+ All Categories
Home > Documents > Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers...

Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers...

Date post: 21-May-2018
Category:
Upload: trinhdien
View: 213 times
Download: 0 times
Share this document with a friend
22
Heat Conduction by Molecular Dynamics Technique Sebastian Volz National Engineering School of Mechanics and Aerotechnics Laboratory of Thermal Studies UMR CNRS 6608 Poitiers, France Denis Lemonnier - Lab. of Thermal Studies - Poitiers Jean-Bernard Saulnier - Lab. of Thermal Studies - Poitiers Gang Chen - NanoHeat Transfer and Thermoelectrics Lab. - UCLA Pierre Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let
Transcript
Page 1: Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let . ... S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91,

Heat Conduction by Molecular Dynamics Technique

Sebastian Volz

National Engineering School of Mechanics and AerotechnicsLaboratory of Thermal Studies UMR CNRS 6608

Poitiers, France

Denis Lemonnier - Lab. of Thermal Studies - PoitiersJean-Bernard Saulnier - Lab. of Thermal Studies - PoitiersGang Chen - NanoHeat Transfer and Thermoelectrics Lab. - UCLAPierre Beauchamp - Laboratoire de Métallurgie Physique - Poitiers

let

Page 2: Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let . ... S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91,

REPORT DOCUMENTATION PAGE Form Approved OMB No.0704-0188

Public reporting burder for this collection of information is estibated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completingand reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burder to Department of Defense, WashingtonHeadquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision oflaw, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)30-05-2001

2. REPORT TYPEWorkshop Presentations

3. DATES COVERED (FROM - TO)30-05-2001 to 01-06-2001

4. TITLE AND SUBTITLEHeat Conduction by Molecular Dynamics TechniqueUnclassified

5a. CONTRACT NUMBER5b. GRANT NUMBER5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)Volz, Sebastian ;Lemonnier, Denis ;Saulnier, Jean-Bernard ;Chen, Gang ;Beauchamp, Pierre ;

5d. PROJECT NUMBER5e. TASK NUMBER5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME AND ADDRESSNational Engineering School of Mechanics and AerotechnicsLaboratory of Thermal StudiesUMR CNRS 6608Poitiers, Francexxxxx

8. PERFORMING ORGANIZATION REPORTNUMBER

9. SPONSORING/MONITORING AGENCY NAME AND ADDRESSOffice of Naval Research International Field OfficeOffice of Naval ResearchWashington, DCxxxxx

10. SPONSOR/MONITOR'S ACRONYM(S)11. SPONSOR/MONITOR'S REPORTNUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENTAPUBLIC RELEASE,13. SUPPLEMENTARY NOTESSee Also ADM001348, Thermal Materials Workshop 2001, held in Cambridge, UK on May 30-June 1, 2001. Additional papers can bedownloaded from: http://www-mech.eng.cam.ac.uk/onr/14. ABSTRACTUNDERSTANDING AND MONITORING MATERIALS PROPERTIES15. SUBJECT TERMS16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACTPublic Release

18.NUMBEROF PAGES21

19. NAME OF RESPONSIBLE PERSONFenster, [email protected]

a. REPORTUnclassified

b. ABSTRACTUnclassified

c. THIS PAGEUnclassified

19b. TELEPHONE NUMBERInternational Area CodeArea Code Telephone Number703767-9007DSN427-9007

Standard Form 298 (Rev. 8-98)Prescribed by ANSI Std Z39.18

Page 3: Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let . ... S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91,

UNDERSTANDING AND MONITORING MATERIALS PROPERTIES

Si02 Nanoparticles chain

VacuumAbsorbing MicroParticle

5 Å to 1m

NEW MATERIALS contain nano-micro architectured structures

o NANOFIBERS:

multiscale complex materialsultra insulating (0.007 W/mK)

o SUPERLATTICES

monitoring thermal conductivity Bulk/10<< Bulk

o NANOWIRES templates:

monitoring anisotropy 10 nm - 1m

G. Chen - Ni nanowires templatelet

Page 4: Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let . ... S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91,

LOW-DIMENSIONAL PHYSICS FOR HEAT CONDUCTION

Tgradq BULK .

Size L< Mean Free Path

BALLISTIC DIFFUSIVEL

o Ballistic Transport of Phonons

o Phonon Confinement

vG and Reduction

SpecularDiffuse

)(. 22222

2

uvvuvtu

tlt

0

1

2

3

4

5

6

7

8

9

0 0.5 1qx (nm-1)

(r

ad.T

Hz)

Si nanowire

Boundary ScatteringMore resistive

Bulk

eff(size)<BULK

let

Page 5: Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let . ... S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91,

SITUATION of MD

Classical Heat Conduction

Relaxation time 100psMean Free Path 100nm

Atomic Period 0.1psLattice Constant 0.5nm

Tgradq BULK.

Phonon WaveNo p-p scattering, limited by wlInterface transfer easier

Phonon Particle: Boltzmann TE No interference, Interface transferSmall and Large scales

Phonon Transport: Ballistic Diffusive

Molecular Dynamics - MD

Small Scales

let

Page 6: Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let . ... S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91,

MOLECULAR DYNAMICS TECHNIQUE

COMPUTE ALL ATOMIC TRAJECTORIES• STILLINGER-WEBER POTENTIAL • 2nd NEWTON LAW

N

ij1j

ij2i

2

dt

dM F

r3-BODY2-BODY

0.0

u2/

-1.0

a=1.8rij/

jik

rij

rik

-12.9

-12.89

-12.88

-12.87

-12.86

-12.85

-12.84

8.76 8.78 8.8 8.82 8.84 8.86 8.88

Coordonnée X (Angstroem)

Coo

rdon

née

Y (A

ngst

roem

)t=0.3 ps

let

Page 7: Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let . ... S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91,

ADVANTAGES OF MD TECHNIQUE

o Phonon Scattering is Difficult to Model: Phonon Particle Approach: Relaxation Time ?? Phonon Wave Approach: No scattering.

MD PROVIDES A COMPLETE DESCRIPTIONOF PHONON SCATTERING

EXAMPLE: NANOWIRE

o Phonon Transport Approach Assumes Fully Periodic Lattices

MD ALLOWS TO INCLUDE ATOMIC DEFAULTS and STRAINS

EXAMPLE: SUPERLATTICE

o Non-Equilibrium Short Time Heat Conduction

MD DESCRIBE HT BEHAVIOUR AT GigaHTz FREQUENCIES

EXAMPLE: IN BULK SI

0100

200300

400500

600

100 200 300 400 500 600

TMD (MD U)

Cor

rect

ed T

(K) BULK Si

TDebye=650K

correctionNo correction

Quantum Effects

(K)

let

Page 8: Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let . ... S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91,

HEAT FLUX by MD

N

i

N

ijj

ijijiiieV

t1 1

0 ..211)( rFvvq

o Kinetic and Work termssolids

viei

Kinetic Term

solids WK

Work Termvi

ij

rijFij

let

Page 9: Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let . ... S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91,

THERMAL CONDUCTIVITY by MD

o Fluctuation-Dissipation Theorem

0 0020

03

de

TkV i

B

qqAutocorrelation

Silicon at 200K and 500K

=0, Thermal Conductivity

X gradTgradT XThe ForceThe Flux

let

§ 0.2

20 40 60 80 100 120

Page 10: Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let . ... S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91,

SILICON NANOWIRE MD MODEL

RIGID BOUNDARY

RIGID BOUNDARY

PERIODIC BOUNDARYCONDITIONS

MD BOX

Phonon Energy Conserved

Free standing Bi Nanowire, M.S.Dresselhaus

let

Page 11: Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let . ... S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91,

BOLTZMANN TRANSPORT EQUATION

Bulk

ggt

g

gradv.

o 1D solution to BTE: Boundary Scattering ONLY

)p,(1...cos.)( 0 rr GTg

xTg Bulk

Bulk

Size

Bulk

nw 1

M(r)

S

x

Infinite Length

T

p

S. Volz and G. Chen, Heat and Technology, 18, 37, 2000.

(Ziman -Electrons and Phonons)

q S v g D d dD

r r

1

4 04

. . . . .

Function of G only

let

Page 12: Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let . ... S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91,

COMPARISON BETWEEN MD&BTE RESULTS

S. Volz and G. Chen, Applied Physics Letters, 57, 2056, 1999.

Is boundary scattering the only cause forthermal conductivity reduction?

0.8

let

Page 13: Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let . ... S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91,

PHONON CONFINEMENT EFFECT ON HEAT CONDUCTION

Tgradq BULK .

Size L< Mean Free Path

BALLISTIC DIFFUSIVEL

o Ballistic Transport of Phonons

o Phonon Confinement

vG and Reduction

SpecularDiffuse

)(. 22222

2

uvvuvtu

tlt

0

1

2

3

4

5

6

7

8

9

0 0.5 1qx (nm-1)

(r

ad.T

Hz)

Si nanowire

Boundary ScatteringMore resistive

Bulk

effective<BULK

let

Page 14: Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let . ... S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91,

o S8, discretizing in 48 directions (, wm) for finite length wire

m k m k k m k mL L L. , , , 0

2=300K

RIGID -PERFECTLY REFLECTING BOUNDARY

1=303K

RIGID -PERFECTLY REFLECTING BOUNDARY

Heat Flux qLr

100-800 nm

q LT T

.

1 2

q r w Li j m k m i j mmk

, , , ,,,

.d i

1 481 5

Tij ?

LLL 0.gradΩRPTE - THE DISCRETE ORDINATE METHOD

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0 10 20 30 40 50 60 70

circular frequency, (rad.THz)

(n

m-1

)

p

p

p vrgL

..

=1/

=1/(v

.

Confinement effect

Confinement effect

Bulk

let

Page 15: Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let . ... S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91,

PHONON CONFINEMENT vs BOUNDARY SCATTERING

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

0 200 400 600 800

nanowire length (nm)

ther

mal

con

duct

ivity

(W/m

K)

p = 0

p = 0.5

p = 1

S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91, 2000.

Phonon Confinement Effect Only

Boundary Scattering+Ph. C. Effects

Bulk=150 W/mK at 300K

PHONON CONFINEMENT: 50% REDUCTIONBOUNDARY SCATTERING: 70% REDUCTION

let

Page 16: Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let . ... S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91,

Si/Ge SUPERLATTICE MD MODELING

PeriodicBoundary Conditions

Ge GeSi

z

x

8 816

28

28

22.2A

38.9A y

SiGe

Ge

let

mm* ♦ •*

• • ;%><« F» S5W3

Page 17: Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let . ... S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91,

STRAIN EFFECT ON SUPERLATTICE STRUCTURE

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30 3

[001] ATOMIC PLANE NUMBER

DIS

PLA

CEM

ENT

(A)

Ge GeSi

o Starting with mean lattice constant

o Implementing Conjugate Gradient Method

let

Page 18: Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let . ... S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91,

SUPERLATTICE THERMAL CONDUCTIVITY

0.1

1

10

100

15 20 25 30 35

LAYER THICKNESS (A)

CR

OSS

-PLA

NE

THER

MA

L C

ON

DU

CTI

VITY

(W

/mK

)

With Minimisation ProcedureWithout Minimisation ProcedureTrend for Experimental ResultsRBTE Solution

S. Volz, J.B Saulnier, G. Chen, P. Beauchamp, Microelectronics Journal 31 (9-10) 815, 2000.let

Page 19: Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let . ... S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91,

EFFECTIVE THERMAL CONDUCTIVITY AT GIGAHERTZ FREQUENCIES

q Vk T

q q t e dt gradTB

i t

bg bg bg

z302 0 0

0. .

. . .

e

B

q

gradT

Vk T

q

bg3

0

120

2

2 2. ..

( )

BULK=150W/mK

o Fluctuation Dissipation Theorem

t

eqtqq

2000 00

-1 dependence at Giga frequencies

SiO2 - 900GHtz

Ge - 20GHtz

100

let

Page 20: Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let . ... S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91,

CONCLUSION

MOLECULAR DYNAMICS TECHNIQUE:

o COMPLETELY DESCRIBES PHONON SCATTERING

o ALLOWS THE SIMULATION OF DEFAULTS/STRAINS

o GIVES ACCESS TO NON-EQUILIBRIUM REGIMES

- IS VERY HEAVY IN TERMS OF COMPUTATION TIME

- RELIES ON THE INTERACTION POTENTIAL VALIDITY

- DOES NOT INCLUDE QUANTUM EFFECTS

let

Page 21: Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let . ... S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91,

ULTRA SHORT TIME HEAT CONDUCTION

let

Page 22: Aucun titre de diapositive - dtic.mil Beauchamp - Laboratoire de Métallurgie Physique - Poitiers let . ... S. Volz and D. Lemonnier, Physics of Low-Dimensional Structures, 5/6, 91,

-1 LAW FOR Si THERMAL CONDUCTIVITY AT GIGAHTZ FREQUENCIES

2.5

(0 n * 2 E

1.5

x

let


Recommended