+ All Categories
Home > Documents > ATOMICS INTEI^^TIONAL/67531/metadc...ATOMICS INTEI^^TIONAL A DIVISION OF NORTH AMERICAN AVIATION,...

ATOMICS INTEI^^TIONAL/67531/metadc...ATOMICS INTEI^^TIONAL A DIVISION OF NORTH AMERICAN AVIATION,...

Date post: 28-Jan-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
33
NAA-SR-9374 METALS, CERAMICS, AND MATERIALS 31 PAGES EQUILIBRIUM DISSOCIATION PRESSURES OF THE DELTA AND EPSILON PHASES IN THE ZIRCONIUM-HYDROGEN SYSTEM By J.W. RAYMOND ATOMICS INTEI^^TIONAL A DIVISION OF NORTH AMERICAN AVIATION, INC. P.O. BOX 309 CANOGA PARK, CALIFORNIA CONTRACT: AT(11-l)-GEN-8 ISSUED: M/^Y 3 2 1964
Transcript
  • NAA-SR-9374 METALS, CERAMICS,

    AND MATERIALS 31 PAGES

    EQUILIBRIUM DISSOCIATION PRESSURES

    OF THE

    DELTA AND EPSILON PHASES

    IN THE

    ZIRCONIUM-HYDROGEN SYSTEM

    By J.W. RAYMOND

    ATOMICS INTEI^^TIONAL A DIVISION OF NORTH AMERICAN AVIATION, INC. P.O. BOX 309 CANOGA PARK, CALIFORNIA

    CONTRACT: AT(11-l)-GEN-8 ISSUED: M/̂ Y 3 2 1964

  • DISTRIBUTION

    This repor t has been dis t r ibuted according to the

    category "Meta ls , C e r a m i c s , and M a t e r i a l s " as given in

    "Standard Distr ibution Lis ts for Unclassified Scientific

    and Technical Repo r t s " TID-.45 00 (27th Ed. ), Feb rua ry 1,

    1964, A total of 615 copies was pr inted.

    ACKNOWLEDGMENT

    The author wishes to expres s his apprecia t ion to

    R. A. Spurling, for his a s s i s t ance in data tabulation,

    and to M. E, Nathan, for in terpre ta t ions and helpful dis-

    cuss ions . Acknow^ledgment also is due the efforts of

    D. F . Atkins, whose pointed comnnents and c r i t i c i sms

    served to spur on this investigation.

    NAA-SR-9374 2

  • DISCLAIMER

    This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

  • DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

  • CONTENTS

    Pag

    Abstract 5

    I. Introduction 7

    II. Exper imenta l I3

    A. Mate r ia l s and P repa ra t i on I3

    B. P r o c e d u r e I3

    C. Discussion of E r r o r s I5

    III. Resul ts 21

    IV. Discussion 25

    V. Conclusions 3O

    References 3I

    TABLES

    1. Chemical Composition of Melt Stock 12

    2. Composition of Hydrided Specimens 12

    3. P r e s s u r e - T e m p e r a t u r e - C o m p o s i t i o n Data for Del ta-Epsi lon Zi rconium Hydride 22

    FIGURES

    1. Isochore Diagram (Gilbert ) g 13

    2. Isochore Diagram (Atkins ) 10 14

    3. Zi rconium-Hydrogen Phase Diagram (Libowitz ) H

    4. Isochore Apparatus

    a. Photograph I4

    b. Schematic I4

    5. Retort Pe rmea t ion and Leakage Under P r e s s u r e and Under Vacuum 16

    6. P r e s s u r e - T e m p e r a t u r e - C o m p o s i t i o n Data for Zi rconium Hydride 20

    7. Dissociat ion P r e s s u r e I sochores of Zi rconium Hydride (Expressed as H / Z r a tom rat ios) 23

    NAA-SR-9374 3

  • FIGURES

    Pag

    8. Heat of Solution Coefficient (K^) of Zi rconium Hydride as a Function of Hydrogen- to-Zi rconium Atom Ratio (X) 26

    9. Solubility Coefficient (K,) of Zirconium Hydride as a Function of Hydrogen- to-Zi rconium Atom Ratio (X) 26

    10. Activit ies of Hydrogen and Zirconium in the Z r - H System at 600°C (Searcy and MeschilS^ 28

    11. P roposed Phase Diagram of the Zirconium-Hydrogen System . . . . 29

    NAA-SR-9374

    4

  • ABSTRACT

    P r e s s u r e - t e m p e r a t u r e i sochores w^ere obtained for z i rcon ium-

    hydrogen al loys, spanning the H / Z r composition range of 1.430 to

    1.910. The studies were confined to the t empe ra tu r e l imi ts of 300

    to 900°C, and the p r e s s u r e l imi ts of 0.01 to 10.0 a tm. An e x p r e s -

    sion equating equi l ibr ium dissociat ion p r e s s u r e to t empe ra tu r e and

    composit ion was determined, as was the heat of solution function

    over the range of composit ion studied. Based on the resu l t s of the

    study, a modification to the z i rconium-hydrogen binary phase d ia -

    g r a m -was proposed, involving construct ion of a single l ine, ex-

    tending upward in t empera tu re from the Z r H , ^^ composition, d e -

    noting onset of the 6 -• € t ransformat ion , in place of the tw^o-phase

    (6+ c) region appearing on recent d i a g r a m s . It is considered that

    the t-wo-phase region exists only in t e rna ry or h i g h e r - o r d e r alloy

    sys t ems , general ly resul t ing from contamination w^ith oxygen, c a r -

    bon, or ni t rogen.

    "H/Zr - the atom ratio of hydrogen to zirconium

    NAA-SR-9374

    5

  • I. INTRODUCTION

    While the z i rconium-hydrogen constitution d iagram has , in genera l , been 1-15 quite adequately defined in previous invest igat ions, contradic tory r e su l t s in

    the i sochores presen ted by Gilbert and Vetrano and Atkins, and in subsequent 13 18

    work of Atkins and the i so the rm data of Libowitz, indicate incomplete

    definition of the p re s su re -compos i t i on - t empera tu re ( P - C - T ) re la t ionships in the

    6-f region of the b inary . Exact kno'wledge of the P - C - T rela t ionships in these

    regions is of grea t significance, as this information is d i rect ly involved in the

    determinat ion of the SNAP reac tor fuel p a r a m e t e r s : hydrogen redis t r ibut ion,

    dissociat ion p res su re -c l add ing s t rength re la t ionships , etc . The investigation

    was undertaken in an at tempt to es tabl ish more definitely the P - C - T re la t ion-

    ships for the 6-€ phases .

    Quantitative represen ta t ion of the dissociat ion p r e s s u r e can bes t be

    accomplished by means of an equation of the genera l form

    log P = K j + K 2 / T , . . . ( 1 )

    T being the absolute t e m p e r a t u r e , K , , a factor express ing the p r e s s u r e

    dependence of the solubility of the gas in the solid phase , and K-, a coefficient

    relat ing to the heat of solution of the gas in the solid phase .

    F r o m a plot of log p r e s s u r e vs r ec ip roca l t e m p e r a t u r e , the functional

    relat ionship between Equation 1 and the composit ion p a r a m e t e r (X) may be

    de termined (X represen t ing , in this sys tem, the hydrogen- to -z i rcon ium atom

    rat io) . The genera l equation for the family of curves ( isochores) express ing

    this relat ionship is given by

    log P = A + B X - Y , • • -(2)

    where A, B, and C a r e constants , the other p a r a m e t e r s retaining thei r

    previous ident i t ies .

    Regarding the isochore plot, C, the heat of solution coefficient, may be

    determined from the slope of the i sochores ; a n e c e s s a r y requis i te for a constant

    heat of solution being an invariant i sochore slope, for the concentra t ions

    considered. Conversely , a var ia t ion in slope neces sa r i l y impl ies a concentrat ion

    NAA-SR-9374 7

  • > > I

    I

    sO

    0 0 — s o -

    s o —

    '°Q_ o

    en

    UJ4 I

    " 5 -o 5 -2 1 -

    0*9-0 8 0 7

    0 6

    05-J

    OAn

    03-J

    0 2-J

    o-i-l 'I

    14

    p P"

    r

    h

    p

    r

    7 /

    -A 7\

    "T-5C

    1 —

    C

    /

    w

    J 7|

    mifL

    7

    1 0 0 0

    h H I L fM

    bK lz_

    1-9

    ; A

    J

    p<

    f/

    32

    .^ r

    1

    / T

    F ^ii^r. SI T'c

    L

    [/

    1-9

    IS

    /

    4

    b

    §' (

    e /

    /

    /

    J] 4-

    1—

    IN

    Y

    1

    96

    V / '

    1 / A

    J ^

    '—

    / y

    -

    AR

    / • p

    /

    mi

    i / f—

    nf

    7

    r,I9 1-9

    '1

    / /

    / f

    J )

    -. ~

    / r

    I'f 59 59 151

    J /

    t /

    / / pi r i

    _-

    /

    9S

    ft?

    /

    ; /

    / A

    A T

    / /

    i <

    (

    / /

    /

    / /

    t / 1111

    52

    4« I / y

    *•* * •̂9

    "in

    / /

    A f

    /

    /

    m

    5

    /

    _

    10! m

    IB1

    66

    »y /

    / f

    A /

    J

    /

    i i j

    -

    -

    / /

    T\ j i %

    A

    /

    A

    A f

    i

    -

    -

    / /

    1-8 \

    k } r ~

    A f

    y /

    / /

    /

    ijji T

    S5(

    1-

    / /

    4^

    ^

    / /

    J /

    J f

    J /

    J / ,^

    2

    /

    I5C ill

    / 7 "

    /

    I

    /

    / f

    / 1

    / /

    >l

    A

    / /

    / /

    /

    /

    1 1 5

    /

    C Sjjf J4« 4a

    /

    / /

    A

    A

    A t

    f\\\ M

    — f

    /

    ^, 1 94

    ^!>(

    —'

    /

    i 4̂

    f

    A r~

    /

    / /

    /

    / /

    < )^

    / '

    /

    i M

    J f

    ? f -

    -

    / f

    A

    / r

    J /

    A f-

    /

    /

    4

    y

    38 h9:

    / /

    A (

    •*• —

    / /

    / /

    /

    /

    / {

    1

    /

    A — / /

    »> /

    >a f

    . /

    A 1+

    / f

    TT

    /

    / /

    / r

    A

    /

    1, 1

    I

    /

    ^ /

    ^ ^ ^

    A

    A

    / /

    \/

    / A A

    ^ f

    i /

    /

    i.

    A

    "t

    f

    A f

    f

    / A /

    A /

    / 1

    65

    /

    /.

    i 5̂

    A

    / ! •

    /

    r?

    1

    / A

    t /

    / /

    /

    1 0

    A f

    1

    /

    /

    H X

    > 7

    M / / -

    1

    /

    } A A f

    /

    /

    "-71

    t

    A

    J

    / *

    V /

    /

    -f

    A (/

    / .

    /

    /

    /

    /

    /

    J /

    / /

    7

    A f

    — /

    /

    ™'p^

    '••^S^J/ -^^

    /

    J

    A s-

    -A r

    1

    r

    f A f

    -r

    A f

    /

    x~

    / /

    / r

    I T

    -? /

    A

    A

    /

    /

    / T "

    7

    /

    f^ /

    A

    y A r

    /

    A A

    / /

    /

    1

    L

    /

    /

    / A A f

    A

    A

    t

    A

    A r

    /

    ,1/ T *

    1

    7

    / /

    /

    0

    /

    / /

    k^

    /

    y /

    /

    y /

    /

    / /

    / /

    / /

    / /

    / I I I

    T "

    /

    / r

    A f

    I 1

    T

    /

    /

    /

    y /

    y /

    / /

    7 A

    /

    } A y

    /

    /

    t

    A / f

    A %

    A /

    i\ A\

    y A

    /

    / 7"

    | /

    >

    / , 750

    -TT

    A

    /

    y /

    1

    • /

    A

    A if

    / ,

    A /

    f

    A

    /

    /

    1

    A

    / /

    y / '

    / 1

    / /

    A /

    /

    1

    A

    /

    A f

    t

    A Ti

    r"

    -A

    /

    A f

    y /

    /

    ^

    /

    /

    )

    ( A

    A

    /

    /

    Tl f-

    A

    A A

    1

    / i

    y /

    / /

    / /

    1

    A

    /

    J

    /

    J r

    —̂

    y /

    / f

    /

    /

    - 7 1 -

    7\ y

    A\ y A ^ / / A 1—1

    X

    / /

    / r

    A

    / /

    /

    /

    f

    / / A

    A A

    V

    A V

    A ^rk V

    A / «R

    '^?^ i ^

    / 1 I

    8 0 0

    A y

    \ I '^

    Tr\ ¥ /[

    / y \A Y A

    M A 1 J

    l& 4. J

    Y A

    / Y

    /[

    / A

    \) 7\

    t y^ A V

    *v A

    V A

    __̂ ^ f\

    7 /

    /

    If f

    77

    -J L

    —A

    /

    -

    ^

    ¥.t *

    A f

    /

    / f

    / A

    J /

    / '

    / /

    /

    K\, 8 5 0

    / *!1 i / f

    —T

    A

    A f

    \

    / /

    -S*j

    A A

    V̂ y /

    A •Sl

    3 f

    A /

    r

    A

    / u ^

    /

    /

    /

    /

    y / 1'̂

    ~jt

    A

    y

    % y

    f^ *

    A /

    r

    /

    A

    BBTA

    /

    / A /

    1

    '9i0

    H

    1 r\

    / A

    r

    ^ A

    / /

    T

    A ' -

    i

    — T

    S n

    J A

    /

    A f\

    A t J -

    / . i / ^>

    i / r-

    V

    Y Y

    /

    ^

    r r

    ]

    A /

    A A

    A

    /

    A f

    A f

    T

    _ 2 i

    —Ul -4A AA

    A

    A

    / f

    A f

    A A

    /

    ¥. /

    IP/

  • dependence of the heat of solution. The solute concentrat ion or solubility d e -

    pendence on p r e s s u r e (i. e. , coefficient B in Equation 2) is evidenced in the

    spacing of the i sochores , p re s su re -dependen t solubility giving r i s e to nonuni-

    form spacing of i sochores of equal inc rements of composit ion.

    Considering once again Equation Z, if X is plotted vs log P , at constant

    t e m p e r a t u r e , the slope of the result ing curve or i so the rm defines the coeffi-

    cient B. The slope of the i so the rms so plotted re la tes to the physical mechan-

    i sm of solution of the gas in the solid phase . In dilute solution (i. e. , X — 0),

    the slope is 2, indicating that dissolution of hydrogen in z i rconium is a tomic,

    r a the r than molecu la r , in na tu re . This is as would be predic ted from Siever t ' s

    law for a b imolecular gas . The implication is that, at constant t e m p e r a t u r e ,

    the concentrat ion of hydrogen in the solid phase will be proport ional to the square

    root of the ambient hydrogen p r e s s u r e . To the extent that concentrat ion depend-

    ence on p r e s s u r e obeys this re la t ionship, the activity coefficient of hydrogen

    dissolved in the solid phase w îll be constant at unity. How^ever, depar ture from

    ideality ( i . e . , the i so the rm slope / 2 ) w îll resu l t when, due to increas ing solute

    concentrat ion, the activity coefficient depar t s from unity. A change in slope or

    deviation from l inear i ty of the i s o t h e r m s , or a change of spacing of the i s o -

    chores , may then be in te rpre ted as a concentrat ion dependence of the activity of

    hydrogen in solid solution.

    The major a r e a of d i sagreement in the works of Gilber t , Vetrano and 12 13

    Atkins, and the subsequent work of Atkins lay in the spacing of the i sochores

    of the 6 - e region, relat ive to the two-phase /3 - 6 equi l ibr ium l ine. Specifi-

    cally, the i sochores of Vetrano and Atkins, and Gilbert (see Figure 1), exhibited

    a p rogress ive ly increas ing change in spacing with increas ing hydrogen concen-

    t ra t ion (i. e. , B continuously increasing w^ith hydrogen concentrat ion, in Equa-

    tion 2). However, Atkins, in his subsequent work, repor ted an i sochore map

    that w^ould requ i re anomalous behavior of the act ivi t ies in this region (i. e. , the

    condensing of the i sochores at composit ions between Z r H , , and Z r H , j.) (see

    F igure 2).

    While such behavior would be inconsistent in a t rue binary one-phase region,

    it must be considered that two dist inct phases , (fee) 6 and (fct) c, coexist '

    over the composit ion range of approximately 1.65 to 1.75 H / Z r (see F igure 3).

    ''The heat of solution must be independent of concentration, for this to be str ict ly true.

    NAA-SR-9374 9

  • o

    8 o

    u. £̂

    U

    J a: 1

    -

    < Q

    :

    CO

    ti •iH

    < a u on rti •r-l

    Q Q)

    U

    n

    u o CO

    00

    0)

    (uj(D) B

    dnssaad

    NA

    A-S

    R-9

    37

    4 10

  • 750

    — 650 -

    450

    350

    50 -

    1 Zr fa)

    1

    1 1 1 1 ' / ' ' /

    \ Zr(/3) / ZrW)

    \ / + / \ / 8-HYDRIDE /

    \ / \ HYDRIDE Zrfa) \ / / (8 — £ )

    + \ / 1 Zr(/3) N. ^ / ^ I

    Zr(a)+8-HYDRIDE(cubic) '.

    1 1

    1

    1 a + 8 1 8 8+«

    1 fcubic) 1 1 1 1 1 1 1 1

    j-HYDRIDE (tetragonal)

    1 06 08 10 12 14

    HYDROGEN CONTTENT (H/Zr)

    za

    7635-4704

    F i g u r e 3 . Z i r c o n i u m - H y d r o g e n P h a s e D i a g r a m (Libow^itz •'•'*)

    Al though a v a i l a b l e e v i d e n c e i n d i c a t e s t ha t the t w o - p h a s e 5 + e e q u i l i b r i u m d o e s

    not e x i s t m u c h above r o o m t e m p e r a t u r e , one m a y p o s t u l a t e t h a t a " m e m o r y -

    e f fec t " of the 6 + € l o w - t e m p e r a t u r e e q u i l i b r i u m r e s u l t e d in the a p p a r e n t l y

    a n o m a l o u s b e h a v i o r of the a c t i v i t y coef f ic ien t ( i s o c h o r e spac ing ) r e p o r t e d 13

    by A t k i n s . T h i s a n a l y s i s b e c o m e s e s p e c i a l l y s ign i f i can t , in l ight of t h e fac t 16

    tha t Edw^ards and L e v e s q u e , in t h e i r s t u d i e s on t h e t e r n a r y s y s t e m , z i r c o n i u m -

    o x y g e n - h y d r o g e n , r e p o r t t ha t the ex ten t of t h e 6-€ tw^o-phase r e g i o n i s r e l a t i v e

    to the oxygen c o n c e n t r a t i o n . Atk ins r e p o r t e d t h e a v e r a g e oxygen con ten t of

    h i s h y d r i d e d s a m p l e s to be c o n s i d e r a b l y h i g h e r t h a n tha t of the s t a r t i n g

    m a t e r i a l s , wh ich w a s g iven a s 0.10 wt %. T h e z i r c o n i u m s a m p l e s u s e d by

    G i l b e r t c o n t a i n e d 0.005 wt % O.

    N A A - S R - 9 3 7 4

    11

  • TABLE 1

    CHEMICAL COMPOSITION OF MELT STOCK

    Element

    A l

    B

    C

    Ca

    Cd

    CI

    Co

    C r

    p p m

    40

  • II. EXPERIMENTAL

    A. MATERIALS AND PREPARATION

    All specimens used in this investigation were p repa red by double consumable -

    elect rode a rc -me l t ing of compacted r eac to r grade z i rconium sponge. Chemical

    analyses of the melt stock and hydrided specimens a r e given in Tables 1 and 2.

    Subsequent to extrusion and swaging to 1/2 in. in d iamete r , the rod was

    machined to 3/8 in. in d iamete r , to minimize surface contamination, and then ^i

    cut into 1-in. cy l inders . These were chemical ly polished and vacuum annealed _5

    at 950° C and 10 t o r r for 24 h r , to e l iminate poss ib le e r r o r due to the p re sence

    of volatile const i tuents . The samples were then repol ished, weighed, and

    identified. Hydriding was accomplished by adding ca l ibra ted amounts of

    pre-pur i f ied hydrogen to the specimen contained in an evacuated r e to r t at

    900° C. This was followed by furnace cooling to room t e m p e r a t u r e . After

    hydriding, the sanaples were reweighed, composit ions calculated, and all data

    recorded .

    B. PROCEDURE

    The dissociat ion p r e s s u r e data were obtained with the i sochore appara tus ,

    shown in F igure 4. The hydrided samples , approximately 3/8 in. in d iameter

    by 1 in. long, were placed in the mull i te sample chamber . Solid mull i te rod was

    then inse r ted above the specimen in the chamber to minimize void volume,

    and the r e to r t was evacuated to < 1/i. Subsequent to evacuation, the r e to r t was

    isolated, the p r e s s u r e sensing t r ansduce r sys tem was zeroed, and the r e to r t

    was inser ted in a wire-wound re s i s t ance furnace and brought up to t e m p e r a t u r e .

    Specimen t empe ra tu r e was measu red with a Chromel -Alumel thermocouple ,

    located in the heat sink, outside and adjacent to the r e t o r t wall and posit ioned

    at the sample midspan. When equil ibr ium had been establ ished, p r e s s u r e and

    t empera tu re data (in t e r m s of output voltages of the p r e s s u r e t r ansduce r and

    thermocouple) were recorded , and the operat ion repeated at other t e m p e r a t u r e s .

    The r e to r t was a l te rna ted between tw ô furnaces during a run to confirm the

    *45 H2O, 45 HNO3, 10 HF (voI%) t< 10 ppm total impurities

    NAA-SR-9374 13

  • a. Photograph

    7568-18328

    b . Schematic

    TO VACUUM PUMP

    FURNACE''

    PRESSURE TRANSDUCER

    THERMOCOUPLE TO POTENTIOMETER

    -SAMPLE

    7635-4705

    Figure 4. Isochore Apparatus

    NAA-SR-9374

    14

  • rel iabi l i ty of the t e m p e r a t u r e data. Subsequent to tes t ing, samples were

    submitted for the determinat ion of hydrogen, oxygen, ni t rogen, and carbon

    content.

    C. DISCUSSION OF ERRORS

    The major sources of e r r o r encountered in th is investigation were :

    1) Nonisothermal specimen environment

    2) Accuracy of t e m p e r a t u r e measu remen t

    3) Accuracy of p r e s s u r e measu remen t

    4) Gas permea t ion and leakage under p r e s s u r e and vacuum

    5) Uncertainty in hydrogen concentrat ion of sample

    6) Actual void volume of the "null-void" sys tem.

    Regarding the f i rs t of these , nonisothermal specimen environment, this

    effect was minimized through the use of a mass ive s ta in less steel heat sink

    (see F igure 4b). Maximum t e m p e r a t u r e var ia t ion, as measu red in a mockup

    specimen, was de termined to be < 0.5° C.

    The prec i s ion of t e m p e r a t u r e measu remen t w^as '^ 1°C, as l imited by

    thermocouple ca l ibra t ion. How^ever, the p rocedure employed in each run,

    involving determinat ion of data at many t e m p e r a t u r e s and in two identical

    i sochore appara tus , served to s ta t is t ical ly minimize t e m p e r a t u r e e r r o r .

    Regarding p r e s s u r e measu remen t , the accuracy and prec i s ion of the

    p r e s s u r e data, as m e a s u r e d with s t ra in-gage t r a n s d u c e r s and a p rec i s ion

    potent iometer , was determined to be ±0.1 ps ia . This was s ta t is t ical ly

    minimized by making many determinat ions on each sample .

    In o rde r to de te rmine the extent to which gas pe rmea t ion and leakage,

    under p r e s s u r e and under vacuum, would influence the data, p re l imina ry

    runs were made, under vacuum and under p r e s s u r e , over the t e m p e r a t u r e

    interval investigated. A s ta in less steel specimen was used, to maintain

    s imi la r tes t conditions. The resu l t s of these de terminat ions a r e shown in

    Figure 5. As may be seen from these cu rves , significant e r r o r may be

    introduced, should the tes t extend over long per iods of t ime (1) at t e m p e r a t u r e s

    above 700° C when under p r e s s u r e , and (2) above 600° C under conditions of

    NAA-SR-9374 15

  • T I 1 INITIAL PRESSURE - 8 atm

    LOSS OF HYDROGEN PRESSURE AS A FUNCTION OF TIME AT TEMPERATURES ABOVE 700°C

    INITIAL PRESSURE - 5 atm

    ELAPSED TIME (hr)

    7635-4706

    Figure 5. Retort Pe rmea t ion and Leakage Under P r e s s u r e and Under Vacuum

    par t i a l vacuum. Based on these r e s u l t s , each individual t es t was planned so

    as to minimize introduction of e r r o r due to these sources . Since e r r o r due to

    these sources must introduce nonlineari ty in a plot of log p r e s s u r e vs rec ip roca l

    t e m p e r a t u r e , we may conclude that it was essent ia l ly absent , since nonlineari ty

    was not observed.

    By far the g rea t e s t single source of e r r o r was due to the uncer ta inty in the

    hydrogen concentrat ion of the individual samples . Because of the inadequacy

    of hydrogen ana lys i s , by the vacuum fusion technique, in meeting the requ i red

    degree of prec is ion (see Table 2), the weight gain of the hydrided specimens

    was accepted as defining hydrogen composit ion. While c a r e was exerc i sed to

    minimize contamination which would resu l t in e r roneous composi t ions , as

    computed from weight gain data, a slight discolorat ion was apparent on the

    surfaces of al l specimens after hydriding. The film could be in te rpre ted as

    •Exclusive of deviation from linearity due to void volume considerat ions, a s will be d iscussed in a subsequent paragraph.

    NAA-SR-9374 16

  • contamination of the sample with oxygen and /o r ni trogen as a surface film, and

    possibly as dissolved in ters t i t ia l solid solut ions. While the apparent degree of

    contamination was slight, in all ins tances , the re la t ive atomic w^eights of

    oxygen and nitrogen, as compared to hydrogen, magnify the e r r o r significantly.

    However, the influence on dissociat ion p r e s s u r e of the var ia t ion in in te rs t i t i a l

    impuri ty concentrat ion between samples apparent ly lay within exper imenta l

    e r r o r , since re la t ive displacement of the i sochores •was not in evidence. The

    l e a s t - s q u a r e s computer p rog ram, used for final determinat ion of the i sochore

    plot and the dissocia t ion p r e s s u r e equation, undoubtedly served to minimize the

    effect of data sca t te r due to nonuniform concentrat ions of these impur i t i es in

    individual samples .

    Under ce r ta in conditions, the p resence of a void volume in the sample

    chamber could introduce considerable e r r o r . How^ever, compensation for the

    e r r o r involved can be made, if the void volume of the r e to r t is knoAvn accura te ly

    at some t e m p e r a t u r e , and an express ion relat ing the change in this volume to

    t e m p e r a t u r e has been determined. The void volume of both r e t o r t s used in this

    exper iment was 15.6 cc at 22° C. The t empe ra tu r e -vo lume relat ionship was

    de termined by: (1) loading a s ta in less steel sample in the r e t o r t s under identical

    t es t conditions, (2) adding a kno^xni p r e s s u r e of hydrogen at the re ference

    t e m p e r a t u r e (22° C), (3) heating the isolated r e to r t , and (4) recording r e to r t

    p r e s s u r e as a function of t e m p e r a t u r e . Since initial p r e s s u r e , t e m p e r a t u r e ,

    and volume a r e kno-wn, the molar hydrogen content of the r e to r t may be

    calculated from the gas law:

    ^ O ^ O ^ ^ O ^ T Q . . . ( 3 )

    P V 0^0 , .,

    It then follows that, since the r e t o r t was isolated before heating ( i .e . , n .̂ =

    constant = P„V^/RT-^), the volume may be de termined from the re la t ion

    between specimen t e m p e r a t u r e and r e t o r t p r e s s u r e , at t e m p e r a t u r e t , as

    follows:

    ^ t ^ t = ^ ^ T t • •••

  • Since

    P V n = n^ = -^^=— = constant , • • • ^o;

    P tV, = CT^ , . . . ( 7 )

    o r

    ^ t V = C p i . . . . ( 8 ) ^ ^ t

    It should be noted that V. i s not the t rue express ion for volume, but

    r a the r that fiducial volume that would be applicable in the ideal gas law, were

    the ent i re r e to r t volume at specimen t e m p e r a t u r e , r a the r than under a gradient

    ranging from specimen t e m p e r a t u r e to room t e m p e r a t u r e . We shall t e r m this

    fiducial volume the "equivalent volume" (V ). The change in equivalent volume

    as a function of t e m p e r a t u r e , for the sys tems used in this exper iment , was

    found to obey the equation

    V ' = (2.97 + 0.042 T) x 10"^ , . . . ( 9 )

    where (T) i s the specimen t e m p e r a t u r e , expres sed in deg rees Kelvin.

    Correc t ion for dissocia t ion of hydrogen to the void can then be accompl ished

    by applying the re la t ion given in Equation 9 to the following express ion:

    2 P v ' ( H / Z r ) ^ = (H/Zr)Q - ^ . j N ^ ' • •• (10)

    Zr

    where :

    ( H / Z r ) „ = the a tom ra t io of hydrogen to z i rconium in the sample after dissociat ion of hydrogen to the void at t e m p e r a t u r e T

    (H/Zr)„ = the hydrogen- to -z i rcon ium atom ra t io of the sample at the t e m p e r a t u r e T = 273°K(i.e., the "as -hydr ided" a tom ra t io of the sample)

    P = the r e to r t p r e s s u r e (atm)

    NAA-SR-9374 18

  • T = the specimen tempera ture (°K)

    N_ = the number of g r a m a toms of z i rconium in the sample

    R = the gas constant fo.08205 ^~^^"^ \ ^ V deg -mole /

    Y ^ - the apparent volume at t e m p e r a t u r e T (i)

    Analyzing this equation, the las t t e r m is a d i rec t m e a s u r e of the extent to

    which hydrogen has d issocia ted to the void. This t e r m , when compared to the

    magnitude of the a tom ra t io s , p e rmi t s evaluation of the re la t ive e r r o r

    introduced through a zero void volume assumpt ion. Since the overa l l accuracy

    of the exper iment might reasonably be approximated by an uncer ta inty of

    ±0.0025 in the a tom ra t io , the assumption of a ze ro void volume would introduce

    significant e r r o r when the t e r m represent ing dissocia t ion to the void exceeds

    0.005, or when

    ^ ^ ^ > 0.005 . . . .(11) R T N „ Zr

    Since R and N „ a r e constants and V is a function of T (from Equation 9),

    th is express ion may be rewr i t t en in the form

    P ( 4 | ^ + 0.042) > 0.0225 . • • • (12)

    Solution of th is express ion for the t empe ra tu r e l imi ts of the exper iment from

    500 to 900° C shows that, for p r e s s u r e s in excess of '~ 0.5 a tm, significant e r r o r

    may be introduced through assumpt ion of a ze ro void volume.

    This uncer ta in ty above '^ 0.5 a tm was taken into considerat ion when

    assigning significance to the data.

    _ 10 •Since sample s ize was very nearly constant at 10 e, N ^ , = = 0.11. "̂ •̂ 91.22

    NAA-SR-9374

    19

  • OXYGEN ^ 1400 ppm NITROGEN :S ZOO ppm CARBON ~ 600 ppm

    O

    2 > I

    cn

    I

    • 1 ^

    O-Oll^-ji 4 5 0 500 550 600 650

    TEMPERATURE {°C) 700 750 800 850 900 950

    7635-4707

    Figure 6. P r e s s u r e - T e m p e r a t u r e - C o m p o s i t i o n Data for Zirconium Hydride

  • III. RESULTS

    The i sochores de termined in this study, relat ing dissociat ion p r e s s u r e ,

    t e m p e r a t u r e , and composit ion of the 6 and € phases in the z i rconium-hydrogen

    binary, a r e shown in F igure 6. These data a r e a lso tabulated in Table 3. An

    isochore map, const ructed f rom resu l t s obtained from a l e a s t - s q u a r e s fit of

    the data, is p resen ted in F igure 7.

    NAA-SR-9374

    21

  • TABLE 3

    PRESSURE-TEMPERATURE-COMPOSITION DATA FOR DELTA-EPSILON ZIRCONIUM HYDRIDE

    Sample

    J - 1 4

    J - 5 9

    J - 6 4

    J - 1 6

    J -30

    J - 4 2

    J - 2 4

    J - 6 0

    J - 3 4

    J - 4 8

    J - 1 8

    J - 4 9

    J - 4 6

    J - 3 5

    J - 5 2

    H / Z r

    1.431

    1.460

    1.477

    1.482

    1.527

    1.541

    1.542

    1.556

    1.577

    1.609

    1.641

    1.678

    1.661

    1.703

    1.724

    T e m p e r a t u r e (°C)

    738 767 777 796 806 826 834

    754 766

    726

    680 709 740

    703

    686

    685 712 736 765 794

    698 723

    671 699

    695

    607 656 689

    674 701

    617

    646

    643

    P r e s s u r e (atm)

    0.045 0.087 0.113 0.170 0.207 0.325 0.381

    0.0800 0.1046

    0.0576

    0.0210 0.0425 0.0820

    0.0477

    0.0373

    0.043 0.077 0.126 0.224 0.392

    0.0634 0.1017

    0.0354 0.0660

    0.0830

    0.020 0.065 0.141

    0.138 0.232

    0.0400

    0.115

    0.133

    T e m p e r a t u r e (°C)

    856 864 883 893 941 952

    780

    749

    766 882 904

    713

    698

    827 850 882 912 940

    725 755

    727

    725

    720 746 778

    728

    645

    671

    670

    P r e s s u r e (a tm)

    0.600 T 0.711 1.054 1.260 3.030 3.780

    0.1392

    0.0902

    0.146 1.060 1.590

    0.0608

    0.0496

    0.689 1.019 1.68 2.58 3.69

    0.1111 0.2055

    0.1218

    0.1628

    0.260 0.439 0.730

    0.296

    0.0815

    0.201

    0.241

    Sample

    J - 3

    J - 1 9

    J - 3 3

    J - 4 3

    J - 3 2

    J - 4

    J - 3 7

    J - 2

    J - 3 8

    J - 5

    J - 5 7

    J - 6 1

    J - 3 9

    H / Z r

    1.710

    1.734

    1.751

    1.781

    1.804

    1.810

    1.845

    1.860

    1.868

    1.890

    1.903

    1.908

    1.915

    T e m p e r a t u r e (°C)

    608 j 617 630 653

    586 616

    615 646

    607 616

    595 616 643

    523 550 575 577 589

    550 611

    540 545 570 584

    557 588

    569 581

    511 534

    491 553

    479 492

    P r e s s u r e (atm)

    0.0604 0.0737 0.104 0.176

    0.050 0 . U 2

    0.124 0.257

    0.137 0.170

    0.171 0.289 0.547

    0.0249 0.0589 0.121 0.127 0.169

    0.0945 0.498

    0.0778 0.0922 0.186 0.283

    0.185 0.431

    0.384 0.515

    0.114 0.206

    0.0705 0.436

    0.0731 0.117

    T e m p e r a t u r e

    CO 654 677 687 699

    643

    671

    653

    644 674 676

    596 603 614 640 641

    647

    588 601 613 613

    598

    595

    550 568

    556

    508 534

    P r e s s u r e (atm)

    0.182 0.301 0.374 0.468

    0.226

    0.450

    0.434

    0.567 1.065 1.U5

    0.219 0.252 0.351 0.636 0.651

    1.081

    0.311 0.449 0.608 0.602

    0.555

    0.718

    0.328 0.526

    0.490

    0.190 0.396

    • . , . , , , •

  • ez ^Z.e6-HS-VVN

    (SOTttBJ: UIOt^'E

    -•^Z/H s-B p9ss9j:dx3) apijpAH xximuooJTZ Jo sajoqoosj ajnssajd uoir^'eToossTQ • i ajnSxj;

    80zr-se9z

    096 006 0S8

    I 1*^

    • ([d^

    T T ' :• /

    * ,f ' .. ot i' t ,' ,r "•• • -.1 r t : r

    11' r ' I ;' , ' , \ • -|' ; • * ;i ," " • • 1

    ill iiiiii ,Wi\^im :;:;- î ;;; ;, •••••iiii rri

    • •,.%

    T

    :::::::: jj'

    ¥illtiffli™fflff f¥ l''-h"iM N̂' 1 MW' iW^̂^̂B ;,.^;, :-:;,!';:;-; ^?: ., |

    f-~ -^ '^r e jf^J^i* 7 ':̂^̂::: J |::J;;;; 'I hMUl •^"\[:\\' h Eni-:S:| ''mV:''7

    Bi^HiBe 1 1 il!,/l T V 1 |j«1 II^Til iJ-W

    M " ti if '' u'i ::: 1; : J:: ::: J''':::::,! :J \ \Uf U* 1 Ni^

    . iJ^LLLL Vn 1

    lllllll/IIII 'i 1 ^' .1 I / \ \f' \\\U ' N#^^' ' L'

    ^ L^ Momrn^^^ T y#f̂ UM m/tij i.u^ii \--l

    " 1 liff IJMiitttfR LB Jf 41«m lygJU U>r 41-H+ T":i/ii:ili4;iJ(t-J4^]/ir":>ti:";ljif^:i:4/ Tlll/nT LH1 mf Ltff UT^tfM

    1 1 i^ 11111M' Il4^t[ BfH HI Jft ttttHif H H tH- K MTinTjffiffMfflwmtmss

    i::: !• ;ii j Lff̂ 1

    M#mB#a«ffi^w^ifi*^ " Uiff Ln Lff i/^^ UT UT 1 L T un 1

    •IlililiM^ ; : '; i !: ' P;- i! * 1' :;:!;:;!;;' :;:; ;; -•••-•• -- ';; ;;;;;:: ':: :; 11 II llllili T i': b 1. |L / .,,,! ' ' " "": ,, ,: ..: ,' 1,' . ''. 1 1 _. '. .,». _ ,' , .. .. ,' ',., .1 ;i , ___ a', ,' , ' , ' . ; i' - - , ... a .. ,.,, ,! , , , ..... .. .. 1 , ' . . , . .. ., . . ..J + .1.1... .... . '.. . ' -,/.--

    ( ', . ., ... ' , ', , ... .. 1. ... .... Un LffWiJ'T Ln m Ufl Dni Ml f\ \f\y^/n Vf\ n\ Vn Vn HI

    KM 1 i^imiiil^^ gr •̂i 1 -1 i!:

    1 - •-

    .'iM^mammf̂fl uff ^ fflM^^ M^ iff ^ Pf MMm Mf̂fltttifflPMfflMM^^ ™EMffl Mm^e

    nil nil IIHILIfHI III i'tltill III IIJKIII m

    -^i ::;:::i:: :::«•:::::

    ••-±1 ....;; J

    ;;;i ;:;::::: ;FM;;;f-..:M

    #

  • IV. DISCUSSION

    The dissociat ion p r e s s u r e equil ibria of the z i rconium-hydrogen binary in

    the 6 and f regions , r ep resen ted by the i sochores of F igure 7, may be

    expressed in t e r m s of t empe ra tu r e and composit ion by the relat ion

    K X 10-̂ l o g P =K^ + - ^ . . .(13)

    where:

    K^ = -3.8415 + 38.6433 X - 34.2639 X^ + 9.2821 X̂ ^

    K^ = -31.2982 + 23.5741 X - 6.0280 X^

    P = pressure (atm)

    T = t empe ra tu r e (°K)

    X = hydrogen- to-z i rconium atom ra t io

    This equation form w^as given preference to that involving separat ion of

    Ki in t e r m s of A + BX, as expressed in Equation 2, since the heat of solution

    coefficient (K-,) was determined to be concentrat ion dependent. That i s ,

    since K^ = f (X), B would not define the slope of the i so therm, as d i scussed

    previously (see page 9), and therefore apparent ly would not contribute

    physical significance to the dissociat ion p r e s s u r e equation.

    Considering f i rs t the coefficient K- of Equation 13, we may conclude that

    the pa r t i a l molal heat of solution is not constant within the 6 and € regions of

    the binary, but r a the r d e c r e a s e s continuously with increas ing hydrogen

    concentrat ion, a c r o s s both the 5 and € regions . A plot of the heat of solution

    coefficient as a function of hydrogen concentrat ion, as der ived from the

    i sochore plot (Figure 7), is p resen ted as F igure 8. F r o m this plot, it may be

    seen that the heat of solution of hydrogen in the hydrided phase d e c r e a s e s ,

    with increas ing solute concentrat ion, but at a decreas ing r a t e , attaining a

    limiting value of -^ 8.26 for a sa tura ted solution of limiting composit ion

    H / Z r ::: 2.

    In t e r m s of actual molal quanti t ies , obtained by multiplying K^ by the

    na tura l log conversion and the gas constant, the pa r t i a l molal heat of

    NAA-SR-9374 25

  • 16 17 HYDROGEN-TO-ZIRCONIUM ATOM RATIO (X)

    7635-4709

    8. Heat of Solution Coefficient (K„) of Zi rconium Hydride as a Function of Hydrogen- to -Zi rcon ium Atom Ratio (X)

    17 O

    9 4

    9 2

    ^ fe liJ O 9 0 l i . Li.

    O

    > t - 8 8 _) CD =) C/)

    6 6

    8 4

    a o

    1 1

    _

    -

    -

    ^

    1 1

    1 1

    / _

    1 1 15 16 17 18

    HYDROGEN-TO-ZIRCONIUM ATOM RATIO (X)

    7635-4710

    Figure 9. Solubility Coefficient (Kj^) of Zirconium Hydride as a Function of Hydrogen- to-Zi rconium

    Atom Ratio (X)

    NAA-SR-9374

    26

  • so lu t ion of h y d r o g e n in the h y d r i d e d e c r e a s e s f r o m -46 .3 k c a l / m o l e , in 6 of

    c o m p o s i t i o n Z r H , . , to -37 .7 k c a l / m o l e , in € of c o m p o s i t i o n Z r H , „. Of

    s i gn i f i c ance i s t h e fac t t h a t no d i s c o n t i n u i t y in t h e funct ion i s in e v i d e n c e

    t h r o u g h o u t the e n t i r e 6 and € c o m p o s i t i o n r a n g e . T h i s i s not a s would be

    e x p e c t e d if t h e 5-* C t r a n s f o r m a t i o n w e r e of f i r s t o r d e r , but i s e n t i r e l y connpat ib le

    if t r a n s i t i o n f r o m f e e - 6 to fc t -e i n v o l v e s a c o n t i n u o u s a n i s o t r o p i c e x p a n s i o n 5

    of t h e cub ic p h a s e , a s r e p o r t e d by Vaughan and B r i d g e .

    R e g a r d i n g t h e so lub i l i t y coef f ic ien t ( K , ) , a n a l y s i s of the funct ion shows

    t h a t it o b e y s an e s s e n t i a l l y p a r a b o l i c r e l a t i o n , d e c r e a s i n g f r o m a va lue of

    ~-8.57 a t Z r H , , , a t t a i n i n g a m i n i m u m of '-^ 8.29 a t Z r H , ,-_, and t h e n

    i n c r e a s i n g a t an i n c r e a s i n g r a t e to -^ 9.55 at Z r H , „. The funct ion i s shown

    g r a p h i c a l l y in F i g u r e 9. T h i s b e h a v i o r i s not ev iden t f r o m the spac ing of the

    i s o c h o r e s of F i g u r e 7, and would not be a n t i c i p a t e d f r o m a p lo t t h a t a p p a r e n t l y

    i n v o l v e s c o n t i n u o u s l y i n c r e a s i n g s p a c i n g of {—) for equa l i n c r e m e n t s of

    c o m p o s i t i o n (X).

    One m a y s p e c u l a t e t h a t it i s m o r e t h a n m e r e c o i n c i d e n c e tha t the m i n i m u m

    o c c u r s a t the c o m p o s i t i o n Z r H , ,-„, a p p r o x i m a t i n g the 6, 6 + e b o u n d a r y , 9 10 13

    v a r i o u s l y r e p o r t e d a s Z r H , (-/ to Z r H , / i- ' ' Undoub ted ly , b e c a u s e of the

    r e l a t e d n a t u r e of t h i s funct ion and a c t i v i t y , s i gn i f i c ance m u s t be a f fo rded the

    fact t ha t t h i s i s a l s o t h e c o m p o s i t i o n a t which the m o s t t h e r m o d y n a m i c a l l y

    s t a b l e h y d r i d e in the b i n a r y o c c u r s , a s c o m p u t e d f r o m a c t i v i t i e s by the 18

    m e t h o d of S e a r c y and M e s c h i {See F i g u r e 10). While a d i s c o n t i n u i t y in t h e

    p lo t of t h e a c t i v i t i e s of the m e t a l and the g a s d o e s not e x i s t at t h i s c o m p o s i t i o n ,

    a s w^ould b e a n e c e s s a r y r e q u i s i t e for a f i r s t - o r d e r t r a n s f o r m a t i o n , we m i g h t

    we l l a n t i c i p a t e o c c u r r e n c e of a h i g h e r - o r d e r t r a n s f o r m a t i o n , such a s an

    o r d e r i n g r e a c t i o n o r d i f f u s i o n l e s s s h e a r m e c h a n i s m , in s o l u t i o n s m o r e c o n c e n -

    t r a t e d t h a n Z r H , / ( i . e . , t h e 5 ~* C t r a n s f o r m a t i o n ) . M a x i m u m s o r i n f l e c t i ons

    in the p r o p e r t i e s of h a r d n e s s , s t r e n g t h , and r e s i s t i v i t y have i ndeed b e e n 20 21 r e p o r t e d ' a t '~ 6 1 a t . % h y d r o g e n , the a p p r o x i m a t e c o m p o s i t i o n of t h i s ,

    t he m o s t t h e r m o d y n a m i c a l l y s t ab l e h y d r i d e .

    In v i e w of (a) t h e r e s u l t s of t h i s i n v e s t i g a t i o n , (b) the m a r t e n s i t e - l i k e

    n a t u r e o f t h e 6 - e t r a n s f o r m a t i o n , (c) t he fact t h a t t h e two p h a s e s (6 a n d e ) have

    not b e e n o b s e r v e d to c o e x i s t at h igh t e m p e r a t u r e s , and (d) the effect of

    oxygen (and undoub ted ly t h e o t h e r i n t e r s t i t i a l i m p u r i t i e s , n i t r o g e n and c a r b o n )

    on t h e ex ten t of the o b s e r v e d t w o - p h a s e f ie ld , it i s p r o p o s e d t h a t t h e 6 -*e

    N A A - S R - 9 3 7 4 27

  • 00 0! 02 03 04 05 06 07

    XH

    7635-4711

    Figure 10. Activit ies of Hydrogen and Zi rconium in the Z r - H System at 600° C (Searcy and MeschilS)

    t rans format ion should appear on the b inary phase d iagram as a dotted l ine,

    denoting the C-transformation s t a r t , extending upward from the composit ion

    Z r H , _„, and probably bending toward the ZrH^ axis at higher t e m p e r a t u r e s .

    The proposed 6 -*€ boundary is likened to the M line in an a thermal ly act ivated

    mar tens i t e t ransformat ion , t he rma l fluctuations and excess ive solute concen-

    t ra t ion serving as the driving force in the instance of " i so the rma l " t r a n s f o r m a -

    tion. The hydrogen- r ich end of the b inary phase d iagram, including the

    proposed € - s t a r t boundary, is shown in F igure 11. Curva ture has been

    const ructed in accordance with available data on the extent of the two-phase

    6 ~* 6 + C boundary.

    Based on this study, we may conclude that i sochores of the 6-6 regions of

    the z i rconium-hydrogen sys tem must exhibit a p rogress ive ly increas ing change

    in spacing with increas ing hydrogen concentrat ion. Any deviation from this

    type of p rogres s ion can be at t r ibuted to significant contamination of the b inary

    w^ith oxygen, ni trogen, e tc . , to form a t e r n a r y or h ighe r -o rde r alloy sys tem.

    a

    -

    ...

    /

    1

    — £ _ ^

    ^ — V

    1 1 1

    r

    "H

    1

    /

    1 1 '

    NAA-SR-9374 28

  • 2 I-

    a + 8

    02 04 06 08 LO 12 14

    HYDROGEN CONTENT (H/Zr)

    18 20

    7635-4712

    Figure 11. P roposed Phase Diagram of the Zirconium-Hydrogen System

    NAA-SR-9374 29

  • V. CONCLUSIONS

    E q u i l i b r i u m d i s s o c i a t i o n p r e s s u r e s of the 6 - and € - p h a s e r e g i o n s in the

    z i r c o n i u m - h y d r o g e n b i n a r y c a n be e x p r e s s e d by a s ing le equa t ion involv ing

    p r e s s u r e , t e m p e r a t u r e , and h y d r o g e n - t o - z i r c o n i u m a t o m r a t i o . E x a m i n a t i o n

    of t h i s e x p r e s s i o n p e r m i t s the fol lowing c o n c l u s i o n s :

    a) E q u i l i b r i u m d i s s o c i a t i o n p r e s s u r e of t h e 6 and € p h a s e s i s a

    con t inuous funct ion of h y d r o g e n c o n c e n t r a t i o n , exh ib i t ing no

    p r e s s u r e d i s c o n t i n u i t i e s o r a n o m a l o u s i s o c h o r e spac ing o v e r t h e

    H / Z r c o m p o s i t i o n r a n g e of ~- 1.4 t h r o u g h 1.9.

    b) The p a r t i a l m o l a l h e a t of so lu t ion of h y d r o g e n in t h e 6 and €

    h y d r i d e p h a s e s d e c r e a s e s c o n t i n u o u s l y wi th i n c r e a s i n g so lu te

    c o n c e n t r a t i o n a t a d e c r e a s i n g r a t e , exhib i t ing no b r e a k o r

    d i s c o n t i n u i t y a t t h e 6 " " € t r a n s f o r m a t i o n c o m p o s i t i o n . The quan t i t y

    v a r i e s f r o m - 4 6 . 3 k c a l / m o l e , for 6 of c o m p o s i t i o n H / Z r = 1.4, to

    -37 .7 k c a l / m o l e , for € of c o m p o s i t i o n H / Z r = 1.9.

    B a s e d on the r e s u l t s of t h i s i n v e s t i g a t i o n , t o g e t h e r wi th p r i o r knowledge of

    t h e s y s t e m ( i . e . , m a r t e n s i t i c n a t u r e of the 6-*€ t r a n s f o r m a t i o n , a b s e n c e of t h e

    t w o - p h a s e r e g i o n a t h i g h e r t e m p e r a t u r e s , effect of i n t e r s t i t i a l i m p u r i t i e s on

    the ex t en t of the t w o - p h a s e r e g i o n , e t c . ), t h e p h a s e d i a g r a m p r e s e n t e d in

    F i g u r e 11 i s p o s t u l a t e d . The do t t ed l i n e , ex tending u p w a r d f r o m t h e

    c o m p o s i t i o n Z r H , .̂Q and bend ing t o w a r d the Z r H ^ a x i s wi th i n c r e a s i n g

    t e m p e r a t u r e , r e p r e s e n t s the " e - s t a r t " b o u n d a r y ( i . e . , t he beg inn ing of the

    cub ic to t e t r a g o n a l t r a n s f o r m a t i o n ) . The ex ten t and exac t c u r v a t u r e of the

    b o u n d a r y , whi le p r i m a r i l y s p e c u l a t i v e , h a s b e e n c o n s t r u c t e d in a c c o r d a n c e

    wi th r e p o r t e d 6-€ c o - e x i s t e n c e .

    N A A - S R - 9 3 7 4

    30

  • REFERENCES

    1. M. N. A. Hall, S. L. H. Mart in , and A. L. G. Rees , T r a n s . Fa raday S o c , 41 (1944) p 306

    2. E. A. Gulbransen and K. F . Andrew, J. Meta ls , 1_ (1955) p 136

    3. R. K. Edwards , P . Levesque, and D. Cubicciotti , J . Am. Chem. S o c , 77 (1955) p 1307

    4. C. E. El ls and A. D. McQuillan, J . Inst. Meta ls , 85 (1956) p 89

    5. D. A. Vaughan and J. R. Br idge, J. Meta ls , 8_(1956) p 528

    6. P . T. Gilber t , NAA-SR-1399 (1956)

    7. M. W. Mallett and W. M. Albrecht, J. E lec t rochem. S o c , 104 (1957) p 142

    8. T. B. Douglas, J. Am. Chem. S o c , 80 (1958) p 5040

    9. E. A. Gulbransen and K. F . Andrew, J. E lec t rochem. S o c , 101 (1954) p 474

    10. W. Trzebia towski and B. Stalinski, Rocznicki Chem., 30 (1956) P 691 ' —

    11. D. Whitwham, M. A. Huber, and J. Herenguel , Acta Met. , 7 (1959) p 65 ~

    12. J. B. Vetrano and D. F . Atkins, NAA-SR-3469 (1959)

    13. D. F . Atkins, NAA-SR-4245 (I960)

    14. G. G. Libowitz, NAA-SR-5015 (I960)

    15. R. Chang, NAA-SR-5537 (I960)

    16. W. L. Kors t , NAA-SR-6880 (1962)

    17. R. K. Edwards and P . Levesque, J. Am. Chem. S o c , 77 (1955) p 1312

    18. G. G. Libowitz, J. Nuclear Mate r i a l s , _5 (1962) p 228

    19. A. W. Searcy and D. J. Meschi , P r o c Thermodynamics of Nuclear Mate r ia l s - International Atomic Energy Agency Conference - Vienna (1962) p 132

    20. R. L. Beck, P r o c Second Metal Hydride Conference, Denver Resea rch Institute - Denver (1959) p 104

    21. S. M. Toy and J. B. Vetrano, NAA-SR-4244 (I960)

    NAA-SR-9374

    31


Recommended