, The Behaviour ofElectrochemical Solutions at Elevated Temperatures as Derivedfrom Conductance Measurements, Beattis Atomic Power Laboratory,WAPD-TM-204 (1961).

(12) D.D. Macdonald and T.E. Rummery, The Thermodynamias of MetalOxides in Water Cooled Nuclear Reactors, Atomic Energy of CanadaLimited, Report AECL-4140.

- 25 -

(13) R-E. Connick and R.E. Powell, The Etitropy of Aqueous Oxi/anions,J . Chem. Phys. , 21, 2206-7 (1953).

(14) D.D. Wagman, W.H. Evans, V.B. Parker, I . Ha low, S.M. Bailey andD. Schamn, national Bureau of Standards No. 270-5 (1968).

(15) 0. Kubaschewski, E.L. Evans and C.B. Alcock, MetallurgicalThermochemistry, Pergamon Press (1967).

(16) D.D. Wagman e t a l . National Bureau of Standards Wo. 270-4, (1969).

(17) K.K. Kelley, Contributions to the Data on Theoretical Metal !u.rgu,U.S. Bureau of Mines, Bulletin 584 (1960).

(18) A.G. Wikjord, p r iva te communication.

(19) M. Pourbaix, Atlas of Electrochemical Equilibria, Pergamon Press(1964).

(20) M. Karapet'yants anc M.L. Earapet 'yants , Tlwrmodynamic Constantsof Inorganic and Organic Compounds, Ann Arbor Humphrey SciencePublishers (1970).

(21) J.R. Fisher and H.L. Barnes, The Ion Product Constant of Water to350°C, J . Phys. Chem., 7£, 90-99 (1972).

(22) F.H. S wee ton and C.F. Baes, J r . , The Solubility of Hapnelite •:>, ;Hydrolysis of Ferrous Ion in Aqueous Solutions at ElevatedTemperatures, J . Chen. Thermodynamics, 2 , 479-500(1970).

(23) M.A. Styrikovich, O.I. Martynova, I .F . Robyakov, V.L. Men'shlkovaand M.I. Reznikov, Tlie Solubility of ÎJaçpietite in Water at HijhTemperature in a Reducing Medium* Teploenergetika 1972, 19(9),85-87 (Thermal Engineering 19 (9) 127-130).

- 26 -

• onir«ori

— s t7 - •

• • » » • »

JO I Vt«l|ttnnHNNNN(IINNAl

v oO Xft Z

(f4*(f«f44

ID Iow •OX S I fao« •

ZOoo or

- 27 -

I • * •*.<••.*-«•

s: » • oooooo

H I

ooooooooo

4 VOO0OOOOOOD DO OOO

• • i • • « •<«*»« «m •*«•

«, a UMUWUUUV1WWUWUU

• • • • • • • • • • • • • • • •

oo_» aU — • - •

« arc •

- 28 -

do

PQ

X »Uf *f- *

Ul * «\r>> V r t K I A N S t X * n*45»u. • . - • . • * - - - • • • • « - -

• ««« r - t f t «h« \« i«« « « •• * »

• - * • • • • » • • * • > > > ! • •»- a

o o —• * rt-nsOr-ittrt-r*- *>• r«. r* r» #•« #- #vr*~z •

_ i * i f t i * a l * l i i l i i fou»- •

(V tU •O I*. •

*

J W *

O 4 f (

fl> w •

- ! • • •

K z z *

f »- •

5 ? •X •X W •UJ J •j a> *O *»0000000

— v»*/2zzzzar

J

— I

or

u x -o —»- •o a

U I 7 « » I I I >U V t l f f l l

* - •

oO* 1*1 •X U. •

*

Y J *

ru 4*000000000000000x *- * r9nnnQni<inni«nnrti|)i>>^HV ^b fc ^ tfr ^ 0B bk ^Ai 1 ^ flfc ^ L l& b A ^b

oX

« u. • • • > i iN«ib«B»ttNr>n

- *- • • • • • • • • • i tf 5 » f - •

O C X • - - - - - - - . - - - - . .

n o _i • •a»a»(O»^r'r-r>»or>t>*r> «#««

o ar z •*

w •* rr •

• •* * o oVf* ^222Z^2ZZZ2772ZCJ • - • • - . . • • . . . . . . .

- 29 -

t# ooooooooaoooooa i •ooaooooaaoooooo

0

05

OOOOOOOOO

• O O OOC DO O OO OOC» o o

^ T * <

ri* • • • • •• I • « •

J • • t • •

*

•» J •

Ai ^ * OOOOOO OO OOO O O O O• ^^* P ^^V ^^r ^ V ^^1* ^ V ^v ^^9 ^ v ^ P P V v ^^9 ^ V ^^^ ^^v

l r J #

« k. # t # * • • i

* -I * « • t • • It * * * l l f l

! _ » . - » . 0 H * 4 t l l t f t l t l t t l *

«% fl •

- 30 -

f l l « Z I . - . . . . . . . . - . . - .

O U i i - » »

* u •- •rw u» •o u. •_* UI *

CT •- •UlUlUlulUIUIbJUlUlUlUtUJUttafUl

2 • • • • • • • • • • • • * * • • • •

n* <*. • - - - - • • - - • • • • - - -

—• ac - •

t »- •

ac ••«fc UI •1*1 -I *_> CD *O 4*000000000000000X *- • • - • • - • -

o *

X * W * 4

z & o> «

dr»• u • * VI.7 U |4>«r

7 O*~ V I Io —••- •t-j or

U • • I

•- •

o

nf •< * o

_* u.

ut •4> h. • t

«r _i * t t • * 1 n 1 _»- • I I I • I > I I • I

C7 U JF A *4 ^ ^p WJ 9** 9^ 0^ ^ ft 9 9 9 y <^ ^O " - » - * w « » » t t t I • t • f l I I t •t a t~ * t 1

K

O ^ 2 m

< IS #•« • 00

! > • • • » » » • • « • • • • • • •

o o o o o c > o oNNNnNNNN

f UlUblUUIUbJUh U U U l U I

o <*ooooooooooooo<w IAIZ2ZZJZZZZ72ZZ.

fW •< • OOOOOOOOOOOOOOO

CA tUUUUUUUUUUUUUUU

u, • • t g 1 in««hon«iff«

• rr »~ * t»-"3— — •O 7 ^ •

*U) *

a _J •r> ic •

TABLE 7 (Concluded)

29

T£* C• • • • •

8».60.

100.19*.200.210.2)0 .2J0.240.29*.269.270,3tlf.290,302.

OUT•i\

|T.>LE '<!

NlMlNINlNlNINlNlNINIMNtNINIONta

•CORE (0RICH,TTL Nt T• • • • • • 4-18.74«».4»•a.41-T.42-6.73•6.62• • .92• 6 , 4 2•6.32•6.22•6.13•6.04 ••9.99 •-9,6? ••9,68 •

,446 «

TL F£»• • • •* • •

•4 .93 <•5,36 ••9,22 <•9.37 i•5.90 «•9,69 <•9,78 «•5.9J «•6,02 «6.09 f

»CL M 2 / « C H?O)

» ST»Bli 'C T

• FE3O«» FIJ04» FE304» FE304> FC304I FC3S4I FE304i FE3941 FC3041 FE304> FEJO4

FE3O4FE304FE304rC304

TL

•6•6

*6*ttA

CONCENTR»T!ON IN

rt RJ•M T

• .

mm

• •

.70,?3 •,76 •.78 ".61 •.84 •.67 >.90 •.92 •.94 •

CMTI. rt•4.0J•4.04•4.15•4 .4J•4.01 I•4.89 ••4.9? «•5.0« I•5.13 •9.21 •9.29 «9,37 "9.44 •9.90 <S.9» •

m> 10,97» 10.02i•

i

> '

17I

>.2«S.59>.17>.U1.09).00' .96.93.90.66.8?.US.69

10SC0LE/K6)

411

• IN.CORC

» STABLE NI TTL" V V w V V V V V V W W W •

• MO» NIOI NJO1 NJC> NIO• NIO> NtO• N|O> NIO

NIO •M;MONIOMONjO

NJM

HI6.916.059.778.649>479,699,719.7<9.769.799.629.649,665.875.68

(0,129 NKIC1 •ML Ft •IIII9I i•«!.,*«••21,43*•19,10*•17,22*•19i»i*-15,23*-14,98*-14,74*•14,91*•14,31*-14,12*•13,95*•13,60*-13,69*-13.52*

1C"OMOL

SUHLt• V • • ft %

FE203FE2O3FE203FC203FC203FE203FE203FC203FE203FE203FE203FE203FE203FE203FE203

02/KG M2O>FC RICH

FE TTL *

• 9 .- 9 .• 8 .- 8 .-.7,- 7 ,• 7 .• 7 .•7 .•7 .- 7 .•7 .•7 .-7 .« 7 ,

I

a709900 689638160767776797t7169

TTl.

-19•19-IB-16•14-14•13•13• 13• 13•13•13• 12•12-12

FE

.99

.91,13, 0 1.42.16.93.71.91,32,19.00,86.7362

TE* C

25,60,

100,190,200,210,820,230,240,250,260,270,280,290,300,

PM *T 2J IN

T£M C

29.t!i.

103,193 .200 .212 .22?.23* .240.2»* .26«.270.2 6 ' .c V c •

3«a.

ST.RL

NtNlNlNtN lNINlNINlNlNtNtM»i 1 *\V 1 JSt.3

OUT. :OREM RICH,

E Nl TTL Nt

-9.75-8 .91•7.45•6,479.789.685.9?

•5,485.399,305.225.135.094 . 9 6

(0,446TTU FE

...»

. . •w . .. • ». . .

-3 ,99•4.13• ' . 2 8-»,44-4,1fl-4.73-4,8?-5,02.*. . i*w . & f

-9.1?

MMOL *2/*

i

i

• ST»8ul

• FC304» FE304• FE304> FE304i FE304• FEJ04• FE304• ; t304> FC304i FC304i Ff304> FEJ04

FE304r£jOiFE3S4

< -20)FE

. F£ TTU m

. . .

. . .

. . .

. . .

. . .-5,76-5.78•5 .62-5,86•5.S9-5.92-5.»7•6.00• A £19" O l U C- 6 , 0 2

«1C«TTL Ft

-3.06•3 .06•3 .19•3 ,46•3 .86•3 .95 <• 4 , 0 14 .12 <

• 4 . 2 0 14,29 •4 .37 '4 . 4 4 '4 . 5 4 <4 19 |4 . 6 4 •

• 1 1» 1 1• 12

PH

,97,00.20. 5 4 <

.12

.09 •,00 <,94 (.89 •.89 i.82 •.79 •.77 «,78 •.81 •

> ST.BLC

• . . ;»• MO» NIO• NJO• MO» N J O1 N{0i MO> MO

NtOMOMONtON(0MO

| N - COREN!

Nl TTL NI

-5,51•5.07•4,81•4,69•4,72• 4,75•4,77• 4,80•4,64•4,87•4,92•4,934,964,974,96

<ki.l29 »RICH •TTL fl •

-22,54*-20,78*-18,94*-16,27*-14,56*•14,29*•14,031•13,80*•13,98*-13 ,39*•13 ,20*-13,05*-12 ,90*-12 >75*-12,40*

ICROMOL

STABLE

FE203FE203FE203FE203FE203FE203FE203FE203TE203FE203FE203FE203FE203rf 20^' LCW.FE203

02/KG H20>FE RICH

FE TTL Nl

• 8 . 8 6- 8 . 1 1- 7 , 5 5• 7.12-6.90•6,89• 6.86•6-84•6.85•6.85•6.64•6.846.646.816.77

TTL FE

•20.86•19,26-17,18-15,06-13,47-13,22-12,96-12.77•12.58•12,40•12.23-12,09•11,96•11.83-11,70

T£M C

25,60 ,

100.190,200,210,220,230.240.250,260,270.2B0.290,300,

Iu>

- 32 -

• i i i i i i i i

r400Hr)*ii(*'0'OMM«)in»

CO

W

i i i i t i i i i i t t i i i

3 <O FS

I l l f l l l l l l t l l l t

5» •CS •

n# i«-fl i

ea *s i

rt 1r t 1

• a i•O I

?* •*-• i

Gt i•V 1

a •W 1

ni •

s •r* i

N,CM C9* r .

— fQUl r*

ft

• <O

— ff

(5o- I (91/1

•wOn< O (SiId 3C «

X. OI

k. Oo or

o

o -o -o ^ o>Or

a v>- cv

• ur»(X a ux i ca. ui

TABLE 8 (Cont'd)

»M |T 29

MTEH••

29.

n.15!.209.210.220.at.2*?.2»«.260.27».21*.2»0.

at.

ST*9LC•••••••NlNlMINlNlNIONIONION13

oNIONIONIO

4 4 . *CONCENTRATION IN L35<M0LC/IC51

"TU N!

•6.65•7,7ft-7.84•6.4*•6.26-6,06-6,13-6.2«-6,26•6.33-6.4£• 6,47•6. S3-6.60-6.69

TTL F£••••••...4* • •

-6.71-7.3J <-7.4«-7.4» <-7,91 <-7.97-7.63 <-7.69 *-7.7» <•7,63 <-7.90 i-7.99 '

» STtBLt

1 FC304» Ct1A1* P14D4• FC304> FE304i FE304• FE304) FC304> FE304> FE3D4> FE304> FE304• rcs04• FEJ04i FE304• TE394

C 3 N C E N I I U U 0 N « . « 6

FE R1C

k "I TT

• . m •

_ • m •

7. It -7.347.417.46 -7,55 -7,62 -7,«9 -7,76 •7,64 •7,91 *7,96 *8.C7 -

H

L Ft

6.2f •6.2l6.2*6.«4 •6.6t •6.73 <6.7» <6.64 •6,69 <6.99 •7.11 «7,«6 •7.14 «7.J1 <7.2» <

i On

• 6.97•1

1 t

» (

1 1

1 |1

, 1

'

1.02',25i.Al1.21I,1S "i.ia <t.06 <i.02 <>,99 <>.9Tk.96).9»k.99>,97

• S U 8 L

• M• Nl• M• MO• N|O• MO> MO• N|O' NJO> N|O> NJO• MO• M B> NJOi M O

NlE N{ TTL Nl

•7.656.766.045.676.006.066.136.306.266.336.406-476.536,626.6?

RICH •Ml,

• • •6.66*7,11*?,62>7,t»«7,»».7,95»B,01«6,07*8,13*8.19*8.26»8>JJ<8,40*6.491

STtBLE F

FE304FE3O4FE304TE304FE304FE304FE304FE304FE304FE304FE304FE304FE304FE304FE304

FE RICHE TTL Nl

• • •

•6.96•7.06•7.33•7.67

•7.747.61•7.88•7.956.82•6.096.176.246.32•6.41

TTL TE

•6,63•6,55•6.60-6.77•7,ai•7,06-7,11-7.17-7,22-7.2«•7,34-7.4X-7,46-7,55•7,63

TEM C

25,60,

100.150.280.210.220i230,240,290.260.270,260,290.300,

9.4f

1 5 .20S1.

TEH C

29. Nl6«. Nl

18?. Nl15?. Nl

NlNIB

tit. N I O23f. MS240. NIO250. M O268. Nl-?7«. NlOJ8*. NI9?»?. NIO30*. N13

C31 44,6

'TL Nl -TL FE

>.3!1.45>.7l

.55

.59

.73

. 7«

•«.S6-7,26•7.3»-7.43•1.U-7.S7•7.«4-7.71-7.78

.9* -7.«9

J T » 8 L E ft TTL M! TTL••••••••« •«•••• •••

FC3O4

• •>.*•>

-7.79-7.84-7.89• 7,94-7,96

nFEJ04FEJ04

0

TE304f£304

tnu

•f .1*

-8.33

9»94,042«tj,«9,7?.61.6»,96.13

213?

P*

9,37a.4j .7.65 <7,«« •6.56 <6.52 <6.476.426,36A %%c f J7

6.336.316.iti6.326.32

• M. M• M• Mo> M O> N|O• M O> MO• MO> K t fl* "i | L

» NJO. MO> ME. MO• MO

-t

M «• Nl •

-8.35-7.45-6.71-6.25-6.49-6.92•6.55•6.59-6.63•6.68-6.73-6.79•6.83-6.IS-6.94

1CM •TL ft •

6.19<6,88*7,4»»7,79«7,86*7,93»6.00*t,*T8,14*8,2l>8,28*a, JS»a.4j>

5T4HLE FE

FE304rEJO*FE304CE304FE3D4FE304FE3O4FE304rE3O4TE3O4FE304FE304TE304r£304rt3O«

FE )ICHTTL Nl

• - •

-7.68-7.7?

•-••

'.911.13I-171.22).27S.32J.371.4]).4S!5S!.J9i.bt

TTL F£

-6.33• 6.20-6.37-6.62• 6,99-7.02• 7,09•7.16•7.22-7.29•7.36-7.43-7.58-7.57-7.43

TEH C

29,60.

100.190,200,210.220,230,24(>i250,268,270,280.290.300.

- 34 -

J O — •0 •— y •1 or •

at

o2". j

on*X

X

u ••

— •— m

x •A

m <a

1 <0 «

Oni

p* r« F»

• > O -4» « TV »#4N *» *>

aooai

* O O O O O O O O O O O O* Z Z Z Z Z Z 2 2 Z Z Z Z 2 Z Z

ouCO

so —•- •

t i i» ! »i i i

* » * i 4>r»

~ » - * » f » « « f i r f i i r i i fo or •-

I

- 35 -

^ • »»1 4 » « * 4> «•**.»*»._• • • • • • • » # » • • • • ! • »

IS »- •ar *- •

o —» z • • » • - * • » • * « * * . • *z ir * •o _i • •a *• — *o u. •- *

u •4> •W Ul •

41 • »O

L • v w b Q 4^ ^^ ^ ^^ ^^ ^^ ^^ ^ ^ ^ ^ D D

X er *- •

V •X Ul •J At

/ % O «•• OOOOOOOOOOOO

JJ o * r • • ,

3 5 . .S3;oo S

w ^ • t •u • • •

O Im* *£ W *13 *T U» •t J -J •

* I*, k i

or

U U - I * ftOkSK «4l4IC<i#«a4>«4i

C 3 * ! • • - • •

ft* ^ 1 - *1 *

• * » •

- «• nnpooornro

M • - •

IK LaJ •— •

o u. *- *X~ UJ •

u. *•€> •

« hi •

£• a - •

Z - • • • • f t f l t t v i t i a i t a i»- ••- •

19 X •V *X bl •

-1 £D •O •* • O0OC7OOUC3 0 0 O 0

*J •o • • • * * • • * * • • * • • « * •

t., . . . . . . . . . . . . . . .

«-* « |

CJ Ml *1 U *

* ^ •

V *»OOOOOOGOOOOOOOO

•-' • - * • I t t l t l t l l l *

L> <J J A ffV f* «•••*• 4k 41 4k 4k 4* 41 4k 4> 4) 41 4>

0 «r • « i

1 •w •

•• • *

M\ «d • H H *v rw nt cw m <v nt fttiw^ w

T

^ • • • • l l t l f • •

OOOOOOOOC30CVCJOOO

^ T •

r J •i- •i- *

ooooo

g0 0

ooooooo

" 7 z " z ar -c

u. •

i i « i i

O ui *

^4*000000000000000

o at • • r

j *

w *oooooooooo

u m* i

r • fu *

TABLE 8 (Concluded)

29

»*••• •••••

29, HI»*. NIIt*. NI19*. NIit'. Nttil. NI3

23»! «M3241. N M

at. NOlit. NlO

J8»i via?».. NlO

44,«

M TTk•«• •••

vi TTU rc,74,49

42,7J.4*,7174,74,T98294

8798

9.H4

9ia»

#!««4,144.224.31

#!48

5T*B.C ft•••••••••

FEJO4rriB4TE134rC394

FC394

ffJ?«

INCONJENIHlUDN 4.44 (MC«0M0i,/«6

T n NI

. . .

. . .

. . .• « .96•7 .^1• T,CJ- ' . ) •$.7 , f f- 7 , 1 2. 7 , 1 4- ' . 1 8

.7 , J3- ' .29- ' . 2 7

TC«4

-4.4J-4,ST I•4 .49 <-4.77-9.14 <-9.22 «• 9 . 1 i <• 9 , 3 t <-9 ,47 <•9 .94 <- 9 . 4 2 <• 5 . 7 » <- 9 . 7 7 «-9.93 ••5 .84 •

» P»

» 13.97« 10.02 <• 9 .24 <• 8 .59 <» 8,17 •> 8 .11 •• 9.09 <» ) , 0 | <> 7 ,9* <• 7,41 <' ».*» «

7.88 <• 7.87 •

7.08 •7.89 <

• S U B L E M

• N |• Mi M• MO> MO• NIB• MO

MO> MO

NlO' N|B

NlONIBNICMO

MTTk NI

-J.74•7.49-4.41•9,44•5.47•5.49•5.71-9,74-9.76•9.79• 9 .82-9.94•9 .4s-5.87-5 .89

H1CM .*Tk ffc »

. . . •-4 ,92*-1.JJ»-5(93*•6,31*•4,39*•4,48*4,96*

•6,44*4.72*

.6,8144,89»6.96*' ,V2>7,11'

susiE rzFE304FESO4K3D4FE3O4FE3C4FE304FE304FE3D4TE304FC304r£3Q4rt304

rtsc*FE304TE304

TTu NJ

« . .- 7 , 7 1•7,42

• r'.34-7 .34-7.3«-7 .42• 7.49• 7.48•7 .91-7 .54-7.97-7 .58-7 .40

TTU 'E

-4 .J9•4 ,7>

4

•4,82•9.1S•9,47•9.99•9.84•9,72•9.80•9.89•9.98

4 . 1 18 . 1 *

TEH C

29,40,

1 0 0 ,1 5 8 .2 0 0 ,2 1 0 .2 2 0 ,2 3 8 ,248,298,240.270,280.lit,set,

Iu>

*2 44,6IN

• ICN 4.4*

• t - :?t.4 ' !

> 2?,

?i*!ta.at.!**.

? « ' .

»T4^4.

1\

NI

HINU-

NI "*.; zN! ."

N: •

-. • *, • -

'• 1 ^ IC* *E M '»k ^!

• 8.7?• 7 ,5 j•6 .4J

- 4 ! 7 B

. * ' , • > • >

-4.6."-4 ,84

- 4 ! 4,--4 .9J•*. if- 4 . 9 '• 4, g>

TTL T£

. . .

• a •

• 4 , 3 9•4 . *3•4 .49. 5 . f J-S.12 '-S.21 <- ! , $ «•5.J9 *

•!•.*? <

> * T * 9 L £ '

> f t J * '• rCK41 r?534> FS3841 fE3341 ffJP*1 f£3541 ff3841 ff}3*1 rC304, PT3041 tl J O *

f C J * 4

"t rrL s,: T I L f t

- - - - 3 .4?-3 ,34•3 .53

-».71 -3.9*• 6 , ? 6 - 4 , 1 4• « . i * 9 - 4 . 4 «- « . ; ; - 4 . 3 * <. » , ; « . 4 4 5- * . i « - 4 . 9 4- » . ? ? - 4 . 4 ? <- « . J » - 4 . 7 ?. < , 1 0 - 4 . 7 9 1* » , ? 4 - 4 , S T <• t . ' 5 - 4 . 9 ' 1- * . ! ? - 4 . 9 ' i

> PH

' 11.97• 11.22 •» ID.20» #.94» 9.12 '• » . 3 5 <> « . ? «» 8 . 9 4 <> 8.89 •• 8.85 <> 8 . 8 2 <

a.79 •«,77 «

1 It, nB •8.81 '

> STIB.E

> M• M> M> NlO

NlO* N | 0* N ! 0

N j 0• M O> NJC

N|OMONlO'•10• • i c

NII t T T k M

- 7 , 7 5- 6 . 9 1- 9 . 4 S• 4 , 6 9- 4 , 7 ?- 4 . 7 5- 4 , 7 7• 4 , 8 . "-i.es- 4 , 8 ?- 4 , 9 ?• 4 , 9 3

• 4 , 9 7- 4 , 9 1

HJCM

. .

. J

. 4

. 4- 5- 5- i- 5- 5- 5- i

-s- 4- 4- 6

«ft •

. .<64>.J7«. 9 8 -,36>.4S«,»J», 6 2 *. '1«. Hrf*. 8 9 *. 9 8 *• 06 -

• U«. 1 "

B'UULE ft

<"t3U4rE?04FE304TE304r£3Q4f £ 304F £304*' £ i t 4f £3C4f E 3C4TE354* £304rE3C«r£$04f [ 3 J *

•£ f I £HTTL NI

. . .

• 6 > 7 <

. 1

.

> i

.

• I

. 1

.

t . 4 6k.35!,.391.42i . 45

. 4 8i.S?

• 5ft, J9

- 6 . 4 3- 6 . 6 '- 6 . 6 S•t . 69

TTW F E

-3 .79

1

•3,72• 3.86•4.19• 4 , 5 2• 4 . 4 1• 4 , 6 94 . 7 8

• 4 , 8 74 . 9 45 , 0 4

5,139.J15,265.J1

TtH C

29,60 .

198*.

2ie|220,230.240.t$9 %iHt.

mi.Z<)1 <3l!0.

TABLE 9

QTAl

Pta*E>.P

2 9 .40 .

13?.191.2i».2 1 ! .227.fjf .249.nt167.171.ia*.29?.1 * " .

EOUUt'BtO"UNQCa OJT.C• 6 . a a

---

—-«<- i

—i

• i

1.63i.M1.631.491.4?1.9*t.611.7*k.?9U67t.99

-7.82-7.it-J.17

.24

CONCENTRATION "«t)H£ CONDITIONS (

6.50

-2 .4»-4.16-5.34•6.22•6.67•6.74•6.80•4.856.916.96

• 7.02T.J77.13T.19T.86

oaucT SF0.44ft «!«a7.?*

3.554 .965.926.386.926.546.966.966.616.64 <6.6a6.796.786.836,«9

NIFC2C4b H2/KS7.58

•4.4S•5.63•6.15•6.19»«.C9•6.«9•4.1V•6.12•6.14•6.17•«.216.256.30

•6.35•6.41

AS wO5(IN420)

8.P0

-5.19•6.112-6.J8• 9.79•9,60•9,60•9.61.9.62.9,64•9,67-9,71-5.79-9.S0-9.89• 9.91

1>»*1/3*CF

6.50

• 5.82• 6.07•9.74•5.26•5.10•».10•9.11•9,129.145.17

•S.215,299,309.395.41

E>"2>3

9.30

•6.13•9.93•9.26•4.74•4.60•4.60•4.61•4.6!•4.64•4.6T•4.71•4.75•4.904.854.91

) AT CONST

9.50

-6.14-5.55-4.7ft•4.26-4,10-4.ID-4.11-4.12•4,14-4 . IT•4.21•4.25-4.30-4.39- 4 . 4 1

fc-4

le.iau

-6.&1

• » . * 6•4.26•3.76•i.619J.60

•3.61•3.62•3.64• 1 . 6 '•J.713.7»3.80J.8S3.91

10.50

-9.6B-4.56-3.76•3.26•3.10•3.10• 3 . U•s.ia-3.14-3.17•3.21• 3.29-3.30-3.39-3.41

TE MP C25 .6 0 .

1 0 0 .150 .200.210.22B,233.?43.298.268.17B.28B.290.308.

TABLE 10

00

rri c• • • • • • • •

2«. MIt * . HI

t»». N!190. NTI f f . N!21«. VI220. Nl233. Nl24J. Nl29*. K!2*1. U\Hi. NIits. «t2t>. NtO310. Nta

1 1NI

O.446

TTW f£ .

CONCENTPtTlON IN tOe(HOLE/«S>

"1CMT

1N-COBE ( 8 . 1 * 9N ' H 1 C M

. STABLE

02/XG H20)FE »ICH

rE TTU Nl TTt, TEM C

J.834.79S.63». 3S». ?*4.774.T94. S34,?»t . 706.7*6.TJ6.4T6.69

• FE394• FE334• FE384• FE304

.91,49 • FE304.78 • FU04,91.14

7,17 • FIJ047,31 • FC3347.42 • FE3047.5»

6.86i.n7.147.26

.36

.46

.99

.63

.71

.77

-2.11J.781.94.79.11.33.40.46.99. « !.49.76.63.91.97

00

,n.00.90

. a *

.80

NlONJONICNlONlONlOMON ONlONiQMOMOMONlOMO

0.44-1,36•2,99• 4.57-9.49•9.as•9.99•6.12-6.24•6.34-6.43•6.91-6.99•6.63•6.71

•16,70.•17.44.•16.32*•id.JS*•14.95*•lt,67«•16,41*•16.16*•15,9i»•19,72*•19,92*•19.39*•19,19*•1J.B5*•14,03«

r£203FE2Q3FL203FE203FE303TE203FE203FE303TE2Q3TE203FE2U3FE203FE203

FE203

-2.93•4.48•9.73• 7.00•7.66• 7.99•a. 09•e.ia•a. 26•a.32• 8 . 3 6• 8 . 4 2• 6.46•0.49•6.92

-19,92-16.12•16.99•17.14•19.66•19,60•19,34•19,13•14,92•14,73•14,99•14,39•14.29•14,13•14,03

as.60.

U0,

i ,S2BI.230.140,210.8t«.211.

110.

Continued

- 39 -

u • • - •

x *- •— o io — — # i

ooooooooooooooo 1 • OOOOOOOOOOOOOOO• N <v AI < nt *w t ^ N *^ ry nt *^ (^ r

4-1

§c

« • oooooooo

T * . . . . . . . . •

u w—7

n* « • ooAoboctooooooon• U I

• u »o—_» •OS • - •

3 ^ — •

- 40 -

X.

X

2

ni x

ul X(KO

*- •

Ul •

J •

— m

—• *

*

o o o o o oOO O O O

Ul \m% ' i f "^* I j t tf p f * T f U l f B|*

• 1 rf » « -4 «

S.33SW

O OO•6

.22 -1

•6.2

3 •!

-6,2

4

-1

ou f

r l

O o *O o

— a

I

OHi bl *C k •

4DOOOC1000C1C30CIOOO

_i • i i i i

If • • • • • •iDRhnn

Uf •I*. #

t- *

«(« «

t»u »- *x •- ••v

o u. ••

J LJ *

x oiooooaoaDaaaoooaO 4«NNNMMNMniNNN& % ^ ^ 4 ^ l ^ 1 ^ trik 4 ^ ^ 4 ^ ( ^ %fc ^fr ^ (I

— •

A W • ^ • W « « > « * ^ « MSH i m . - - • • . . • . . »><u • « » • •>. r>ir> *> « v * *

* ^*^ -^J " ^^* ^P ^^P V ^ ^^9"^^9 ^^P ^^P T l W ^

« 7* - - ' - ' . . - - . *

o *» l>tfk«4>Am«k>Apni i tpJk lU J * » f l f * f l l » * f» • - •

ar •- *— JT •is •V W *• H . J *u* 0 *J 4 4 0OOOO&OOOOOOGO

t» • • •oJ

z z *-• a. •

* U ** - * * • •z x •ui O_F • iU — »- •jr or •- •ou U J — •

U ^ • I I I | p

. 1 * I I t | I* • •

— K •ofW W •

*4* tal •

•VAtT

-Ja •xX< • U « » * | « f h « 4* * ff • v ft •« j * • t i i itfMi

• * - * i i i t t i i i i• * »- •

• •-•v »n i -«» *vn iv . (Y«» i fk» f> f t tmt f \pu i T 7 • r ^ r « « 4 # i » p x w k « n t « 4 f | i o > « r s f ftt«j • . . . . . * * , . » , . . .

u > t i - « i i t f t i v r p t f i t t• • •

». mm37—ft

(t ** * n

O B • • • • • » *

• f

- 41 -

2 tt* • oo OQOOOOOOOOOOCII N N N ( l | t t N <

3©•-t

Id

i

V U* •

u «•-O

4» •X .

W U J l<

• • * t • •

o

- — •W f J •

• • • 4

<* -* •

coo

w * , r ' p; r- .% ej r fj TH rj rc P. K

U p . . . . . . I . . * * * * - *

J # H H r l r< H "-4 «-• •"* «*4 •< «4 *-4 r* vt *1

(VIZ* •

UJt • M i I I I ) I i i I i I I

• * » - •

CM LAJ •

o u. •

X Uk 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0O * * NNMNNNNmniNfllNMnilV

— *

n t x . « * - - - - - - - - - - - - . - -

• —' * _ J ^TM O B ^W ^ ^^P ^^P W ^ ^P ^^w ^^B f » * • ^ * ^r V •PB TC »- • • • l l f l l l f t l f a i f l— r •

o r 2 * • • • - - - - - - - - - - - -

u ^ • • • I f l l l l l l f l f t l• p- •

? • - •

— ^ •u •V hi ***. I m

_| « #000000000000000

r iAmzz

~ *

o

O S

o

p-•«IT l u « V «

; - t •

u •-•*- • i i i f i r i f i t t i i i i2 at *~ mo

u. • t * • i i n nini N nt n* f A< n oi i • • • « • • • . • •

OOOOOOOOOODOrt wrt w*> w w w

l/t ^ Itf 1A| |d# Iflf h t ^*" ^J U ^ 4 B I J LA 1 ^ j • |ft

3* * * • * • * * * * « • # « • • • •r

ui* «nnnnin«»na•4t 1* • * 1 1 1 r tfi«Mt v s #iniv«* • 1 1 t 1 • . . . . . . . . . .v -J • • • 1 » i n n n n n « « « « «

• • - • f f t i i t i i i ie- • - •

IT L' * .

o — J • »nU II »• I * MI f- • •K —r» J* — •c- .- •

*b' *j •

.1 *•« • nr*

O • - • • . . . • • • • • . « . .

x * »«U - l f •« I

13 U. *- • •

X » * OOOOOOOOOOOOOOO

4 VOOOOOOOOOOOOOOO

U ^ * I * • I• I • • t

-t • I I • •

t 1 P t 1• • • • •1 • • 1

l l t l t l

hi * 1

em ui *O b. «

' *

t »- •

•» J *^ 4*0000000o •- • _ - . — - . — . . - .

O

*

O *x

« w * « • a • •« • ! • • • •* - * • • • • * *• • - •

• » • * - * r* 1

cr •

u *

- 44 -

<

*- en

U7

DK (9

a a -

ft ct;* i e-u**— *^ oou orr o— r> at ia- >/•

rt 1

-a *

•-i t

19 1

r4 1

•m <

— «-• i

rv• i

•-«* im

O 1o

lO

I/I ^4NIB

O «D

« XOOtvorufOfa •—OT ttU «

A -

fjw

oin

oco *

o n

fr

uo -2 1

c «~n • tj - •

— i x.j a w

- 45 -

CM

u

«<

b> • •

• - • tt- •

^^^ ^ jt * p ^ ^ ft 0 As ^f ^Qt 451 A^ C^ ^ ^ ^^ 4^^ ^^^ ^ ^ ^ k l^t

O b. •*

x a•ooooooooooooooo

em * . • - • • - • - - - - • - • - - . -

K O U * • - • . - - . - - . - . - - . -

o J « * « v « i f i » t a i i t * t t t• •- • « •

— o •u u *V *

J C0 4OOOOOOOOOOOOOOO

x •- • ooooooooooooooo

«— X • »a * •

j; «o

tE

o *-•»- •

o • nbio • m

»- • «H

Oft* bl •X U. •

«v ««• ooooooooooooooo

(f9 ^ 4 b^ bl J bl bl bt bl bl bi 1^ bA bl bft bl-* b . W U . b - U b . U b . W b . b b - b . b . k

oX

V • • - • • - • - • • - • - . . -

S •" • • t t •

o — t - • • • • • f t t i « t i « « t tt v- »"3 O O •

w •& -J •r1. m •- •* • ooooooo» •- •ooooooeoooooooc

«» wuoouuuoooououuo

u» •..•.»««*..*...

n» »• •

X

o _»x a*o ^ ooooooooooooooo

LJtJliltallJtJUJUIUIUIUJtJUuItJ

oooooooooooooooOOO OOOOO OOOOOOO

o •—•- *

O • i

J •

T

-Io

I OOOOOOOOOOOOOOO

w * m «oty«

oooooooOOOC

TABLE 12 (Cont 'd)

25

TEM C S T A S L E CO

JO. CO6?. CO

lie. co132 . CO28» . CO2 1 C CO2 2 3 . CO23S. CO2 4 3 . COO25!'. COO260. COO2 7 ? . COO28* . COO29P. COO33? , COO

O U T - C O H E ( 0 , 4 4 6 1 H 0 L

coTTL CC• ftftftfts-9.2.-!-8.47-7.87-7.4a- 7 . 1 2- 7 . 0 8• 7 . 0 4- 7 . 8 2• 7 . 0 4- 7 . 1 2- 7 . 2 1- 7 . 2 9- 7 . 3 6- 7 . 4 3- 7 . 4 7

TTL FEft*»»»ft>9,l!7- » . 88-8.91-9.16-9.5«•9.62-9.71-9,79-9,65

.88

.91

.94

.97

.99-10.02

STABLE•>•••»*

FE304

FE304FE304FE3O4

FE3O4FE304FE304FE304FEJ04FE304FE304FE304

H20)

FE TTL>•• **•

- 1 6- 1 5- 1 4- 1 4- 1 3- 1 3- 1 3- 1 3- 1 3- 1 3- 1 3- 1 3- 1 3- 1 3- 1 3

L O G ( H O L E / K G )

FE RICHCO TTL Ft

-5,47-5.43-5.53-9.68-6.15

38.3743.13918986,86as.84.84.03828176 -6.86

223ft3749it994774

-6.82

PH• •9.576.627,65.20.78.72.66.62.58.54.52.50.49

6.536.91

STABLE CO

C0304CQ304C0304C0304C0304C0304C0304C0301C0304C0304C0904C030«C0304C0304C0J04

CO HT T t CO T• • • • * • •

-12.32-11.5J-18.78-1Z.09

• 9.65-9 ,62-9 .94- 9 . 9 1- 9 . 4 8• 9,44- 9 . 4 J• 9 , 4 1•9 .42-9 .3a-9 .36

F E T E C»« * • a m

• 2 1 . 6 1 *• 2 1 . 7 2 *• 2 1 , 6 2 *• 2 ? . i e *• 1 8 . 4 7 *• 1 8 , 2 l «• 1 7 , 9 6 *• 1 7 . 7 2 *•17.91)*• 1 7 , 3 1 *• 1 7 . 1 2 *• 1 6 . 9 5 *• 1 6 . 7 9 *- 1 6 , 6 4 *

FE203FE203FE203FE203FE203FE203FE203FE203FL203FE20JFE203FE203FE203FE203FE203

-18.73•17.42-16.36-15.5*-15.8«-15.82-14,99-14, 92-14 ,B3-14. it-14.76-14.71-14.66-14.63-14.53

- 1 8 . 5 9• 1 8 . 7 8• 1 8 , 6 3- 1 7 , 3 6- 1 5 , 7 6- 1 9 , 5 *• 1 9 . 2 6- 1 9 . 8 2- 1 4 . 8 2- 1 4 . 6 3- 1 4 . 4 5- 1 4 . 3 8- 1 4 . 1 6- 1 4 , B 3- 1 3 , 9 2

as,

lie,220.

?3B.243.

27B.280.290,

IT 25

TEM

6?.l»f.IS-'.

223.23?.243.250.262.211.283.290.337.

OUT.CORECO " t C H .

S T A = L E CO TTL CO

COcnCO

CO

CO

CO

CO

COcoocoocoocoocoocoocoo

3,446 MHOL H2/KG

-9.51-a.ai-B.22-7.72-7.40-7.34-7.28-7.22-7.217.27

3236

-7-7• 7-7

3941

7.41 -

TTL FE«••»»•

-8.87-8.69-8.72-8,99-9.37-9.46-9.55-9,63-9.70

.73

.75

.78

.61

.84

.66

STABLE

FE304FE304FC304FE304FEJ04FE304FE304FE304FE304FE304FE304FC304FE304FE304FE304

H20)

FE TTL• ft » » •

-16-15-14-14-14-14-14-14-14-13-13-13-13-13-13

CONCENTRATION IN

FECO

.78

.72

.99

.45

.ie

.14

.10

.07

.02

.98

.94

.89

.84

.79

.71

PIC* •TTL Ff. *

-!---"-!-i

-

-i

-i-i

-I-(

-

>.2B »1.23 •>.34 •1.62 •1.98 •i.85 •i.14 •i.8l •i.29 •>.37 •1.44 •.91 •i.59 •).65 •>.7l •

N IN

PH

9,778.828.057.396.936.926.866,826,776.746.726,706,696.696.71

LJGtHOLE/KG)

> S T A B L E CO

• CO3Q4• C0304i C03Q4• C0304• C0304• C0304• CO3Q4• C0304• C0304• C0304• C0304• C0304• C0304• C0304> C0304

IN-COSECO

TTL CO

•12.62-11,67-11.14-18.42

9.939,869.789.729.659.999.539,479.429.369.3(3

10.125 MJII.II _RICH «TTL FE •

-22,81*-21,92*-21,71*-19,93*-16,38*-18.04*•17.68*-17,96*-17.35*-17.15*-16,96*-16.79*-16.»4.-16.49*-16,35*

CROMOL 02'

STABLE FE

FE203FE203FE2U3FE203FE203FE203FE203FE203FE203FE203FE203FE203PE203FE203FE203

KG H20>rr a 1rw'• "it"TTL CO T

-19,04-17.77-16.73-15.69-15.36-15.27-15,18-15.11-15.82-14.94•14.66-14.77-14,66-14.58-14.47

TL FE

-18,79-18,96-18,91-17.19-15,59-15,33-15,09-14,86-14.67-14.47-14.30-14.15-14.01-13.88•13.76

TE« C

25,40,

107.198.?88i210.228.230.240,250,268,27t,260,29*,300,

Continued

- 47 -

— I

O -J

o «

-* o

Coo

Cxi

i

ooooooaooaooooooooooooooooooooUUUOUUULACJUOUOUU

— z

QOOOOOOOOOOOOOO

oooooooooooooao

E

»

oniX

UP

tvX

o

•ml

bl •

o <

•— 1

u •Ul *-I I

-*» «•— 4«/» 4

1 * <

o- o

#-

c

ea

oo<_> 1 >

Wl

IT

•n

TUl

<l* Kt Qt fO • f** &

• ooo o ooo

U. U. U, k U U U-

t t l f t l t l

( V I

o

k

oo© o ooo

u.

K

» oooooooc•uuouuuuu

*

ccu

UvU.

A B

Oi W

t *

o ou o

U. k k U

S2SS

t • • •

o o o oO O O V1

u u u u

t\i fv rw t<

Tou o o

Ul • Pw (h *OCbU * • * <VI4 «

• - •

.. O •**)»«*»«-«

oooooooo

o r* rMb*4

iO • • ^ -< ^ «• «» •» * -

o o

•*• u

i c? o c o o cOUUUUUUUL)

- 48 -

ou

wPC

vu>- •

rv L-J •o u. •

*_f UI *

X OD4O0OO0O0OOOOOOOO

- Jt r •^^ ^U * ^ ^ t fr y f ^ ^ J *^j O V O ^ ^^

f * - * • • ! •

— o *

^ ur •

j m*ooooooooo>ooooooJ »- * OOO OOO O0 0O0OOOO

o * * • • • * # • • • * * • * * « • • •

*

ui

2* i>»- • 1 • r 1 t 1 1 t 1 1 t 1 1 1 *o «*- •o a

O f O*h 4 N 4 IO #4 0k St S Ci H 61 rl rlu « « • . . . . . . . . . . . .

oHi UI •X b. •

13 UI «« -I *

_J U U. Uc;

T

UI * f*. O» fO

" o * & r- OJ

ax" • - * * * ! * *?"^^***™***o • - » - • « * • • • • t i p • • • • • • •

c ; o u **

O j •4 CD *

"* • O^OOOOOO

st •••ococ^oooopoopooo

o * . - -IT hi * +4

• o o o o 0 0 c

fM ^AOOOOOOOOOOOOOOO

wj • po 4a is v rU t R 0 » f «

UI - L> * Ml «

a 1 * • •

OOOOOOOOOOOOOOOOOOOOOOU O U t U U U U U U U O O

4 MC 4> » -I tfi Ul ft 'M«» »• Kt V J • W • f

• - •+ -rf ~* " * ~J " - " * • " - * ' * " « ' • - " « ' » •

• . I l l

i . i i i i m M t r t i i i t » ( t ( i n i i n • v * • *« » » > , » • ? > • > > » ! * • > » < • « <U> . ) ! > • • I l l ' . J • • •

• >» 4• r *»• <*t•

• oat,• • * s »

I I I I | f t t l « l l | » l » * « - 4 — f t

! * - . . . * , . - . » IV

• l l l l l > « l l * l * * » « - « -

O

i > • 1 O • I U Ul L) <J l i D ( i (* CV i3 C* V V iU

k»kkkk»hk»fcft»»hiin N.

• r- K.

*• l"f V

o

t* . . . . . . . . « * •»•a o

• -t»— oi t l l t l l l l t f t t t f * -*C1 f

. . • - • % *n» » \» «• uiuwH 6k *>m » • - «»o> • •n ^

«

. . . . . . . . . . . * . . . *-«r

m • • • * * * * * * » * * * * * * * * oO O OO OO O €3Q O OOO OO • - * 7

O O O 0 O O 0 0 0 0 0 O O 0 0 « ( D f~

* tn <v

* x• c* o

ft O —

I t * * - * I

- . * . . . . . . . . . . - - *nr»»

* -t»

^^a Ah O *- CU * | ^ . ^B #A ^ t ^D " ^ ^^3 ^J

NiuiUMKIMIOMiuiUfuniNMM*^ Ooooooaoooooaooo*m ^

• r* w~*• *> o

i i i i i t « i t t * i « « t « - » m o

. , . - - . - _ • - « c i — M

. . . . . . . . . . . . . . . m •**

I • I —

nonnnnnnnnnnnnni«> ~OOOOOO OOOOO OO OO • -I M

OOOOOOOOOOOOOOOAO ff~

-3

to

rn

no

o

a.D

a.i *-•»-*••• • r n

oooocsooaooooocjovai z

- 50 -

1 1 1 ( 1 1

03<

IB

El

I l l l l l l l l l l t

oXo

3

iinnnonnnortnnofini'_> ( J> t-» > O O Q O O >-» U *

• t -O <_1

* r* r*to* * •

^vjgviO>9»»V*»t>U*0>* 9X1. . . . . * . . . . - . . * . • DO

* -* XJ i 1

• • • • i t i « i « t a « i a * - * ~ n

*- «a i

O00O0OO0OC3OOO0O*tt &

• - * t ci

' s» • o o r

• - * X

nnnnnnnnoonnnnn *c&• »• r <»

• i

• uu

• ^ Jb -J

• X n

at_ • -4 »

i nin? 'J a»iu • - •»o • »• c

ft O

• ^ ^ >* * # W ^ V ^ ^ V 9 ( • C" K O

O

nonnnnnnnononnoiM ^OOOOOOOOOOO OOO O • - * Jtoooooooooooo^ •» o

0 • a> r-1 • r m

M S K

• O —

* - •

t i i a a a a a i a a i t « < • « - j

Rl IV "»* * • * M P fil • ^ 9 O *4 U | « # 43 c i

• - • X 21

• • • • a i f f i a a a a t > « # - « ^ r»

OOOOOOOOOOOOOOO**E *

* »

• -*•"* n

* -* o

H

PI

- 52 -

J Ul •

X ^••••^••"•'-••••*«

J X • • f B 4 9 9 9 S S O 9 l

(J • — • - • • • • f i f f t f l i2 Of • •O O O * M 0> «4 4 fv tf 0 B> *^ I

X - • • ••~ m*~ •

- o •

>. I 4 9 1J O O • ft** <

f~* •—• U ft * •z a * * . «iO J*rfff<V uf *- • • •o u. *T LJ #

u. •* *

o tn m U- U i

^ X • » ^

U - • § - • • •^ rx •

U OO • V«OU • - •

O «• —oooooooooooo•- • OOdOOOOOOOOOOOO

—OOOOOOOOOOOOOOODOOOOOOOV4UOO

3CO<

Ul

t! • Hv4rfv«««

OO *

X *

•** ooooooooooo•- •Ct-i->CODOOOCOOC'OD<*» • UOLtUOUOUUOUUOOU

IT •«• ocoooooaono*- •oooooc-ooooDoeccv> * uuuuuuuuuuuuuuuo * - > - - * • - • • > - • • - - -

- 53 -

O — O I

O fa.

• 000000000000000

O «A t

s

O 3

—'Ooooooouoncci ooooooooaooooor> ouuuuuuuuuuuuui

ft*

o — \

§

1

«n • *

v *~ •

«3 U »- •

Z Ui •

*> •

V Ul •

* a»«oooooooooooooao

JT Ui«l««4ftftSftf4f4>4WNniN')— ^ . # • - . . . • • . . . . . . * .

tal U J • •*• * * * * * • ffl«4*4 w* «i *4 r# • * »• v* »*U — - • » i l t l » » f * * * f l « t

00 • O<«• # ^-000000000000»- • 0000000oooooooov> # uuuuuuuuuuuuuuu

— »- •DC

hi O * D 9 B IV n 4 n N v4 €B

0 Ul *X k •

QC U l *

U J •

1 ^AOOOOOOOOOOOOOOO

* I/I • hi U hi hi hj hi hi hi hi U hi hi hi hi hi

kU-UU.U.kU.kkkkkUUk

c* at > *u

an*

x *Uf •

•< • ooooooooooo5. *-*OOOOOOOOOOOOOCiOr« in*UUUL>UC3UOUUUUUUU

- 55 -

§

01

J U O ( A n > «o — oat • • -

« J «•. •- •

* LJ •i* m

41 *

4K ^ v9 19 a p f^ m~ • irfhltdO 0l*bkk.

* ^ * * « * *

o — *- *jr <r • - •o §9*>>««

*- *

— o *o u *m • *»"V «^« —

j 9 * Opy fl 4 ^^ j D C% aV f C% f l ft ^ O Ox >-* oaooooooooooooow V • UUUU tASJJUUUUU VOUo •o • * • • • « •

k • . . . . .r >4 « * « «

7 •» • « • • « » •«k • • . • • •

O X - * • * « « * •»

o — •• •

a • M •«»»«*4 . * . . . . .

%A -J V 4L # ^ 4 V

>i fr-»aitti

t» id •X tfc •d •* * * •*.» J •

s * . * Tmt* • •— -j» •» » - » t« »- •W* O A f.

w * • •13 uj4ff. ' — * - * «o •» • •

r»O •H Ob •r •

w •• * -J ••« s •

• • • •

t * « •• V*> ff. i t «« «•

l

j • • > # • • • • § • • • • « • *

x •- •

o * - * « j * > • - » - • - • - . - • - . .

t j - 1 W ^1 V^ t ^ B * ^ ^^* % 4 ^^1 rf ^ v4 ^ F * ^ • • * ^« t i j * - « « t * t i * i i * a > s a i iL> t» *- m

« Mi •

m aovooooooooooooooo

« «Hw«9"<^^t4nanKv»

— M . » . • • . . « . . • - . . . . -

Ul U J f I I t • I I I > I * I I I I Io • - • - •^ t. * *

O U • • - - - - - - - - - - - . . -

W j * « a a « i t « t * * t « * t t

-^ OftAM U •V • ««^ . «a * —**j J • 7-J iS • O

x »- »oooc»o<^oauooooooCS *

JP ^^ 4b 4B *V CHa ^ b 4 ^^ N W ^ ^ A£ v*•-1 x • 4k> tts m an * * 4 i n v B 4 w t* t> r»- ab

« . * . . . . • * . . . . . . . . . .f «4 *4 Vfe ^ f aT* 4k tf> C 4D tO K& W>

«*- w*ah*«*«i««>ar«a *««*fc*'v**l*>-? k « m •*•«•-*««'*«A«<^«^ «**•«>* * . » • • • - . . . . . . . . . - .

O — •- •*-. •

o J ft t»- «D • ••! •*> 'w #« <vf t<v m m c\i ni *v

"s. * - « * * t * « a a a a i * * * i *

* i . •n •* ul ** - J •

o » . - . . * - - . . . . . - . -

* • « t # a « « a a a » a a « « * «4 • •ar* * • • • , « . ^ ( > o o a O O O T , * . «r. r ' t

U * •a 9 v_ J at i^^ a * ^^^ ^^ p a v a^ ^P T a IF* ^^^ ^^^ tf^ t^^ iv^

* * • •* •

•^ o •n. «• «> •1 •

** •*. J •

• « * » i r-i !-• c . c <» « i o o CJ •"!

»« BttlUllHiMU'JUlUiilUtMMi

# «t> t - " . " . •• • - » • • . •>. r # » • • • • . * »

^•- u> * . 1 >* 4V f k H i l « < ^ *>> • * * ^ •>• ••> f1

- 56 -

* IS * i

— uo —o •enir u *x •

13

oO

_CO< :

•* *PS 1

2- I

ft *

P»> 1

•v »

* *s *

Uf 1b I

•" Im* i

r« S 1

— n io tu

oo

s« — «

on

O V

O K.

o

»- *

a(A

no

^ C»fai C Ju

OOf

i * r.

— or

» c•* ft

» 1

•tt Pi * . KJ f«* *^ A:• If* « r- •«» ft

X S ^

a> * ooooooooooooooo^ * »P5r>r>POr»f»p>»9wwrtP»r>r»•- • OOOOOOOOOO0OOOO

v» * u u o o o u w o o u

tt*fi«iMNP)Qnn

M •« * COODOO OO OOO OOCO

• • • • •

* • ooooooo>- • oooooooooocoooo'it • UOOUCOOUUOOUUUO

- 57 -

^ 1

CO

f •

•- •1*1 • It 4 t t m • 4 W «4 B <O V M trt S <K

O ^ ~* B V * H ^ Af ^f) * } ^ ^ * h — ^ ^^ ^0 * D |^\M C U * - . - . » . - . « . . - - - . - .

C 3 * i - • • • • • • • • • • • • • • • IX »- •*S.O* Uf •O U. •

X. SAOOOOOOOOOOOOOOO

t ^* V ^ J £ 40 ^1 A f ^ £ l i j ^Af ^A( I4J ^^J fcff ^ J ^^1 ^ f

X * • * • • * • • • • * « • • * • •

* M • ^ l f t M 4 ••> 01 •) St A •-* 9 *v g\m x w • « . • • - • • - - . - - - - . - -

S X * - • • • • • • • • • • • • t t t fw * - *

K « J » - - - - • • - - - - - - - • -^3 # tt f^ * k 4 B ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^^ ^ C^ ^^

v ^:— u •O •« u •

w m«000000000000000_J 4 4 f) 99 V4 VI 0 C 04 ^ VO VO 9O Kt 9 f9 V9o +- • OOOOOOOOOO^OOOO% m*uuuuuuuuotjouoou

s- " :

z I •nnA«viMn

Mr ^ * • *»- b. A - ^w UJtMo — *.- * i7 €» »- *

*m w *I w •

•(3 U •» -B •«V ^ • O O O O O O O O O O O O O O O

E ^^ ™ P ^p ^* ^p »^p ^^w ^^9 ^^w ^w ^w ^9 ^* ^B ^9 ^^9

J U. U. k. U. U.kk k k W kk. b Ui^O •X • • • • • * • • • » • • • • • • •

« . . . . . . . . . . . . . . . .

- t - * l * l l l t « f f l t t l « l « «*B • - • «

^^ z ^ 9 Cv ^y &6 fft A v ^^ ^b i& m i flff f^ 00 •

C* <V » • • • • • • • • I l l t l f f t• *- •» o3 un •

<U Ul •O I* •

*

x: ««ooaooockOooooaooO 4tl«NNMNNNN(*ninNnininIT »- •UblblWUIUhlUIUUlUlUIU^IUl

9% tal # M v4 ^0 m n i ^ 4t 9 v4 ^ t^ tf^ 9 ftl ftN t n . t • # . • - • • . » . - - • • - • -v4 ^ ^ ^ wet ^^) ^) t ^^^ ^— t"k ^ Q 40 i S HP ^D ^D

«n- 1 1 1 1 1 1 • t •— »- •

« O » • * » • • • - - - • . - - - - -^^} V ^ ^ ^ ^ ^&" ^^^ 3^ ^ ^ ^ ^f* ^ ^ V^ ^ ^ ^ ^ * H^ ^^

^ »* •

o «~ o •u *

**• m*aooooooooc3000oo

o »- • 0000000oaoooODD

o_t

—• a . * - . - - . - • • • - . . . • -

o

B kf • W »• * * • * W *B ^3 •» *• Bi *• ^

^ 3 *

^ a •- *r>4 t Uft CIJ 9 lA W ^> *€) v4 v4 B 1 V^ 4 4 f f i Pw

O

n ki •

ir J •

*m ^•OOOdOOOC3000C50CiO

t fr- A *O fO ^^ 1^ *^ t^W&i ^ *^ #^ *^ *O •^ ^1 *"1

Ct •

x: • • # • • * * * • • * * • * • •

hi * noifrmviin

9 J # > p ^^ ^^ D1 O ^^

C »- *

» o « . . - - - - . - - •

U O I 1 • I I I • < < • • • • • • • • •

• « '

c> »j •*

*** •J •tl- •« « « «3 r n « f - w iVI * D U I H M ) U U O ' J O O I J < > < J i J

t_*« • . * . . . . . * - . . • • •* * • »*. * t -• ••• . ••- t^ ••- r . t > . •? * . 'w

UJ • •-. »• fi« * \ ^ c>. »>. fv «^ <vt f>« 01 ^J

- 58 -

< • • • • • • • » • • • • > •

4J

o

CO

. — J • W(

SC UI •

ui as* oooooooooooooooo *~ m ooooooooooooooor M*UOOUOUO»l>UU!>000

U^ ae *> *o

f\i ^ooooonooooooooo

• o *ao #o a f- • • i I t l l f t l l l l l

OOOOOCT• c r c r, c c o c o o c o c o d• IJ »J O U (J U »J O U O «J t» 1J O U

I * •

r w i z o « - . - • - • • - - - • • - - -

0 u . *

_* UJ *

x: m*oooooooooooooi30OC •- •blUIUIIdhlUIUUUUtJUlUUbl- • •1 * • • • • * • * * • • • • • • • *M id # (W •* * rtt994«i4^K|)nNSn x i * • • • » - • - - - - • - • • • •

• * ^ •^J W CTP ^S C V &9 ^^% 9^t 9^ ^ ^^9 ^B ^P ^P ^ ^^P ^^B

— * - •

U ^ • • « r f « ^ « - l l • • • ! • • • • • I• t - • I • •

Z * - •

O *— O •o •V id •u at* oooooooooooooooO I- •OOOOOOOOOOOOOOOZ in*OUOC2U«UUUUUUUUo • • *o

Z I *— a . *o— • • *v w*^ x •ui u-ito — f- *Z K»- •OO UiO • «

* •

oI U. •

•O ui •V -J •X fD«ni * « «

x *- «o •x • • •X

UI 4 O)* « .

& t- •

- o 4 ^U T U * N(TU • •o •— _* • «t *~ m

»•• C -

•3UO •o o •

•-I *a ** • OOOOCSOO•- • o c i - o o c e j c o o o o o o o«rt • U O U U U U U U U U

- 59 -

O — O *r^BNIC O • - -

3t 0D*OOOOOOOOOOOOOOO

J Ul *

£ naoooooooooooooooOT t~- 9 i»t i-i qgt ir> ^ f f ^ | ^ i»i iMa iap i i a | f . i arii | . i | j j

• I t t

oUl 9*000000000000000

a IF- * oooooooooooo oooX1 4A * O U O U O U O U CJ tJ U O O U U

ui <n*ooooooooooooooo

td

<

^ XUl U -Jo •— •-

IT U i

1 I 1 *

t3 Ul •

T

_tO

X1

U X

Cl —t»tr

»- •

Ul *b. *

* - *t- •

f j •

c o o oo o o o ooCD CT O O O

SNf I>G

•- oft O

» oo •

t. •

TABLE 14 (Cont'd)

T E * C CO

k r J o s I NRE ( B . 4 4 4 "MOL M Î / K G H 2 0 > •CM, • f £ « I C K

CO T T L F £ • S T « 9 L E f E T T L CO T T U F ï • >"H

[ N - C O H E ( a . 1 2 *CO « 1 C H

CO T T t CO TTL ( E

0 2 / K S ->2C>

F E T T L C Q T T L r r . T E « C

2'.

1JJ".15*.2ïf.21Î.223.23*.24?.?ï<).?4*.27?.jijc H c «

S*3.

COCOCOceCOc?COCOC30CO5C"9CMLl J

ceoCOQ

-s.ae-9 .74-6.53

.83

.SS

.3a

- 6 .• s .- 5 .-5.1»

.4 ,80-4.84-«.88-4.77-4.7S-4.73-4.71

-9.13-8 .31-7.37-6,8«-6,87-«.SB-4 = 93-6.96-7.08-7.00

-7.ae-7 .B2-7 ,04-7,a?- 7 . i e

FE304FE504FE304FEJ04FE304FE304FE304FE304FE304FE304FE304TE304FE304FE304

-16.27-16.»S-15.29-13.56-12.37-12.18-12.aa-11.8*•11.49•H.9S-11.43-11.31-11.88- l l . l t-11 . K

-Ï .54-4.S4-3.84-3.5J-3.4»-3.SB- 3 . Ï Ï-3 .56- 3 . s e-3.A4-3.19-3.75- 3 . 8 i•3 .8S-3 .9»

9. SB».S29, se9. se«.se«.se9.se9,se9, se9.se9. se9.se9.se9. se

CQ304C0304C03Q4CQ304C0304C0304C0304C0304C0304C03t)«C0304C0304C0304C0304C0304

-12.19-12.88-11.44

-9 .53-8.12•7,89•7.68-7.4v-7 .32-7 ,16-7.82-6.89-6 .78-6 .69- 6 .6a

- î i . e i » ri.203•22,»2« FC203-je.67» T£203-17.83» F&203-is.ee> rc203•15.48» FJ203

•14,91» FE203-14,t»> rt2U3-14,42» FE203-14,22» FE203-14,03* FtZO!•13.«ft» FE203-13.72» FE203-13,49»

•le.6?-18.69-17.B4-14.99-13.54-13.31•13.89-12.68-12.t«-12.91-12.34-12.19-12.04-11.98-11.77

-18,52•19.62-17,88

-is,ie-13,Î9•12.77-12.48-12.21-11,97-11.?»-11.SS•11.38-11.23-11.11-11.21

ï

1BÎ,

ise.m.21?.222,212,240,25?.262,270.2UZ,2«e,3ee,

oI

(2,446 HMOl H20>C O N C E N T » * T I Û N IN L O Î ( M O L E / K 6 )

1N-C0HE la.lïS M|c»0«0L 02/K5 M20>~C0 * Î C H , " " " " "i" TE RICH CO RICH • FE RjCH

C S U ? L E CO TTL CO T T L F£ • S T » B L E FE T T L CO TTL FE • PH « STABLE CO T T L CO TTL fl • STtBLE FE TTL CO TT L FE TE* C

2*.63.

te.'.ici".

21?.22?.23»>.247.253.260.275>.26J.293,380.

COCOCOCOCOCOCOCOcoocoocooCOGcoocoocoo

TL CO TI

-9.84 --9.78 --3.Î4 --6.33 --S.J8 •-4.48 --4,68 --4.58 --4.38 --4,34 •-4.3P --4.27 --4.ÎS --4,23 --4.21 -

L FE •

8,64 •

7.51 •6.77 •6.39 •6.37 •6.40 •6.43 •6.48 •6.90 •6.sa •6.5e •6.52 •6.54 •6.97 •6.60 •

FE304FE304FE304FE304FE304FE304FE304FE304FE3O4FE304FE304FE304FE304FE304FE304

-17,e3-U.69-i4.se-13.86-11.§7-11.68-11.50-11.34-11.19-11.09-10.93-10.81-10.70-10.61-10.S2

-9.09-4.06-3.39-3.02•2.98•3.00-3.02-3.06•3.39-3.14-3.19-3.25-3.J1•3.38-3.45

ie.eeie.ee18.0018.0010.0218,0018.00IB.0212.8018.0010.0810.8018.0010.0018.00

C0304C0304C0304CQ304C0304C0304CC304C0304C0304C0304C0304C03C4C0304C0304C0304

12.9512.64IB,95

9.037.827,397.18

.99

.82

.66

.92

.39

.28

.18

.10

•2B.51.•2i.ee<•19,89*•17,33*•15,JB*•14,98*•14,68*•14,41*•14,IS*•13,92*•13,72*•13,».!»•13,36*•13,22»•13,B9*

FE203FE203FE203FE203FE203FE2G3FE203FE203FE203FE203FE203FE203FE203FC203FC203

-19.38•18.73•16.55-14.49•13.04-12.81-12.99-12.38-12.19-12.01-11.84-11.69-11.54-11.40-11.27 -

19.2219,9117.3B14,6012.5912.2711.9611.7111.4?11.29i i .es10.8810.7318.6110. *1

25.68.

100.190.200.212.220.230.240,290.260.270.2B0<298,308,

Continued

OQOQOC1OO0OOOC1QO*** *<*

OO

oo o o o o o D o o o o o o o o • m r* H*

• • • n a

ruHINIUniMNKMMMIUMIUfW* » O000000000000000*01 X

• o— o

- 19 -

A-l

APPENDIX A

PROGRAM SO.F4

INPUT DATA DESCRIPTION

1. Header Material, 1 card, -A1Q, A4, 2A2, 2A10

a) NSYST - name of spinel, e.g. FEAL204

b) KWRITE - output code, three types:

i) Slow - detailed output of all ionic species

ii) fast - totals of metals one and two

iii) both - both of the above.

c) NM1 - nam* of aetal one (Ml) where general fore is M1(M2)2O4

d) NM2 - name of metal two <M2)

e) NM1I - name of ionic species of metal one; all other ionicconcentrations of Ml are based on this.

f) NM2I - name of ionic species of metal two, as above.

2. Do Loop Parameter Controls, 1 card, -61

a) KM1PT - total number of principal reaction of Ml . . . . max. 5

b) KM1IT - total number of ionic reaction of Ml max. 8

c) KT - total number of temperatures max. 15

d) KPH - total number of pH's at 25°C max. 10

e) KM2PT - total number of principal reactions of M2 . . . max. 5

f) KM2IT - total number of ionic reactions of M2-Mn . . . . max. 8

3. Principal Reactions of Ml, up to 5 cards, -A10, 312, 3E10.0

a) NAM1P - name of species reacting to form Ml + n

b) AM1P - stoichiometry coefficient of «2 reacting (A)

c) BM1P - stoichiometry coefficient of H+ reacting (B)

d) CM1P - stoichiometry coefficient of Ml+n formed (C)

A-2

e) GAM1P - free energy function parameter (cal) (E)

f) GBM1P - free energy function parameter (cal) (F)

g) GCM1P - free energy function parameter (cal) (G)

The general equation for the principal reaction i s :

Ml (reactant) + A'H2 + B«H+ - OMl** + H20 (A-l)

where A, B, and C are the stoichiometry coeff ic ients . If

a negative number i s input, the role of reactant product i s

reversed.

The free energy function is of the form:

A G = E + F x T x Log(T) + G x T (A-2)

where E, F, and G are the free energy function parameters.

One of the above cards are input for each principle reaction.

A. Ionic Reactions of Ml4*1, up to 8 cards, -A10, 412, 3E10.0, 110

a) NAM1I - name of ion formed, e.g. FeO2

b) AM1I - stoichiometry coefficient of reacting Ml 4 0 (A)

c) BM1I - stoichiometry coefficient of reacting H 2 (B)

d) CH1I - stoichiometry coefficient of reacting H + (C)

e) DM1I - stoichiometry coefficient of ionic product (D)

f) GAM1I - free energy parameter (E)

g) GBM1I - free energy parameter (F)

h) GCM1I - free energy parameter (G)

1) Fl - factor indicating amount of metal one in ion product.If omitted, it is assumed one.

The general ionic reaction for metal one is of the form:

A«Ml+n + B-H2 + Off* + H20 - D«Prod+1 (A-3)

As indicated, a minus sign reverses the roles of reactant -product.

One of the above cards is input for each ionic reaction. A

maximum of ten ionic reactions is allowed.

A-3

5. Linking Reaction, 1 card, -Ain, 412, 3E10.0

a) NLNK - name of spinel

b) ALN - stoichiometry coefficient of Ml4*1 formed (I)

c) BLN - stoichiometry coefficient of M2401 formed (J)

d) CLN - stoichiometry coefficient of H+ reacting (K)

e) DLN - stoichiometry coefficient of H2 reacting (L)

f) GALNK - free energy parameter (E)

g) GBLNK - free energy parameter (F)

h) GCLNK - free energy parameter (G)

The general equation is: (A*4)

Ml(M2)204 + K«H+ + L-Ml4*1 = J-M24® + H20 (A-4)

6. Principal Reaction for Metal Two, up to 10 cards, -A10, 312, 3E10.0

a) NAM2P - name of reacting species

b) AM2P - stoichiometry coefficient of reacting F2 (A)

c) BM2P - stoichiometry coefficient of reacting H"1" (B)

d) CM2P - stoichiometry coefficient of M2 + m formed (C)

e) GAM2P - free energy parameter (E)

f) GBM2P - free energy parameter (F)

g) GCM2P - free energy parameter (G)

The general equation is of the form (A-2). A maximum of ten

principal reactions is allowed.

7. Ionic Reactions of M2, up to 8 cards, -A10, 412, 3E10.0, 110

a) NAM2I - name of Ionic product formed

b) AM2I - stoichiometry coefficient of reacting M2+"1 (A)

c) BM2I - stoichiometry coefficient of reacting H2 (B)

d) CM2I - stoichiometry coefficient of reacting H + (C)

e) DM2I - stoichiometry coefficient of ion product (D)

f) GAM2I - free energy parameter (E)

g) GBN2I - free energy parameter (F)

h) GCM2I - free energy parameter (G)

i) F2 - factor indicating amount of metal two in the ion product(mole/mole product); if omitted» it is assumed to be one.

The ionic reaction is of the form (A-3). Up to ten reactions

are permitted.

8. pH at 25°C of system, 1 card, -20 F

a) pH25 - pH at 25°C

9. Temperature of system, 2 cards, -11F/9F

a) TEMP - temperature (kelvin)

10. Graphical output, 1 card, 1212

a) KTYP - 1 indicates reduction conditions are to be plotted;KTYP - 2 indicates both reduction and oxidation are to be plotted.

b) IG - number of pH's to be plotted.

c) KPLT - array in which the reference of the order of the pH (inputin the pH25 array) is to be plotted. A maximum of 10 pH'sis allowed.

If many plots are to be made, a time switch must be on the "Job

Card" giving extra plotter time. It is of the form:

/TPL0T:n where n is plotting time.

If a blank card is inserted, no plot will be made.

OUTPUT DESCRIPTION

1. Fast - odd numbered tablesFor each input pH and temperature the value

fM2 total]2/3 is printed

2. Fast - even numbered tables

For each input pH, a table of total Ml and M2 for both Ml rich

and M2 rich system vs temperature is output. Also Included is the pH at temp-

erature. If the system is unstable, the totals of Ml and M2 are not printed

and "SPINEL UNSTABLE" is printed.

A-5

3. Slow - optional - not included in report

A table for each hydrogen pressure temperature and pH combination

is output. Included is total Ml, total K2, pH at temperature, concentration

of each ionic species, and an indication as to the stability of the system.

4. Both

Outputs both of the above.

Optional graphical output

On a single graph, a plot of concentration of Ml and M2 vs temp-

erature, under Ml rich and M2 rich systems, is made. The hydrogen pressure

and pH are held constant.

A-6

r " i l N i J N E OROC'A^ S C . f * M*V 2 7 , 1 9 7 4

LDOUBLE PRECISION \A«ll«», NAM2P. NAM11 .NAM2 J ,»<LNK , 5TH1, STM2.

l,NSvST.NMil.Ti,T2,%M2!Pr = i.AMIP(4).aniP(5),CMIP(5)>

(8).G 3 H11C 8), IlAM?PC5),8H3P(5).CH2P(5).CiM2P(5),CBM2P(5).1AM2I(g),BM?I(8).CM2I I 3).DM21(8).GAH2I(e).G8H2!(8)>

DI MEMS TON Mil(8,15,10,2.2).M21(8,15.l?-2.2).MIT CIS.10,2.2).

Ti.T?/»STABl_E '.'UNSTABLE '/

DIMENSION SKH5.13.2)DATA IOENT/'CONCE'.'NTRAT'.'ION V'.'S rgm', 'PERAT•.HjRr• 3«' VOATA LABV/'LOG (•.•MOLE/'.'KO '.3»f VOATA LASX/'TEMPE*.'RATUR','E DEC'.' C '.2«' •/

• 100? FQRMATCA10,1001 FORMATAI)1002 rofMAKAia1003 FORMTC20F)1005 F O » M A T ( A 1 0 . 4 1 3 . 3 C 1 0 . 0 . 1 1 3 )1BB« FORMAT(11F. /9F)1007 F0RMATC12I2)2004 F 0 R M A T ( ' i » 4 X , 'CONCENTRATION Or I O M C SPECIES OF ' A 1 0 , * AT ^ 4 . 0 ,

1 ' C AP4O 0 . 1 2 5 MICROMOL 02/KC H20 IN-CORC CONOIT IONS' l 4 X / U f t ( • • • ) /2 2 0 X . ' A L L CONCENTRATIONS GIVEN I N LOG<MOL£/KS H 2 0 ) ' )

r 2Z05 F O R M A T U I i . » PH AT 25 • ,F8 .2 .38X, 'CONCENTRATION I N L.OG<MOLE/KG) • )2Z!0* rtJRMATCBX, 'TEH C STABLE ' A 2 , ' TTL ' A 2 . ' TTL ' A 2 , ' • STABLE * » 2 .

/ • TTL1 'A2,' TTL 'A2.' • PH STABLE 'AJ.' TTL «A2. 1 TTL «A2,/' • STA8LE '1A2»' TTi. 'A2,' TTL 'A2,' TEM C'/BX,'••••• ••••••••• •••••• ••••••1 • ••••••••• •••••• •••••• • •• ••••••••••• • • • • « • ••••••1 • ••••••••• •••••• •••••• ••••••)

200? FOR*ATC'*'l3X.Al0,F6.2.f — - • ?»Al0.» — »,F7.2)i 200P FORHAT(7X.F6.0)2009 FORMAT(»»'13X,A10.F6.2.F7.2,'

j 2010 F0RMATC'*'65X,'»'F6.2,' ••)2011 FORMAT(U>76X.A10,F7.2.1 --- • '.A10.' — -,F7.2)2

'' 2013 FORMAT('*'127X,F5.0)| 2014 F0RMAT('it4X,'CONCENTRATION Of IONIC SPECIES Of »A10,» AT 'F4.B,

1' C AND 0.446 M*OL H2/KG H20 OUT-COfE CONDITIONS'14X/ll6(•••)/2! 20X,'ALI. CONCENTRATIONS GIVEN IN L06(M0L/KG H20)'); 2015 FORHATf 'ÎX.'PM AT 25'Fl7.2,3f21.2)! 2W21 roftffATf' PH AT T£H^*ri6.2.3r21.2)! 2022 FORMAT(• '5X,'SPECIES'eX.A2,f RICH 'AJ.' RICH'SX.A2.' RlCH 'A2,

1 RlCH'çx.A?.1 RICH 'A2,' RICH'5X,A2»' RICH 'A2,' R I C H ' )FORMATS '5X.A10.6X.9F2016 FORMATC •5X.Al0,6X.2F7.2.6X.2F7.2,yfrX.2F7.2.6X.2F7.2>

j 2017 FORMATC »5X'T0TAL • A2, SX, 2r7.2.6X^5-7 :2,6X,2F7 .2.6X.2F7.2)( 2018 FORMATC 'M'SOLIO «A2.1 PHASE'6X,A10,3A21)' 2019 FO«MAT(» '5X.A10,M3'8X,A10,3A21,//)

A-7

2023 roR«*Tf «?BX,•OuT-CORF (2.446 MHOl Hg/KC *20)'.14*,•••.•X,

, 2*26 F0BMATC21X.A2,' 0 I CM.•9X.'••.15X.A2.' P IC*'.5X,•••,gx,•••,15*,1A2,' »TCH'.3X»•••.I1X.A2.• RICH'J

, 2324 raBNITf «*)(,!PH AT T 'FJ.7.2.3F2i .2 >20252031203?

28332HS<

' 2035 *"QRH*T<ili.' EO'.'ILIB«IUM CONCENTRATION PRODUCT or '.tlJi.' AS

204? PORMATdBx.'UNDER IV-CORE COND1TIOMS (?.125 MKRDMOL OS/KG H20)'J2B36 FORH*T(i2x,"UNDER OUT-CORE CONDITIONS fB.466 HfOL H2/KG H20)%)

i 2333 F0RH*T<7X.'TEMP C1 , TEMP C'>

i 2B3S roR^*T(7X.F6.0.iafia.2,rB.B)C " 1 * 2 0 4 • C . H * • 0 . H 2 = * . « i • B.Mg *H20

JC A.MR * P . H 2 *C.OM *J9.H* aE.MP WHERE BsFREE ENERGY! B T<C »EAO INPUT DATA

RE AO < 5. 1BB»« >NSYST . KWRI TE, NM1. NM2. N»*l I, N121> flE »015.18B1)KHlPT,KHlIT.KT,K^H,KM2PT.KM21T' D3 i I«1.KH1PT

1 RE*D«5tlBB2>NAHlPfI),AM1PCI),RM1P(I),C*1P<!I.1CA«1P(!).CBMlPfI).GCMlPCI)00 2 Tel.K"lIT

• ? RE*O<3.XBa5)NAMli(!),AMlI(!5.B«lI<H.Cfl!U).DvilIll >.» lGA«iI(T),GBMl!(!).GCMH(I

ReAO(5.10B5)NLNDO 3 I»l.<M2PT

OS 4 I.1.KM2IT* S"A0«5.1BB5)N»H2l(l>.A«2Hl).BH2n!),c«2!CJ.DM2itt j1GAH21(I),GBH2I(I).GCH21(I).F2 cI)

!!R0WS«KPH/4

IfC GENERATE IONIC COEFF. IF NEED BE\ 00 3« t»1.8

34 CONTINUE<C CALCULATE PKW .PH.LOGlB H.ETCI 00 33 U«1.KT

00 33 t2«l.KPH

CALL PMTCMP(TEMPni),PKH,PH25<I2>.PnTlIl,12))33 CONTINUEBECIN M»JO« LOOPS VARYING ME3S-13.TE«P-U.PM-12.M^TAL BASIS-I4

A-8

DC 11 '3*1.2

\?lI 3.FQ.l)Pie = -6.629857*0.>»*2*0.4A29608E

l-4LOG10£iai333.)

l-4LOGl?(iai330.DO 11 12=1.<PH

11.12)

BASIS14 = 1GELsGtGALNK.GBLNK.GCLNK.TErtPC U J )

35 If(I4.fQ.2)Ml»(-GtL/OE*CLN»H10*OLN«Pia-BLN»M23)/*LNIff M.rfl. 2)C0 TO 30

C SfABrw TQP MOST STABLE CPD AND MlSTHKI1,DO 6 !«1GE1*S(CAM1P<I).G9M1P(I),GCM1P(I).TEMP(I1)>M12B(-GE1/DE*AM1P(I)»P10*BM1P(1)»H10)/CM1P(I)IF(I.EO.l)Ml=Hl2

C WRlTE(6.2043>NAMiP(I),GEi,M12.TEMPUl>,PW25(I2),Pl?:C2043 roP.M*T(A15.' f*ZZ 'Ell.3.' COM 'E11.3,' AT '3tll.3)

ir(Ml2.GE.Ml)G0 TO 6

M1«M126 CONTINUE

3PI CONTINUE

ir(Ml.LT.-30.)MlB-30.C FIND Ml IONIC AND TOTAL

00 7 I»1.K«1ITI

AM=(-GF.l/DE*AMlI ( 1 )»M13*9M1! ( I >«P10»CMlI ( I ) »H1B )/DMl I ( I )Mill I . U , 1 2 , 1 3 , U)»AM

7 M1T(I1.I2,I3.I4)»M1T{U.I2,I3.I4)»P»10.»»AMM1TCII.12,13.14)»ALOG10(M1T( 11,12,13, 14))ir(I4.E!Q.2)G0 TO 13

C LINK P.EATTION CALC.IF(14.EO.l)M2»(-GEL/DE*CLN»H10*DLN»Pia-ALN»Ml3)/8LN

36 1FCT.4.F.Q.DG0 TO 31C SEARCH FOR MOST STASLE H2 AND M2

STH2(I1,I2,I3)=NAM2P(1)00 8 I-1.KM2PTGE1«G(SAM2P(I),G9M2P(I).GCM2P(1),TCMP(I1))M22«(-GE1/OC*AM2P{I)«P10*BH2P<I)»H10)/CM?P(I)i r n o 2 2IF(M22.GF..M2)G0 TO 8STM2(Ii,l2,I3)=NAM2P(l)

8 CONTINUE31 CONTINUE

l,!2,13.

A-9

C CALCULATE «2 IONICS AND

30 9 I=l.<V2ITG£ 1 s G (G AM21 (1). G9-»21 { I), CC^21 (IJ , TC-H» r 11))A*s( -Gri/aE*AM?l ( I )»M23.gM2l {I )»PiP>*C"?J f I >»HJ,2 } /0M2 I {I )

!l.!2.!3.!4)a;c.3?. >A*=32.

If(I*.rQ.1( II. 12. 13, I4)/{»L*J*BLN3IffM.ra.?)G0 ?0 «5!*»2GO TO 36

1?

.UE.»"lTf 11.12,13.HJS TAK!l.

Cc oo

E50 1'E16.2335) 13. ;JS YST, v«l.

W»]T€(6.2B37)(PH25C!21.!2*l.KPmJBITE(«,2a38)00 bt I1«1.KT

6? URITE{*,281«)T,(s<(Il.12,13).12*1.61

C00 12 J2«t.KPH

ir(i2.r,T.i)!P«2

WRITE (4.2026) NHl, VM2 . Nf 1,MR ITE (6.2986 J N«i. \*i.00 12 11*1.KT

!r(ST»l(u,l2.D.NE.T2)60 TO 14

1.1.2)14 !FUCl.NE.e)WRlUie,f28jj9)STHKli,I2,l).M1T<!i.i2.i.iJ.i2'M ! I. 12.1.

ir(STAJ(!i.t2.2).VF.T2»t;o TO 1?IC1>0wR!TCC6.?Bll)STMi(U.!2.2J,MiT(li,!2.2,iJ,STM2( U.12.2}. n2 Till.121.2.2)

17

A-10

115 I F ( KUB f TT ."IE 'oOT^1 )GO TO 44

C SLOW Pt'TPi'TDO 18 11=1.KT01 IB 13=1.2

I F ( I 3 . F Q . 1 ) W R I T E C 4 , 2 0 1 4 J N S Y S T . T E M P < I 1 )ir(i3.rOn 19 IM1=N1*4

W R I T E ( 6 . 2 3 2 2 ) N H l ,J R I T E ( 6 , 2 a i 6 ) N M U . ( ( M l P d l , 1 6 . 1 3 . 1 7 ) .DO 2 0 I s l . K H l I T

( 1 ) , l ( M 1 I ( I . 1 1 , 1 6 , 1 3 . 1 7 ) , I 7 « 1 , 2 ) . 1 6 » ' U , N 2 )( ( M 2 P ( I 1 . I 6 . 1 3 , I 7 ) . I 7 = 1 . 2 ) , I 6 » N 1 . N 2 )

• 0 2 1 U 1 . K M 2 I T2 1 W R I T t ( 6 . 2 a i 6 ) N A M 2 ! ( ! ) . ( ( M 2 I t I . l l . I 6 , l 3 . I 7 ) . I 7 « l , 2 ) . t 6 " N l . N 2 )

W K I T E ( ( S , 2 ( I ) 1 7 ) N M 1 . ( ( M l T d l . 1 6 . 1 3 , 1 7 ) . I 7 » 1 . 2 > . I 6 = N 1 . N 2 >W « I T E < i S , 2 a i 7 ) N M 2 , ( ( M 2 T ( I I , 1 6 . 1 3 . 1 7 J , 1 7 . 1 . 2 ) , I 6 = N 1 . N 2 >

19 CONTINUE18 CONTINUE44 IG=0

ir(IG.fQ.a) GO TQ 45C 44 IF<IG.rQ.a)GO TO 45C 105! CONTINUEC SEARCH TOP. MAX AND « n *N0 CALCULATE THE R»*SE

LABY<5>«' AND

00 46 I2«1.KTYPYMIN«-16.

C Y M I N a H l T d , 1 . 1 . 1 )C VMAX«Y«INC 00 40 K»KSTP.Kf>MC 00 4a IsS.KTC 00 40 H s i . 2C IF(YMIN.GT.M1T(I,K.L.M))YHIN«M1T(I,K,L.M>C ir trHAX.LT.MlTd.KiL. f ))YMAX««1T(I,K,L.W)C IFCYMIN.6T.M2T<I,K.L.M)>YHIN3M2T<I,K,L.H>C 40 I P ( Y M A X . L T . H 2 T ( I , K , U . M ) ) V M A X « M 2 T ( I . K , L . M )

IF<YMIN.LT.-11.0>Y*IN«-H.0IF(YMIN.GT.-11.0)rMlN»-11.0IF(YMIM.EQ.-1B.0)DY«2.JJir(YHIN.EO.-ll.B)OY«l.eURITE(A,2034)

C PLOT ROUTINE00 53 Tl=3.KT

9? TC(I1-2)«TEMP(I1)-273.1500 41 Nsl.IG

A-ll

6> JPU25<L1>ir(L2.ir3.2>ENCO0Et22!.2C>33. 2 DENT ( 6 ) 1P»25 <Ll >

JsKT-200 41 i3=1.2DO 42 Ks3.KT

45 S0L(<-?)3MlT(K.Ul.LCiLL SPLOT(1,6.M.1DEMT.LASX,LA9Y.TC,SOL.10?..25..8.

00 43 «=3.<TS0Lf*<-?)='i?"r<»<.l.l.LCALL SPLOT(I.6.^.!OENT.LAax,LABYfTr.S0L.lB?..25..6.

4146«5 STOP

A-12

READ HEADINGSOUTPUT CODE ANDDC LOOP PARAMETER

READ MlREACTION CO-ORD

READ SPINELREACTION CO-ORD

- * •

READ M2

REACFiON CO-ORD

GENERATEIONIC

COEFFICIENTS

FIND pKw VS. TEMP?\

CALL PH TEMP

A-13

cDO 8 FOR EACHPRESSURE

YES NO

PRESS = 20 ,000 Pa PRESS = F(T)

i U\J o rOK u/iLH i

V TEMPERATURE Jr0DO 8 FOR EACH

PH FOR 25C H \

/ ^ C a l c . - R x T x 2 . 3 O 3 \V^and LOG ( H + ) J

YES IS

'SYSTEM M fRICH?

NO

SEARCH FORMOST STABLEMl COMPOUNDAND [M1]

I Ml = F CM2D

CALCULATE MlIONICS FROMINPUT DATA,pH PRESSURE ,H-.CALCULATE1 TOTAL

A-14

YES

M2 = F CM ID

CALCULATE M2IONICS FROMINPUT DATAAND TOTAL

NO

SET SYSTEMTO M2 RICH

I

FAST

FAST OUTPUT

NO

1SEARCH FORMOST STABLEM2 COMPOUNDAND CM2J

SLOW

BOTHDETAIL ANDFAST OUTPUT

DETAILOUTPUT

B-l

APPENDIX B

PROGRAM FREB

Location - File FREB-FA

Purpose - This is a program based on McDonald's program FER. The programcalculates the free energy of reaction of the form

aA + bB + cC "dD + eE + fF B-l

INPUT DATA

1. Headings, 1 card - (2A10, A5, 21)

EL - titleUNIT - units desired "JOULES" or "CAL" ( lef t justified)KWRITE - if "COEFF" (left jus t i f ied) then the free energies of

reaction are output in the form:

AG = A + B«T'LOG(T) + C«T B-2

KT - numbe of temperatures1C - number of Criss and Cobble parameters to be input

( i . e . 4 x KT) if 1C is zero then the Criss and Cobbleparameters are generated internally.

2. Temperature, 1 card - (301)

TT - tempereture of free energies (degrees Celsius)

B-2

3. Criss and Cobble Parameters (if necessary), 1 card - (60F)

CC - Criss and Cobble parameters of the form A^, A2 ..

BI, B2 ... BKT, Clt C2 ... CRT. DJ, D2 ... D K T

where

A = cation solubility code 11B = simple anion plus OH" solubility code 12C = oxyanion solubility code 13D = acid oxyanion solubility code 14

If energies of formation are known at the temperatures of concern,the following input is used - A10, 12, 30F

SPEC - name of speciesISC - solubility code (a zero indicates the end of data)G - energies of formation, one for each temperature.

On the last card of this series ISC is 00 and input KT O.'sas the next data will be misread.

Species of which the free energies of formation are to be calcu-lated. A10, 12, 5E

SPEC - name of speciesISC - solubility code (a zero indicates the end of data, a 10

is used for heat capacity type calculations)G - free energy of formation in calories or joules as specified

in (1) at 25°CS - entropyCP - heat capacity function as reported by Kubaschewski, the

factor of 10"3 and 10+5 have been accounted for (i.e.input number exactly as reported by Kubaschewski).

Reactions up to 30 cards (121)

ISTO - the a b c d e and f*s of equation 1-1.ICOL - the A B C D E of equation 1-1 coded as per their input

(SPEC). To end the file, input twelve zeroes (free format).

B-3

OUTPUT KWRITE = COEFF

1. Table of input values2. Table of free energy of formation vs temperature3. List of reactions4. List of free energy of reaction coefficients

KWRITE * COEFF

1. Table of input values2. Table of free energies of formation vs temperature3. List of reactions4. Table of free energies of reaction vs temperature

SUBROUTINES

1. Hilton (KT,2,Z,X)

KT - total number of input valuesZ - 50 dimensional vector containing free energy of reactionX - 30 x 2 array where

X(T,1) - T x log (T)X(T,2) - T

2. Rite (K,NAM,ISTO,JCm

K - reaction numberNAM - name of species to be printedISTO - stolchiometry of aboveJCD - code to Input the arrow and type of arrow (changed in

subroutine)

ARRAY SIZES

Variable Max.T 30Reactions 30Input Species 20Products 3Reactants 3

C-l

APPENDIX C

SUBROUTINES

1. PHTEMP (T,PKW,PJ1,PHTE)

This subroutine is located in file PHT-F4 and is called bv

uhe mainline program SQ.F4. The subroutine calls subroutine RT (XCOF,

PN1.HT). The variables are:

T - tenperature (K)

PKW - pkw of water at T

PHI - pH at 25°C

PHTE - pH at T output by PHTEMP

2. PT (XCOF,PHI,HT)

This subroutine is located in file PHT^rt and is called the sub-

routine PHTEMP described above. The variables are:

XCOF - a four word vector containing, KWT**2, KWT*, KIWSK,KBDSE*CT, KBDSF.

PHI - pH at 25°C

H.I - 0.1

The above two subroutines describe the behaviour of lion witl

temperature. If no variance of pH with temperature is desired, the file

PHK>F4 is loaded with the SO.F4 (mainline).

3. PHTEMP (A,B,C,D)

This subroutine is called by the mainline (SO.F4) and is located

in file PHK-F4. The variables are:

A = temperature (K)

B = pkw

C - pH at 25DC

D = C

C-2

/,. SPLOT (I,N,M.IDENT,LABX,LABY,X,Y,XMIN,DX,XLEN,YMIN,DY,YLEN)

1 = number of points to be plotted

N = order of polynomial fit

M = plotting symbol

IDENT = title

LABX = label of X axis

LABY = label of Y axis

X = solubility

Y = temperature

T>V = units per inch

YLEN = length of X axis

This is a systems library subroutine (described by K. Witzke)

and does not have to be loaded with the mainline program.

C-3

CC

E PHT*>D L i 1

OOUatE PRECISION«EAl.HTe.l

6100 61 U«l.«

CALU

x';OF(i},HTf«v,xi1X?nTe,l

S2«.XC0F(2J«HTRY

DO 34 I4«1.5(92

TO 85

94 *0'

The International Standard Serial Number

CN ISSN 0067-0367

has been assigned to this series of reports.

T<> identify individual documents in the serieswe have assigned an AECL- number.

Please refer to the AECL number whenrequesting additional copies of this document

from

Scientific Document Distribution Offi'eAtomic Energy of Canada Limited

Chalk River. Ontario. Canada

KOJ I JO

P r i c e - $ 2 . 0 0 p e r c o p y

1151-75


Recommended