+ All Categories
Home > Documents > Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20...

Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20...

Date post: 04-Aug-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
24
1 Dr. Ing. Emanuele Martelli Politecnico di Milano, Dipartimento di Energia Attività di ricerca del gruppo GECOS sui sistemi trigenerativi avanzati, i multi-energy systems e l'efficienza energetica dei processi industriali February 7 th 2018 , Ferrara
Transcript
Page 1: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

1

Dr. Ing. Emanuele MartelliPolitecnico di Milano, Dipartimento di Energia

Attività di ricerca del gruppo GECOS sui sistemi

trigenerativi avanzati, i multi-energy systems e

l'efficienza energetica dei processi industriali

February 7th 2018 , Ferrara

Page 2: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

22

1. Chemical Technologies and Processes and NanoTechnologies Division2. Electrical Division3. Nuclear Engineering Division4. Thermal Engineering & Environmental Technologies Division5. Fluid Dynamic Machines, Propulsion & Energy Systems Division

• Fluid-dynamics of turbomachines• Internal combustion engines• Propulsion and combustion• Group of Energy COnversion Systems (GECOS):

www.gecos.polimi.it

The Department of Energy at Politecnico joins researchers originally belonging to 5 divisions.It has 130 permanent researchers and professors

THE DEPARTMENT OF ENERGY @ POLITECNICO,

DIVISIONS & OUR GROUP

1 Emeritus professor (prof. Macchi)3 Full professors (Lozza, Consonni, Chiesa)9 Associate/Assistant professors6 RTDA4 Post docs5 Temporary researchers10 PhD students

Page 3: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

33MAIN RESEARCH AREAS

1. CARBON CAPTURE TECHNOLOGIES

2. RENEWABLE ENERGY SOURCES AND WASTE-TO-

ENERGY

3. ENERGY STORAGE, HYDROGEN AND SYNTHETIC

FUELS

4. MICRO-GRIDS AND MULTI-ENERGY SYSTEMS

5. ENERGY EFFICIENCY AND SYSTEMS OPTIMISATION

6. ORC, S-CO2 AND ADVANCED POWER CYCLES

7. FUEL CELLS

>10 ongoing EU projects (FP7-H2020)

Tens of ongoing research contracts with industries

Cequiv balances to atmosphere for F-T liquids OUT: photosynthesis (MPGs, soil&root C), electricity credit (2,852 tC/day)

IN: upstream emissions, vented at plant, fuels burned in vehicle,s (2,852 tC/day)

accumulation in

soil and root

1,022 tC/day

polygeneration

plant

carbon storage

4,337 tC/day

fuel fo

r

tran

sp

ort

ati

on

1,8

10 t

C/d

ay

electricity

production

452 MWee

1,6

07 t

C/d

ay

pra

irie

gra

sses u

pstr

eam

em

issio

ns

83 t

C/d

ay

co

al u

pstr

eam

em

issio

ns

225 t

C/d

ay

char

53 tC/day

coal

5,328 tC/day

2,449 MWLHV

prairie grasses

1,607 tC/day

668 MWLHV

carb

on

ven

ted

735 t

C/d

ay

arrows’ width proportional to C fluxes

COAL + MPGs TO F-T LIQUIDS + ELECTRICITY, WITH CCS

1,0

32 M

WL

HV

ph

oto

syn

thesis

cre

dit

fo

r e.e

.

223 t

C/d

ay

Cequiv balances to atmosphere for F-T liquids OUT: photosynthesis (MPGs, soil&root C), electricity credit (2,852 tC/day)

IN: upstream emissions, vented at plant, fuels burned in vehicle,s (2,852 tC/day)

accumulation in

soil and root

1,022 tC/day

polygeneration

plant

carbon storage

4,337 tC/day

fuel fo

r

tran

sp

ort

ati

on

1,8

10 t

C/d

ay

electricity

production

452 MWee

1,6

07 t

C/d

ay

pra

irie

gra

sses u

pstr

eam

em

issio

ns

83 t

C/d

ay

co

al u

pstr

eam

em

issio

ns

225 t

C/d

ay

char

53 tC/day

coal

5,328 tC/day

2,449 MWLHV

prairie grasses

1,607 tC/day

668 MWLHV

carb

on

ven

ted

735 t

C/d

ay

arrows’ width proportional to C fluxes

COAL + MPGs TO F-T LIQUIDS + ELECTRICITY, WITH CCS

1,0

32 M

WL

HV

ph

oto

syn

thesis

cre

dit

fo

r e.e

.

223 t

C/d

ay

Page 4: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

4

4

4OPTIMIZATION OF MULTI ENERGY SYSTEMS (MES) AND CHP

Types of optimization problems associated to MES (for microgrids and DHC

networks):

1. Design/retrofit of the system («investment planning»)

2. Long-term operation planning accounting for yearly constraints

(incentives/seasonal storage)

3. Short-term scheduling (unit commitment)

4. Optimal control (dynamic models of units and networks)

Page 5: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

5

5

5OPTIMIZATION OF MES AND CHP: ONGOING COLLABORATIONS

ETH, Zurich

GECOS

group

EPFL, Lausanne

Skoltech, Moscow

Univ. of Malaga

MIT, Boston

Univ. of Parma

Univ. of Bologna

DEIB, Polimi

LEAP

Page 6: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

66

Objective: minimize the Daily/Weekly Operating Cost

𝑡=1

24·7

CFuel,tot,t +

𝑡=1

24·7

𝐶𝑂&𝑀,𝑡𝑜𝑡,𝑡 +

𝑡=1

24·7

C𝑠𝑡𝑎𝑟𝑡−𝑢𝑝,𝑡𝑜𝑡,𝑡 ∓

𝑡=1

24·7

𝐸𝑙𝑡𝑜𝑡,𝑡

Given:

➜ Forecast of Electricity demand profile➜ Forecast of heating and cooling demand profile➜ Forecast of production from renewables➜ Forecast of time-dependent price of electricity (sold and purchased)➜ Performance maps of the installed units➜ Operational limitations (start-up rate, ramp-up, etc) of units➜ Efficiency and Maximum capacity of storage systems

Indep. variables: on/off of units, load of units, storage level in each time period t

SHORT-TERM SCHEDULING PROBLEM

Page 7: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

77SHORT-TERM SCHEDULING PROBLEM

Constraints:

➜ Electric energy balance constraint Ɐ t (linear)➜ Heating energy balance constraint Ɐ t (linear)➜ Cooling energy balance constraint Ɐ t (linear)➜ Start-up constraints Ɐ t, Ɐ unit (linear)➜ Ramp-up constraints Ɐ t, Ɐ unit (linear)➜ Performance maps of units Ɐ t, Ɐ unit i (nonconvex)

Nonconvex MINLP

Available MINLP optimizers cannotfind the optimal solution

Amaldi et al., 2017. Short-term planning of cogeneration energy systems via MINLP, in SIAM book: “Advances and Trends in Optimization with Engineering Applications”.

Page 8: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

88MILP WITH PWL APPROXIMATION OF MAPS

Basic idea: conversion into MILP via linearization of the performance maps

Advantages of MILP formulations:- Guarantee on the global optimality of the solution- Super-efficient commercial MILP solvers (e.g., CPLEX, Gurobi)

Use

full

effe

ct

Bischi et al. 2014. Energy, Vol. 74

1-D PWL approximation

2-D PWL approximation with the «triangular method»

D’Ambrosio et al. 2010. Op. Res. Letters

Page 9: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

99

Computational time:

1 day operation: < 1 sec

1 week operation: < 2 min

Up to 18% primary energy saving comparedto usual operation strategies!

MILP PWL FOR DAILY AND WEEKLY PROBLEMS

-1000

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hig

h T

em

pe

ratu

re H

eat

[kW

h]

Hour

Cogenerated ICE Cogenerated GT GT Post Firing

Auxiliary Boiler Downgraded Demand

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Ele

ctri

c E

ne

rgy

[kW

h]

Hour

Generated ICE Generated GT Consumed HP

Purchased Sold Demand

qhigh,GT,PF,Not,cog

qlow,los

fICEqhigh,ICE

fAB, LT

fAB,HT

qlow,AB

llow,stor

fGT

qlow,ICE

qdeg

qhigh,AB

Heat Pump,

compression

qlow,HP,comp

E

l

e

c

t

r

i

c

G

r

i

d

elHP,comp

elpur

qhigh,cust

qlow,cust

elsold

elGT

fGT,PF,Not,cog

qlow,GT

qhigh,GT

U

S

e

r

ICE

H

e

a

t

S

t

o

r.

GT+PF

Aux. Boiler, LT

elcust

elICE

Aux. Boiler, HT

High temperature heat

ElectricityBischi et al. 2014. Energy, Vol. 74

Page 10: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

1010OPTIMAL OPERATION WITH COGENERATION INCENTIVES

𝐹𝑢𝑒𝑙_𝑟𝑒𝑓 − 𝐹𝑢𝑒𝑙_𝐶𝐻𝑃

𝐹𝑢𝑒𝑙_𝑟𝑒𝑓≥ 10%

𝑄𝑡ℎ+𝑃𝑒𝑙

𝐹𝑢𝑒𝑙≥ 75%

First Principle Efficiency Primary Energy Saving (PES)

Easily rearranged as linear constraints but yearly-basis!

1. COGENERATION INCENTIVES: if CHP units allow to save fuel comparedto “business as usual systems”, subsides are granted (additional revenue)

Conditions to be met for ICE CHP:

2. SEASONAL STORAGE SYSTEMS: Underground systems (water tanks,aquifers, etc), sorption systems (e.g., sodium sulfide), thermochemicalstorage systems and H2 storage.

Challenge: operation must be optimized considering the whole year!

IDEA: Rolling-horizon algorithm (Bischi et al. 2018. Energy, in press)

Page 11: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

1111ROLLING HORIZON ALGORITHM FOR OPTIMAL OPERATION WITH INCENTIVES

Test case: CHP system of a large hospitalComputational time: 21 hours (worst case) applicable for day-ahead

scheduling

About 7% higher revenue (yearly basis) compared to the weekly optimal operation.

fAB, LT 1

fICE 1

fAB, HT 2

elICE 2

Aux. Boiler LT 1

qlow,los

fAB, LT 2

fAB, HT 1

qlow,AB 1

llow,stor

fICE 2

qdeg

qhigh,AB 1

E

l

e

c

t

r

i

c

G

r

i

d

elpur

qhigh,cust

qlow,cust

elsold

elICE 1

qlow,ICE 2,

qhigh,ICE 2

U

S

e

r

H

e

a

t

S

t

o

r.

ICE 2

Aux. Boiler LT 2

elcust

Aux. Boiler HT 1

Aux. Boiler HT 2

ICE 1

qlow,ICE 1

qhigh,AB 2

qhigh,diss,AB 1

qhigh,diss,AB 2

qhigh,diss,ICE 1

qhigh,diss,ICE 2

qdiss,low,ICE 2

qhigh,ICE 1

qdiss,low,ICE 1

qdiss,low, AB 2qlow,AB 2

qdiss,low, AB 1

Bischi et al. 2018. Energy (in press)

Page 12: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

1212

Given:

➜ Forecast of power production from renewables and its uncertainty➜ Forecast of energy demand profiles and its uncertainty➜ Forecast of electricity prices and its uncertainty➜ Performance maps of the installed units➜ Operational limitations (start-up rate, ramp-up, etc) of units➜ Efficiency and Maximum capacity of storage systems

Determine:

Nominal set-points: on/off of units, nominal load of units, storage man.Correction rules: how to adjust units loads during operation

OPTIMAL OPERATION OF MES AND CHP SYSTEMS UNDER

FORECAST UNCERTAINTY

Constraints: meet energy demands, technical limitations of units, performance maps, etc

EFFICITY PROJECT (LEAP-Polimi, CIDEA, CIRI-EA, CERR) co-funded by Emilia Romagna Region (POR-FESR 2014-2020)

Minimizing the daily operating cost in the most probable scenarios

Page 13: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

1313

OPTIMAL OPERATION OF MES UNDER FORECAST UNCERTAINTY:

ROBUST MILP

Time [h]

Pel [kW]

Page 14: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

1414

Given: A catalogue of possible units (e.g., CHP ICEs, HP GTs, boilers, heat pumps,

etc) and the list of available sizes (discrete or continous) A catalogue of heat storage systems Forecast of future energy demand profiles (whole year) of each building/site Forecast of future energy prices and their time profiles of each building/site

Determine: Which units and heat storage system to install in each district/building The sizes of the units and storage systems The required energy connections between sites/buildings

Considering: Nonlinear size effects on investment costs and efficiency On/off and part-load operation of the units

Objectives: Maximize the NPV/Minimize the energy consumption/CO2 emissions

OPTIMAL DESIGN OF MES AND CHP SYSTEMS

Page 15: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

1515DESIGN OPTIMIZATION APPROACHES

Linearization without decomposition(Gabrielli et al. 2018, Applied Energy, in press)(Zatti et al, 2017, Comp. Aided Chem. Eng., 40)

Units’ selection, sizes and operation optimized in a single large scale MILP

Advantages:• Linear problem (computationally efficient)• Global optimality guarantee• Uncertainty can be rigorously handled

Disadvantages: Scale effects on investment costs must be

linearized Size effects on efficiency must be

approximated

Design-scheduling decompositiom(Elsido et al., 2017. Energy Vol. 121)

Upper level (evolutionary alg.): optimizes design variables (selection/sizes)Lower level: MILP scheduling problem

Avantages:

• Size effects accounted for on both performance and costs

• Possibility of considering many operating periods solved in sequence

Disadvantages:

Slow convergence rate of evolutionaryalgorithms

No optimality guarantee

Page 16: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

1616OPTIMAL DESIGN OF MES: DESIGN OF DH NETWORKS FOR A CITY

Deterministic MILP solutionCAPEX+OPEX= 21,92 M€

site 2

Q12,max = 0,9 MW Q23,max = 0,9 kW

Q13,max = 4,1 MW

HS

1,4 MW

11MW

32,6MWh

site 1

ES

1,4 MW

78,5MWhHS

site 3

HS

1,4 MW

13,7MWh

1,4 MW

site 2

Q12,max = 1,8 MW Q23,max = 1,3 kW

Q13,max = 2,5 MW

HS

1,4 MW

6,7MW

41,5MWh

site 1

ES

1,4 MW

78,5MWhHS

site 3

HS

4,5MW

6,2MWh

4,5MW5MW

Stochastic MILP solutionCAPEX + OPEX= 18,22 M€

HS

heatpump

gasturbine

heatstorage

thermalconnection

boiler

Accounting for uncertainty of forecasts leads to a cost saving of about 20%!

Page 17: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

1717OPTIMAL DESIGN OF MES: RETROFIT OF DH NETWORKS

GR3 Lamarmora

Caldaie Lamarmora

Recupero Calore:

Ori Martin

PdC Fumi

Recupero Calore: Altre

industrie

Caldaie Extra

P.d.C(Verz.+Caff+Concesio)

Solare Termico

Sto

rage

Ti

po

2

Sto

rage

Ti

po

3

Sto

rage

Ti

po

3

Sto

rage

Ti

po

1

Sto

rage

Ti

po

1

TU Linea3

TU Linea2

TU Linea1

PdC Fumi

PdC Fumi

Caldaie Centrale Nord

TmandataUtenze RTRTritorno

DH network of Brescia University of Parma Campus

Collab. with Univ. Of Brescia

EFFICITY project:

Collab. with LEAP, CIDEA & SIRAM

Page 18: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

1818LABORATORIES

LAB for MICRO-COGENERATION (LMC)

Test bench for performance and emissions of small scale co- and tri-generation systems (ICE, Stirling engines, PEM, SOFC, etc with < 100 kWel, 300 kWth), electrolizers and H2 production systems (at steady-state and transientconditions).

SOLAR TECH

Facility for developing and testing photovoltaic, photovoltaic-thermal and concentration systems.

MICRO-GRIDS LAB

Facility for testing control strategies of hybrid micro-grids (solar panels, CHP engines, batteries, thermal storages, etc).

LABORATORIO ENERGIA AMBIENTE PIACENZA (LEAP)

Research and consultancy activities in the areas of energy efficiency, waste-to-energy plants, biomass-fired plants, and pollutant emissions.

Page 19: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

19

19

19LAB FOR MICRO-COGENERATION (LMC)

1 kWel CHP unit based on Stirling cycle

10-20 kWel CHP units based on internalcombustion engines

20-30 kWel CHP units based on PEM fuel cell with steam reformer

1 kWth membrane reactor test stand (metallicmembranes for hydrogen separation and application to fuel processing )

0.5 kWth Thermo-photo-voltaic (TPV) generator

17

0

230 4 x 2.5 kWel SOFC CHP unit

At steady-state and transient / cyclic conditions Controlled and measured fuel / electricity exchange,

temperature, pressure and mass flow of all I/O hot/coldcircuits.

30 kWel - 18 kWLHV H2 electrolyzer unit

Page 20: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

20

20

20LABORATORIO DI SISTEMI SOLARI - SOLAR TECH LAB

PV system optimization: - improvements of commercial devices/technologies (e.g., PV, PVT, inverters, etc)- development of innovative concepts/prototypes (e.g., solar-driven heat pump)- development of accurate forecasting toolsFacilities:- PV and PVT panels with adjustable tilt angle and distance- Thermal oil loop to test PVT panels- Meteorological station

Page 21: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

21

21

21LEAP

• Ricerca nel settore MES e sistemi CHP in collaborazione con il gruppo GECOS

• Consulenza scientifica per il recupero di calore/energia da processi industriali (BP, GE, etc)

• Consulenza tecnica e procedurale per l’accesso a sistemi incentivanti sulla produzione efficiente di energia termica: CAR (Cogenerazione ad Alto Rendimento) e TEE (Titoli di Efficienza Energetica)

Audit energetico degli impianti;

Valutazioni tecnico-economiche sui meccanismi di remunerazione dell’energia;

Verifica della rispondenza alle normative di riferimento;

Validazione e supporto tecnico dei modelli per il calcolo del PES (Primary Energy Saving);

Assistenza per la presentazione dei documenti verso il GSE.• Consulenza tecnica e procedurale per il riconoscimento degli incentivi per la produzione di

energia elettrica da impianti a fonte rinnovabile: In particolare: per impianti a biomassa e impianti ibridi alimentati da rifiuti parzialmente

biodegradabili.

Attività LEAP nel settore cogenerazione ed efficienza industriale

Page 22: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

2222MAIN PUBLICATIONS ON MES/CHP/MICRO-GRIDS OPTIMIZATION

1. Gabrielli et al., 2018. Optimal design of multi-energy systems with seasonal storage. “AppliedEnergy” (in press).

2. Zatti et al., 2017. A three-stage stochastic optimization model for the design of smart energydistricts under uncertainty. “Computer Aided Chemical Engineering” Vol. 40, pp. 2389-2394.

3. Elsido et al., 2017. Two-stage MINLP algorithm for the optimal synthesis and design of networksof CHP units. Energy, Vol. 121, pp. 403-426..

4. Taccari et al. 2015. Short-term planning of cogeneration power plants: a comparison betweenMINLP and piecewise-linear MILP formulations. Computer Aided Chem. Eng., 37, pp. 2429-2434.

5. Bischi et al., 2014. Tri-Generation Systems Optimization: Comparison of Heuristic and MixedInteger Linear Programming Approaches. Proceedings of ASME Turbo-Expo 2014.

6. Bischi et al., 2014. A detailed optimization model for combined cooling, heat and power systemoperation planning. Energy, Vol. 74, pp. 12-26.

7. Bischi et al. 2016. Distributed cogeneration systems optimization: multi-step and mixed integerlinear programming approaches. International Journal of Green Energy, Volume 13.

8. Mazzola et al., 2015. A detailed model for the optimal management of a multigood microgrid.Applied Energy, Vol. 154.

9. Mazzola et al., 2017. Assessing the value of forecast-based dispatch in the operation of off-gridrural microgrids. Renewable Energy, Vol. 108.

10. Mazzola et al., 2016. The potential role of solid biomass for rural electrification: A technoeconomic analysis for a hybrid microgrids in India. Applied Energy, Vol. 169.

Page 23: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

23

23

23

Thank you for your attention!

[email protected]

www.gecos.polimi.it

Page 24: Attività di ricerca del gruppo GECOS sui sistemi ... · 1 kWelCHP unitbasedon Stirling cycle 10-20 kWelCHP unitsbasedon internal combustionengines 20-30 kWelCHP unitsbasedon PEM

2424

Gabrielli et al. 2018, Applied Energy, in press

OPTIMAL DESIGN OF A SWISS ENERGY DISTRICT (WITH ETH)

Selected unitsPossible units


Recommended