+ All Categories
Home > Documents > Aucun titre de diapositive - Astrosurf · Head Lines 1. Astronomical needs and timing accuracy...

Aucun titre de diapositive - Astrosurf · Head Lines 1. Astronomical needs and timing accuracy...

Date post: 08-Sep-2019
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
66
Timekeeping Trade-off Thierry Midavaine, Bernard Christophe, Olivier Dechambre, Jean-Charles Lestel, Delphine Nguyen, Jean-Marie Vugnon ESOP XXIII Aug 27-29, 2004
Transcript

Timekeeping Trade-off

Thierry Midavaine, Bernard Christophe, Olivier Dechambre, Jean-Charles Lestel,

Delphine Nguyen, Jean-Marie Vugnon

ESOP XXIII Aug 27-29, 2004

Club Eclipse Paris

Founded in 1978 16 members from Paris area Activities around experimental projects 4 meeting a year at the Paris Observatory Permanent link thanks to our mailing list Missions in Observatories on 60cm class telescopes Transient events

Phemu Occultation by asteroids and satellites

Sensors and acquisition process

Club Eclipse Members

Head Lines

1. Astronomical needs and timing accuracy requirements,

2. Review of the time keeping solutions and their respective accuracies

3. Signal imaging receivers: web cam, video cameras, CCD cameras, image intensifiers. receiver features

4. Recording the image and linking the timing accuratelyRealisation of an artificial variable starThe effective accuracyResults on phemus and star occultations by asteroids.

5. The future

1. Astronomical needs

Phemu and PhesatOccultation timing (moons or astéroids)

Size of asteroidsDouble star detectionAngular size of occulted stars

Shooting starsAstrometry on artificial satellitesPulsar timingPhoton counting

The problem to solve

UTC

report

occultation

prediction

J. Manek

Timing accuracy requirements

Absolute accuracy Earth velocity 30km/s GPS location accuracy ~10m – 25m

=> 0.3ms – 1ms Rise time of the shutter or pixel transfert delay

Relative accuracy Asteroid vs Earth relative speed 15km/s at 2AU 10 mas/sec Acquisition rate from 100ms down to 1ms Exposure time Sensor bandwidth Relative localisation between telescopes

Timing ref

TAI: International Atomic Time The BIPM defines the Atomic Time from a period of the

Cesium133 transition. UT

UT0 (diurnal motion of stars) UT1 (computed from UT0, correct the longitude motion)

UTC: Coordinated Universal Time UTC=TAI+n sec ; UT1-UTC<0.9s

Dynamical Time (replace ephemeris time) Terrestrial time TDT=TAI+32.184s Barycentric Dynamical Time refer to the Solar system

barycentre

2. Time keeping alternates

2.1 The Sky The earth sideral rotation Astronomical events (Jupiter satellite events, Moon position, satellite eclipse… )

2.2 Atomic clock through a communication link 2.21 Speaking Clock through wired phone link 2.22 NTP Tardis, Dimension 4 and SNTP through Internet 2.23 LW emitters:

DCF 77 LW France Inter Allouis emitter (French railway network) MSF in UK …

2.24 GPS

2.3 Quartz clock 2.4 Internal clock from PC

2.1 The sky and Earth rotation

The day length The sideral Earth period: Accy 10-9

Astrometry on stars with an accy of 0.1 arc sec allows a timing accuracy of 0.1/15 s= 7ms

Star drift allows relative timing The turbulence give a timing noise. A seeing of 3 arcsec give a 0.2s

timing accuracy Requires a good knowledge of the observatory coordinates, absolute

line of sight (geo ref.) and accurate Earth ephemerid model The year length

Since 1968 the tropic year length is no longer the timing ref.

Daphne 1999

2.21 Atomic Speaking clock

Advantages Very simple Acoustic interface

Drawbacks Through the wired phone network, nomade incompatible Wireless GSM phone network with lower accuracy limited communication duration (3mn) Could be buzy

Accuracy 10ms accuracy ? (Through phone wired network)

2.22 NTP and SNTP Simple Network Time Protocol

Advantages Free, thanks to internet Simple software Right Time, Tardis or Dimension 4

Drawbacks Limited to PC clocking… Require access to wired network and Internet No direct output Accuracy rely on PC, OS and Soft load

Accuracy PC Local Area Network give a 20ms random error Internet network, node, protocol… increase the error

NTP/NMEA-GPS Comparison(Guillaume Dubos 2003)

Compaq presario celeron 950MHz 256Mo Xppro, 56kb/s Internet access to NTP, Automachon

GPS Garmin Etrex Legend on NMEA input through serial port NMEATime

2.23 LW Emitters

MSF 60kHz Rugby UK

OMS 50kHz Praha Cz

(switch off in the 90’s)

Moscow Ru

LW Emitter Range

Time lag due to time of flight (1ms for 300km)Signal range and SNR

1/R2 for R<300km1/R4 for R>300km

Ionospheric layer complex contributionSignal increase thanks to ionospheric reflexionTime drift and jitter due to multipath lengthSignal decrease due to layer absorption

DCF77 Emitter

Emitter Location in Mainflingen closed to Francfurt N50°01’ E09°00’ Deutsche Telekom AG Carrier frequency 77,5kHz, 30kW Carrier Amplitude Modulation of pulse per second The front edge of the pulse give the second Accuracy 0,3µs The pulse length give the code: 80ms=0 160ms=1 Within each minute you get :

The year, month, day, day of the week, hour, the following minute, The 59th second is missing Legal time of Germany Two bits refer to winter or summer time

DCF77 receivers

NEOL NEOL S.A. Paul REYSER Mouse clock distributed by Radio Spare or Selectronic ref. "Rotronic", code article 220-3942 79 € HT New receiver in developpement in Neol realised by

Jean-Charles Lestel. It integrates an optimal filtering to improve the pulse SNR. Prototype presented at the Francfurt exhibit in november 2004.

DCF77

Advantages PPS signal, embedding one minute code (easy to read), Low cost Indoor compatible Interface outputs: TTL, Serial or parallel port on PC, or USB For PC : very simple software to up-date the PC clock

Drawbacks Coverage limited to Europe (however A. Maury show reception

capability in Chile !) Sensitive to EM field (EM noise from PC !) Time lag according to the wave time of flight from Francfurt Software drive the PC clock 230ms ahead !

Accuracy DCF from 20 to 50ms late vs GPS

(according to the receiver and conditions) 3ms jitter 1σ (or +/- 10ms)

GPS/DCF77 Comparison

Demodulated DCF signal

Allouis Emitter

France Inter TDF Emitter located at Allouis close to Bourges. Covered by TDF agreement.

162kHz Power 1MW and 2MW 1/2h every day 47°10’N 2°12’E phase modulation delivers time code

Allouis Receiver

Bodet manufacture IRO17E a chip « France Inter » receiver which deliver the hour code including mn, h, day, and PPS. Drive the change between winter and summer time.

Deliver PPS Accuracy 1ms Advantage and Drawbacks similar to

DCF. May give a better accy thanks to a better

SNR

Bodet

DCF and Allouis receiver

GPS

EmittersUS Naval Obs atomic clock24 satellites on 6 orbits at 18000kmUS DoD may decide to scramble the signal to

decrease receiver accuracyWide band signal

GPS receivers

GPS master clock Deliver pulses at 1Hz, 10Hz, 100Hz 1kHz Accuracy better than 100ns ?

OEM receivers It requires at least 4 satellites signal to calculate loc and time Deliver NMEA code delivering date, time and position Deliver PPS: 20ms pgm length 5V pulse each second Accuracy 2µs

GPS

Advantages World wide Nomad compatible Low cost (OEM: Laipac 90€) PPS analog TTL output Give the Earth coordinates

Drawbacks Requires outdoor antenna with a wide field of view Dependancy on the US DOD

Accuracy PPS better than 2µs, Better than 100ns ?

2.3 Quartz clock

AdvantageGood relative accuracy 10-6 or better

DrawbackRequires an absolute clock

AccuracyLinked to a PPS give the µs

2.4 PC Internal clock

Low quality : 10-5

Rely on PC soft load.Be surprised to see the clock stopping while

down loading an image, then the clock jump forward wrongly !

However Winscan shows a regular clocking of ST7 camera in driftscan mode at 50ms line rate

3. Signal imaging receivers:

3.1 CCD and CMOS time lines

3.2 webcam, 3.3 video cameras, 3.4 image intensifiers 3.5 digital CCD cameras,

receiver features

3.1 The various CCD time lines 1/2

Full frame CCD with a shutter1. Exposure time controlled by the shutter2. Then read out period before the following exposure

CCD time lines 2/2

Frame transfert CCD1. Exposure time2. Then frame transfert to the memory area (electronic shutter)3. Then read out period while exposure of the following frame

Interline CCD and CMOS focal plane array Snap shot mode

1. Exposure time2. Then pixel transfer to adjacent pixel memory3. Then read out period while exposing the following frame

Progressive scan mode The successive lines are exposed then read out to mimic the

Vidicon and CRT scanning. The frame is scanned line by line. Therefore the exposure period drift through the field of view.

3.2 Webcam

Could be CCD or CMOS detectors in progressive scan mode

The rate is driven by the PCFrom few Hz to 30HzThe rate is noisy and inaccurate

écartTC-DC77

0.00066

0.000665

0.00067

0.000675

0.00068

0.000685

0.00069

0.000695

0.0007

numéro d'image

ecar

t en

frac

tion

de jo

ur

écartTC-DC77

Drift between the 15Hz frame rate of a Web cam and 1Pulse /sec from DCF77

Effective min rate applicationécartTC-DC77

-0.000008

-0.000006

-0.000004

-0.000002

0

0.000002

0.000004

0.000006

numéro d'image

ecar

t en

frac

tion

de jo

ur

écartTC-DC77

3.3 Video Cameras

CCIR 2:1 Interlace: odd and even line ½ frame at

50Hz or 25Hz for a complete frame.

Watec 902H and 902HS

Sony micro-lenses and interline CCD (429ALL EX View super HAD)

Effective sensitivity 2mlux Instead of claimed

0.15mluxWatec 902HS may switch to manual exposure.Power consumption 2WCCIR, 2:1 interlace

E2V TechnologiesL3CCD

Avalanche amplifier CCD

Sensitivity: 0.1 mlux to 0.01mlux

Occultation par Li du 12/04/03 Club Eclipse T60

-50

0

50

100

150

200

010

020

030

040

050

060

070

080

090

010

0011

0012

0013

0014

0015

0016

0017

0018

0019

0020

0021

0022

0023

0024

0025

0026

0027

0028

0029

0030

0031

0032

0033

0034

0035

0036

0037

0038

0039

0040

0041

0042

0043

0044

0045

0046

0047

0048

0049

0050

00

temps

ampl

itude Occultation par Li

Série2

Video rate, Sound and Image comparaison

0

5

10

15

20

251 9 17 25 33 41 49 57 65 73 81 89 97 105

113

121

Time in second

Su

b s

ec f

ram

e n

um

ber

Soundimage

3.4 Image Intensifier

Sensitivity 0.03mlux (3rd gen or 2nd hypergen) Limited by sky backgroundPhosphore decay time less than 1ms (100ns)Power consumption 0.2WAccess to photon countingTo be fitted to electronic imaging sensor.

3.5 CCD Digital Cameras

Window mode (Unsuccessfull at high rate !) Drift scan mode 2ms line rate for 100 pixels line

achieved with Ethernaude (Ethernet port) Drift scan mode on ST7,8,9 parallel port WinXP,

Winscan soft 50ms line rate 768 pixels, 10ms line rate 100pixels

Precision timing require knowing star position in the FOV to correct time lag due to the number of line + blind line on the CCD between the bottom and star.

Test on artificial star in drift scan mode driven by the PC

4. Recording the image and linking the timing accurately

4.1 Optic In using a collimated artificial star driven by the DCF77 in a sub pupill of the acquisition telescope (it could come from a telrad dot)

4.2 AcousticWith a webcamWith a video camera

4.3 Digital

4.2 Acoustic link on a webcam

Acoustic and DCF set

The time on the sound track

❚ The TTL output from DCF drive an oscillator at 800Hz❚ Web cam

❙ The signal is amplified and feed a loudspeaker❙ The acoustic signal is heared by the web cam microphone.❙ The sound track and the image are recorded with Prism5 or the

webcam software.❚ Video

❙ The output is directly recorded on one sound track❚ With the artificial star we checked the good sound to

image synchronisation

Synchronisation test video/sound track

Antenne

Web-cam PC

Microphone

HP

1kHz

Artificial star LED

Image and timing processing

❚ Timing processing with Adobe Premiere LE❙ Allows the reading of the frame number

synchronised to the PPS❚ Photometry processing with IRIS 3.8 using

aperture photometry algorythm❚ Final data process linking timing with

photometry with Excel

Adobe premiere sound track process and frame registering

Data processN° de l'image#VALEUR! frac jour image Heureminutessecondesdixième de secondefraction de jour fraction de jour écartTC-DC77 Flux H UTC Flux filtré 3724.719 delta M

1 7.71605E-07 0.906904306 21 45 56 5.3 0.906904306 0.906209861 0.000694444 3832 21.74903668 3724.7 02 1.54321E-06 0.906905078 0 0.906210633 0.000694444 3556 21.74905519 3724.7 03 2.31481E-06 0.906905849 0 0.906211405 0.000694444 3644 21.74907371 3724.7 04 3.08642E-06 0.906906621 0 0.906212176 0.000694444 3644 21.74909223 3681.5 -0.012671775 3.85802E-06 0.906907392 0 0.906212948 0.000694444 3708 21.74911075 3691.5 -0.00972666 4.62963E-06 0.906908164 0 0.90621372 0.000694444 3708 21.74912927 3697.8 -0.007889927 5.40123E-06 0.906908936 0 0.906214491 0.000694444 3912 21.74914779 3702.3 -0.006569438 6.17284E-06 0.906909707 21 45 57 0 0.906909722 0.906215278 0.000694429 3508 21.74916667 3692.8 -0.009359029 6.94444E-06 0.906910479 0 0.906216049 0.000694429 3524 21.74918519 3711 -0.004006410 7.71605E-06 0.90691125 0 0.906216821 0.000694429 3832 21.7492037 3764 0.0113902511 8.48765E-06 0.906912022 0 0.906217593 0.000694429 3956 21.74922222 3800.5 0.0218680612 9.25926E-06 0.906912794 0 0.906218364 0.000694429 3816 21.74924074 3806.8 0.0236521113 1.00309E-05 0.906913565 0 0.906219136 0.000694429 3896 21.74925926 3787.8 0.0182194814 1.08025E-05 0.906914337 0 0.906219907 0.000694429 3692 21.74927778 3747.5 0.0066203215 1.15741E-05 0.906915108 0 0.906220679 0.000694429 3516 21.7492963 3733.3 0.002483916 1.23457E-05 0.90691588 0 0.906221451 0.000694429 3720 21.74931481 3758.5 0.009802617 1.31173E-05 0.906916652 0 0.906222222 0.000694429 3928 21.74933333 3792 0.0194370418 1.38889E-05 0.906917423 0 0.906222994 0.000694429 3968 21.74935185 3824.5 0.0287028819 1.46605E-05 0.906918195 0 0.906223765 0.000694429 3708 21.74937037 3811.3 0.0249348120 1.54321E-05 0.906918966 0 0.906224537 0.000694429 3756 21.74938889 3775.8 0.0147742921 1.62037E-05 0.906919738 0 0.906225309 0.000694429 3944 21.74940741 3743.3 0.005388322 1.69753E-05 0.90692051 0 0.90622608 0.000694429 3512 21.74942593 3691 -0.0098736723 1.77469E-05 0.906921281 21 45 58 0 0.906921296 0.906226852 0.000694429 3544 21.74944444 3677.8 -0.0137782824 1.85185E-05 0.906922053 0 0.906227623 0.000694429 3840 21.74946296 3684.8 -0.0117137225 1.92901E-05 0.906922824 0 0.906228395 0.000694429 3644 21.74948148 3673.5 -0.0150336826 2.00617E-05 0.906923596 0 0.906229167 0.000694429 3680 21.7495 3678.5 -0.01355688

1 Occ 2 le 13/03/03 Club Eclipse

-0,5

0

21,74 21,76 21,78 21,8 21,82 21,84 21,86 21,88 21,9 21,92

H UTC

delta

Mag

Phemu webcam and sound recording

Video frame and DCF PPSAdobe premiere process

566 Stereoskopia TYC 4970-01009-1

0

5000

10000

15000

20000

25000

30000

35000

400001 36 71 106

141

176

211

246

281

316

351

386

421

456

491

526

561

596

631

666

701

736

771

806

841

876

911

946

981

1016

1051

Numéro Images

Flux

TYC 4970-01009-1

Moy. mobile sur 10 pér. (TYC 4970-01009-1)

25cm telescope, Watec 902HS, 20ms exposure

40ms video rate, mini DV camcorder

PPS from DCF77 clocking (47ms late vs GPS +/-10ms)

Star Mv=10.9 SNR=1.2

4.3 Digital stamping

Video camera with Black box time inserter

Video frequency vs GPS black box inserter

test black box dérive video

y = 0,0287x + 25,142

24

24,5

25

25,5

26

26,5

27

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

secondes du PPS

mill

isec

onde

incr

usté

e

Série1

Linéaire (Série1)

Ethernaude

❚ Line rate 100pixel 2ms❚ Higher rate may be achievable according to the

PC, network interface card ?

Stereoskopia event ethernaude recording

Test read CCD software written by Michel Meunier

20ms line rate

Timing accy 1ms from PPS GPS clocking

60cm telescope SNR 6

Titre du graphique

-10

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000

AmplitudeMoy. mobile sur 5 pér. (Amplitude)

stereoskopia

-20

-10

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400 1600

20ms 50Hz rate

Série1

EventAude

2004 Guy Detienne prototype realisation rely on : GPS receiver output (NMEA+ PPS) Internal Quartz Clock deliver 1ms accy analog TTL signal input or output Terminal software to read the serial port

No PC dependant Deliver digital timing of events to the PC Deliver synchro signal to drive a camera Aude association intends to manufacture it

EventAude

EventAude

EventAude

First EventAude test 31 jul 2004 Ara

-40

-20

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Cadence ligne 50ms SL-MLMoy. mobile sur 5 pér. (SL-ML)50ms 100pixels line rate

Cloudy conditions

5. The future

Measure the effective accuracy of low cost GPS receiver output vs TAI or UTC

Improve the accuracy of LW receivers Galileo Low cost availability of Eventaude and Quartz driven drift scan CCD

camera : Aude proposal Direct digital recording on PC from video camera

Through motion capture card Or through high rate bus link: USB2 or IEEE 1394

Digital high rate low light level camera L3CCD EBCCD or EBCMOS

Photon counting high rate digital camera Measure star diameter : 1ms = 10µas

Deconvolution of the edge?

-10

0

10

20

30

40

50

0 10 20 30 40 50 60 70

Série1Série2

Questions and Ref.

http://www.astrosurf.com/club_eclipse/ http://astrosurf.com/aude/ http://ibelgique.ifrance.com/astrophotoccd/EventAude http://perso.wanadoo.fr/julien .picot/astronomie/chronaude/

Rencontres du Ciel et de l’Espace 12-13-14 nov 2004 Paris

[email protected]


Recommended