+ All Categories
Home > Documents > Automated Plasma Proteomic Sample Preparation · tube of digest, and shake (RT; 500 rpm; 10...

Automated Plasma Proteomic Sample Preparation · tube of digest, and shake (RT; 500 rpm; 10...

Date post: 08-Nov-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
8
Application Note Clinical Research Authors Phillipp E. Geyer 2,3 , Garwin Pichler 1 , Peter V. Treit 2 , Sophia Doll 2 , and Nils A. Kulak 1 1 PreOmics GmbH, Matrinsried, Germany 2 Department of Proteomics and Signal Transduction, Max Plank Institute of Biochemistry, Matinstried, Germany 3 NNF Center for Protein Research Faculty of Health Sciences, University of Copenhagen, Denmark Abstract Proteins within blood-based samples such as plasma and serum are frequently assayed in clinical research. While theoretically attractive due to the biological prevalence of proteins, studying the plasma proteome within blood-based samples has been extremely challenging due to a plethora of issues 1 . Chief among these issues is the time-consuming and intricate manual steps involved in sample preparation workflows. This makes the parallel processing of samples highly prone to errors, compromising the reproducibility needed for robust comparative analyses. These processing difficulties tend to be exacerbated as sample numbers increase, leading to unreliable results. However, large sample sizes are statistically indispensable to balance the thousands of variables (in this case, proteins and peptides) that are measured in a single, hypothesis-free MS run. To overcome the previously mentioned issues, Geyer; et al. developed the rapid (two-hour) and robust "plasma proteome profiling" pipeline 2 . This protocol benefits from the synergy of the straightforward sample preparation workflow provided by the iST Kit from PreOmics coupled to high-throughput automation from the Agilent Bravo liquid handling platform. Unlike other sample preparation methods, this protocol accomplishes all stages of sample preparation (denaturation, reduction, alkylation, enzymatic digestion, peptide purification, and desalting) in a single reaction vial. By using the Bravo robotic platform, contamination is minimized, reducing systematic error that would be introduced by the user. By relying on these advantages, this single-run LC/MS/MS proteomic workflow enables reproducible quantitative analysis of hundreds of plasma proteomes in an automated fashion from 1 µL of material 2,3 . Automated Plasma Proteomic Sample Preparation Using PreOmics iST Technologies and the Agilent Bravo Automated Liquid Handling Platform
Transcript
Page 1: Automated Plasma Proteomic Sample Preparation · tube of digest, and shake (RT; 500 rpm; 10 minutes) 5. Add 120 µL of digest to rows 1–6 to an MTP & DIGEST 6. Add 120 µL of stop

Application Note

Clinical Research

AuthorsPhillipp E. Geyer2,3, Garwin Pichler1, Peter V. Treit2, Sophia Doll2, and Nils A. Kulak1

1 PreOmicsGmbH,Matrinsried, Germany

2 DepartmentofProteomicsandSignalTransduction,Max Plank Institute of Biochemistry, Matinstried, Germany

3 NNF Center for Protein ResearchFacultyofHealthSciences, University of Copenhagen, Denmark

AbstractProteinswithinblood-basedsamplessuchasplasmaandserumarefrequentlyassayedinclinicalresearch.Whiletheoreticallyattractiveduetothebiologicalprevalenceofproteins,studyingtheplasmaproteomewithinblood-basedsampleshasbeenextremelychallengingduetoaplethoraofissues1. Chief among these issuesisthetime-consumingandintricatemanualstepsinvolvedinsamplepreparationworkflows.Thismakestheparallelprocessingofsampleshighlypronetoerrors,compromisingthereproducibilityneededforrobustcomparativeanalyses.Theseprocessingdifficultiestendtobeexacerbatedassamplenumbersincrease,leadingtounreliableresults.However,largesamplesizesarestatisticallyindispensabletobalancethethousandsofvariables(inthiscase,proteinsandpeptides)thataremeasuredinasingle,hypothesis-freeMSrun.

Toovercomethepreviouslymentionedissues,Geyer;et al. developed the rapid (two-hour)androbust"plasmaproteomeprofiling"pipeline2.Thisprotocolbenefitsfrom the synergy of the straightforward sample preparation workflow provided bytheiSTKitfromPreOmicscoupledtohigh-throughputautomationfromtheAgilent Bravoliquidhandlingplatform.Unlikeothersamplepreparationmethods,thisprotocolaccomplishesallstagesofsamplepreparation(denaturation,reduction,alkylation,enzymaticdigestion,peptidepurification,anddesalting)inasinglereactionvial.ByusingtheBravoroboticplatform,contaminationisminimized,reducingsystematicerrorthatwouldbeintroducedbytheuser.Byrelyingontheseadvantages,thissingle-runLC/MS/MSproteomicworkflowenablesreproduciblequantitativeanalysisofhundredsofplasmaproteomesinanautomatedfashionfrom1µLofmaterial2,3.

AutomatedPlasmaProteomicSample Preparation

UsingPreOmicsiSTTechnologiesandtheAgilent BravoAutomatedLiquidHandlingPlatform

Page 2: Automated Plasma Proteomic Sample Preparation · tube of digest, and shake (RT; 500 rpm; 10 minutes) 5. Add 120 µL of digest to rows 1–6 to an MTP & DIGEST 6. Add 120 µL of stop

2

IntroductionProteinsinthecirculatorysystemmirroran individual’s physiology. Currently, protein levels are generally determined usingsingle-proteinimmunoassays,aprocedurethatispronetoseveraldrawbacks4.High-throughput,hypothesis-free,andquantitativedatausingMS-basedproteomicswouldbeahighlydesirablealternative,butrepresentsuniquechallengesinit'sownright.Themostfrequentlycitedissueofthehighdynamicrangeofproteinabundanceswithintheproteomeisbalancedbytheever-improvingspecificationsofmassspectrometersandscanmodes1,2.However,thelackofrobust,high-throughputproteomicworkflows needed to identify and verify potentialbiomarkersinlargecohortshasseverelyrestrainedthepre-analyticalstageoftheproteomicworkflow.

Toovercomethislimitation,Geyer;et al.(2016)2introducedarapidandrobust‘‘plasmaproteomeprofiling’’pipeline.Buildingontherecentlydescribedin-StageTip(iST)method3 furtherstreamlinedtheprocedureforplasmasamplesspecifically.Startingwithonly1µLofplasmafromasinglefingerprick,allpreparationsteps(denaturation,reduction,alkylation,enzymaticdigestion,peptidepurification,and desalting) were performed in a singlereactionvial:theiSTCartridge.ByfollowingtheinstructionsoftheiSTKit,theentireup-frontsampleprocessingtooklessthantwohoursandcouldreadilybeperformedina96-wellformatontheBravoliquidhandlingplatform.Contrary to other sample preparation methods, this workflow does not

requireproteindepletion,andenablesquantitativeanalysisofhundredsof plasma proteomes from single 1 µL fingerprickswithLC/MS/MSusing20-minutegradients.

ThisApplicationNotedescribesthetwo-stepAgilent Bravoprotocolfortheplasmaproteomicprofilingsamplepreparation workflow applied to plasma samples from one female and one malesubject.Theplasmaproteinsweredenatured,reduced,alkylated,anddigestedusingtheiSTkitfromPreOmics.Following preparation, the samples weresubjectedtomixed-phasepeptidecleanup,thenLC/MS/MSanalysis.Atotalof3,486uniquepeptidesequencesand 373 proteins were identified, with anaverageof300 uniqueproteinsquantifiedperrun:thelargemajoritybeingpresentinallofthe96samplesandonly2 %uniquelyinsingleLCruns.ReplicateanalysesrevealedthedegreeofreproducibilityoftheLC/MSworkflowforplasmaproteomecharacterization.APearsoncorrelationcoefficientof0.98wasobservedbetweencompleteworkflowreplicates.

Experimental

MaterialsPlasma samples: Blood was taken byvenouspuncturetoobtain10 mL of blood.Followingcentrifugationat2,000 × gfor20minutes,plasmawasharvested.WithpriorapprovaloftheethicscommitteeoftheMaxPlanckSociety,bloodwassampledfromhealthydonors, who provided written informed consent.

WorkflowiST sample preparation—lysis, protein denaturation, reduction, alkylation and digestion: The iST sample preparation protocolprovidestheuserwiththeoptionofprocessing1to96samplesin96-wellplates,simultaneously.Forthisexperiment,96plasmasampleswereprocessed,correspondingto48×1µLaliquotsfromeachofthetwoindividuals.Followingtheprotocol,theBravosequentiallydrawsreagentsfromtheappropriatesourceplates,addsreagentto the samples, and mixes the solution in the sample plate following the inputs providedintheapplicationinterface.

Preparation of reagents1. Dissolve plasma sample in water in

aratioof1:10(v:v);concentrationof~5µg/µL

2. Add10µLofsampletorows1–12to an MTP &SAMPLE

3. Add120µLoflysetorows1–6toanMTP &LYSE

4. Add210µLofresuspendtoeachtubeofdigest,andshake(RT;500 rpm;10minutes)

5. Add120µLofdigesttorows1–6toan MTP & DIGEST

6. Add120µLofstoptorows1–12toan MTP & STOP

Figure1showsthecorrectplacementofthereagentsontheAgilent Bravoplatform.

Figure 1. Theplateconfigurationforprotocol1:lysis,proteindenaturation,reduction,alkylation,and digestion.

Sample

Waste

Lyse

New tips

iST Cartridges

Stop

Heating 37 °C

Heating 80 °C

Digest

Page 3: Automated Plasma Proteomic Sample Preparation · tube of digest, and shake (RT; 500 rpm; 10 minutes) 5. Add 120 µL of digest to rows 1–6 to an MTP & DIGEST 6. Add 120 µL of stop

3

Agilent Bravo System workflow• Starttherobotandincubator

• 80°Conposition6

• 37°Conposition3

• PlaceplatesasshowninFigure1

• Starttheprotocol

• LysepipettedtoiSTCartridges

• Sample pipetted to iST Cartridges

• Close iST Cartridges

• iST Cartridges are transferred to position6

• HeatingofsampleiniSTCartridgesat80°Cfor10 minutes

• Cooling down for five minutes

• Centrifuge iST Cartridges up to 400 g

• PlaceiSTCartridgesatposition5

• Remove the lid

• Restarttheprotocol

• Pipette digest to iST Cartridges

• iST Cartridges transferred to position 3

• Close iST Cartridges

• TrypticdigestiSTCartridgesat37 °Cfor60minutes

• Centrifuge iST Cartridges up to 400 g

• PlaceiSTCartridgesonposition5

• Restarttheprotocol

• Pipette stop to iST Cartridges

• PlaceiSTCartridgesinadapterontowaste

• CentrifugeiSTCartridges:3,800rcf;three minutes

Closethepeptide-containingtubeorcartridge(useacapforbottom).Peptidescanbefrozenat–20 °C.Storageofpeptidesshouldnotexceedtwoweeksat–20 °C.Forextendedstorage,finishtheprotocolandstoreat–80°C.

Table 1. On-decksampleandreagents.

iST Sample preparation—protein denaturation, reduction, alkylation, and digestion

Deck location and reagent Labware type

1 - Plasma sample, 5 µg/µL in water twin.tec PCR Plate 96 LoBind (Eppendorf p/n 0030129504)

2 - New tips 384ST 70 µL Tips, Sterile, (p/n 19133-112)

3 - Heating shaker Teleshake Heated Shaking Station (G5498B#009)

4 - Waste

5 - iST Cartridges Adapter plate (PreOmics; P.O.00027)

6 - Heating Peltier Thermal Station (G5498B#035)

7 - Lyse twin.tec PCR Plate 96 LoBind (Eppendorf p/n 0030129504)

8 - Stop twin.tec PCR Plate 96 LoBind (Eppendorf p/n 0030129504)

9 - Digest twin.tec PCR Plate 96 LoBind (Eppendorf p/n 0030129504)

Table 2. Analyticalinstrumentation.

iST Kit 96x (P.O.000027) for bottom-up proteomic sample preparation

iST Cartridges Cartridges for 1 to 100 μg protein starting material

ADAPTER Plate Enables placing cartridges in the 96-well MTP plate.

WASTE Plate Deep well plate for collecting waste after washes.

MTP plate LoBind plate for collecting peptides after elution.

Automation

Core automation platform Bravo Liquid Handling Platform for Standalone Use (G5523A)

Agilent Pipetting Head 96ST Disposable Tip Head (G5498B#041)

Agilent Bravo accessories Bravo with Gripper Standalone (G5523A#003)

Additional accessories Liquid Handling Accessories (G5498B)

Additional accessories Alignment Station (G5498B#028)

Additional accessories MTC Controller from Inheco (G5498B#015)

Additional accessories Teleshake Heated Shaking Station (G5498B#009)

Additional accessories Slot/Shaker Card (G5498B#019)

Additional accessories CPAC Ultraflat without Controller (G5498B#021)

Additional accessories Custom Nest for CPAC (G5498B#017)

Additional accessories Peltier Thermal Station (G5498B#035)

Additional accessories Bravo risers, 146mm (G5498B#055)

Additional accessories Adapter Plate for INHECO CPAC NUNC (G5498B#012)

Additional accessories V_P PCR Plate Insert VP741I6A (G5498B#013)

LC/MS/MS

LC system EASY- nLC 1000 ultra-high-pressure system (Thermo Fisher Scientific)

Nano-electrospray ion source Nano-electrospray ion source (Thermo Fisher Scientific)

MS setup Q Exactive HF Orbitrap (Thermo Fisher Scientific)

LC column 40 cm HPLC-columns

Page 4: Automated Plasma Proteomic Sample Preparation · tube of digest, and shake (RT; 500 rpm; 10 minutes) 5. Add 120 µL of digest to rows 1–6 to an MTP & DIGEST 6. Add 120 µL of stop

4

iST sample preparation—Peptide cleanupThetrypticpeptideswerewashedwithorganicandaqueouswashingsolutiontoremovehydrophobicandhydrophiliccontaminantssuchaslipidsandsalts.

Preparation of reagents1. Add120µLofWash1onrows

1–12(twin.tecPCRPlate96LoBind;Eppendorf)

2. Add120µLofWash2onrows1–12(twin.tecPCRPlate96LoBind;Eppendorf)

3. Add120µLEluteonrows1–12(twin.tecPCRPlate96LoBind;Eppendorf)

4. Add120µLLCLoadonrows1–6toatwin.tecPCRPlate96LoBind;Eppendorf)

Figure2showsthecorrectplacementofthe reagents on the Bravo platform.

Workflow on the Bravo System• Starttherobot

• PlaceiSTCartridgesonposition5

• Starttheprotocol

• Wash1pipettedtoiSTCartridges

• CentrifugeiSTCartridges:3,800rcf;three minutes

• PlaceiSTCartridgesonposition5

• Restarttheprotocol

• WASH2pipettedtoiSTCartridges

• CentrifugeiSTCartridges:3,800rcf;three minutes

• PlaceiSTCartridgesonMTPplate

• PlaceiSTCartridgesonposition5

• Restarttheprotocol

• Elute pipetted to iST Cartridges

• CentrifugeiSTCartridges:3,800rcf;three minutes

• Speed-VacELUTEinMTPplatetocompletelydrynessat45°C

• PlaceMTPplateonposition5

• LCLoadpipettedtoMTPplate

• Sonicateorshake(2,000 rpm)MTPplatetocompletelyresuspend peptides

LC/MS/MS analysesSamples were measured using LC/MSinstrumentationconsistingofanEASY-nLC1000ultra-high-pressuresystem(ThermoFisherScientific)coupledwithanano-electrosprayionsource(ThermoFisherScientific)toaQExactiveHFOrbitrap(ThermoFisherScientific).Purifiedpeptideswereseparatedon40-cmHPLCcolumns(75 µmid;in-housepackedintothetipwithReproSil-PurC18-AQ1.9 µmresin;Dr.Maisch).

Peptides were eluted with a linear 15-minutegradientof10–50%buffer B(0.1%formicacid,60%acetonitrile v/v),followedbya5-minute98 %washataflowrateof450nL/min.Columntemperaturewaskeptat60°C.

Data analysisMSrawfileswereanalyzedbyMaxQuantsoftwareversion1.5.2.105, andpeptidelistsweresearchedagainst the human Uniprot FASTA database(versionJune2014)andacommoncontaminantsdatabasebytheAndromedasearchengine6withcysteinecarbamidomethylationasafixedmodificationandN-terminalacetylationandmethionineoxidationsasvariablemodifications.

Table 3. On-decksampleandreagents.

iST sample preparation –Protein denaturation, reduction, alkylation and digestion

Deck location and reagent Labware type

1 - WASH 1 twin.tec PCR Plate 96 LoBind (Eppendorf p/n 0030129504)

2 - New Tips 384ST 70µL Tips, Sterile, (p/n 19133-112)

3 - Heating shaker Teleshake Heated Shaking Station (G5498B#009)

4 - Waste

5 - iST Cartridges Adapter plate (PreOmics; P.O.00027)

6 - Heating Peltier Thermal Station (G5498B#035)

7 - Wash 2 twin.tec PCR Plate 96 LoBind (Eppendorf p/n 0030129504)

8 - Elute twin.tec PCR Plate 96 LoBind (Eppendorf p/n 0030129504)

9 - LC-Load twin.tec PCR Plate 96 LoBind (Eppendorf p/n 0030129504)

Figure 2. Theplateconfiguration(alsolaidoutinTable 1)forstep2—peptidecleanup.

Wash 1

Waste

Wash 2

New tips

iST Cartridges

Elute

Heating 37 °C

Heating 80 °C

LC Load

Page 5: Automated Plasma Proteomic Sample Preparation · tube of digest, and shake (RT; 500 rpm; 10 minutes) 5. Add 120 µL of digest to rows 1–6 to an MTP & DIGEST 6. Add 120 µL of stop

5

Thefalsediscoveryratewassetto0.01forbothproteinsandpeptideswithaminimumlengthofsevenaminoacids,andwasdeterminedbysearchingareversedatabase.EnzymespecificitywassetasC-terminaltoarginineandlysine, using trypsin as the protease, and amaximumoftwomissedcleavageswereallowedinthedatabasesearch.Peptideidentificationwasperformedwithanallowedinitialprecursormassdeviation up to 7 ppm, and an allowed fragmentmassdeviationof20ppm.Label-freequantitation(LFQ)wasperformedwithaminimumratiocountof 17.

Results and discussionThisApplicationNotepresentsaneasilyapplicableplasmaproteomicworkflowthatbenefitsfromthesynergyoftheiSTsample preparation method developed byPreOmicsandhigh-throughputautomationaffordedbytheBravosystem.Usingthismethod,prospectiveuserscananalyzelargecohortsofplasmaproteomicsamplesinarapid,robust,andhighlyreproduciblemanner.

Buildingontherecentlydescribedin-StageTip(iST)method3(PreOmicsGmbH,Germany),weestablishedaparallelautomatedprotocolontheBravosystem.Startingwith1µLofplasma, all preparation steps were performedinasinglereactionvial:theiST Cartridge. Following the iST Kit instructions,sufficientproteindigestionhadalreadyoccurredafteronehour.

Peptideswerepurifiedwithanorganicaswellasanaqueouswashingsteptoremovecontaminantssuchaslipidsandsalts.Theentireup-frontproceduretooklessthantwohoursandcanreadilybeperformedina96-wellformatontheBravo, resulting in pure peptides ready for MS analysis.

Toassessthisautomatedprotocol,96plasmasamples(correspondingto48sampleseachfromafemaleandmaleindividual)wereprocessedandanalyzed.WeusedMaxQuantforquantitativelabel-freeanalysisoftheLC/MS/MSdata7.WecalculatedthePearsoncorrelationcoefficientsfortheentireworkflowreplicateswithineachindividual,resultinginmeancorrelationvaluesofthequantifiedproteinsignalsof0.98(Figure3).

Figure 3. Color-codedPearsoncorrelationcoefficientsforthebinarycomparisonof96technicalworkflowreplicates.Pearsoncorrelationcoefficientsofupto0.98demonstratehighreproducibility.

6 7 8 9 10 11 12

6

7

8

9

10

11

12

11 48

48

1

48

R = 0.98

Ind

ivid

ua

l 2 s

am

ple

48

[Lo

g1

0in

ten

sit

y]

Individual 1

Individual 1 sample 1[Log

10intensity]

1 48Individual 2

Ind

ivid

ua

l 2In

div

idu

al 1

0.85 1.00

Page 6: Automated Plasma Proteomic Sample Preparation · tube of digest, and shake (RT; 500 rpm; 10 minutes) 5. Add 120 µL of digest to rows 1–6 to an MTP & DIGEST 6. Add 120 µL of stop

6

Toemphasizetheexcellentreproducibilityoftechnicalreplicates,weoverlaidthetotalionchromatograms(TICs)generatedforthreereplicatesfromoneofthesamples(Figure4).Importantly,thisexcellentlevelofreproducibilitywasachievedaftergoingthroughthecompleteplasmaproteomicsample preparation workflow involving in-solutiondigestionandpeptidepurification.

Theabundancerangeofproteinswithinthe plasma proteome spanned almost sixordersofmagnitude(Figure 5),andconsistedof300quantifiedproteinsperaveragerun.Withinthese300 proteins,adiverserangeofclassicplasmaproteinfunctionalitieswererepresented.Theseincludedproteinsfromthelipidhomeostasissystemsuchas apolipoproteins A1 and B, proteins involvedininflammatoryresponsessuchascomplementfactorC5,andtransportproteinssuchasretinol-bindingproteinor the insulin sensitivity parameter adiponectin(ADIPOQ).

Figure 4. DirectcomparisonofthreeTICsofdifferenttechnicalreplicatesoftheindividualsample.Thenumbersabovethepeaksindicatethem/z.

0 5 10 15 200

50

100C

Re

lati

ve a

bu

nd

an

ce

0

50

100B

Re

lati

ve a

bu

nd

an

ce

0

50

100

349.68

691.76395.24

480.79 682.71

693.86

812.40

349.68

691.76395.24

480.79 682.71

693.86812.40

349.68

691.76395.24

480.79 682.71

693.86812.40

A

Re

lati

ve a

bu

nd

an

ce

Time (min)

Figure 5. A)Distributionofproteinsquantifiedinthe20-minutegradientsofthe96workflowreplicates.B)DirectcomparisonofthetwoplasmasamplestovisualizethemagnitudeofIGHG4,IGHM,SHBG,andPZPinthebackgroundoftheotherquantifiedplasmaproteins.

0 50 100 150 200 250 300 350

6

7

8

9

10

11

12A

Lo

g1

0In

ten

sit

y

Protein rank

ALB

APOA1

APOB

KNG1

C5

SHBG

RBP4

ADIPOQ

BCHE

HBD

LDHA

S100A8

B

6 7 8 9 10 11 12

6

7

8

9

10

11

12

IGHG4IGHM

SHBG

PZP

Ind

ivid

ua

l 2 s

am

ple

48

[Lo

g1

0in

ten

sit

y]

Individual 1 sample 1[Log

10intensity]

Page 7: Automated Plasma Proteomic Sample Preparation · tube of digest, and shake (RT; 500 rpm; 10 minutes) 5. Add 120 µL of digest to rows 1–6 to an MTP & DIGEST 6. Add 120 µL of stop

7

Thislabel-freeworkflowiswellsuitedtocapturethenaturalandpathologicalvariationofproteinlevelsbetweenindividuals2.Forexample,thedirectcomparisonofproteinquantificationlevelsbetweentwosamples(onefemale and one male), shows that the pregnancyzoneprotein(PZP)andsexhormone-bindingglobulin(SHBG)areofhighabsoluteabundanceinthe plasma proteome in the female sample(Figure5).ThemainfunctionalroleofSHBGisbindingestrogen,whereasPZPtrapsproteases.Immunoglobulinsaremembrane-boundorsecretedglycoproteinsproducedbyBlymphocytes.TheimmunoglobulinsIGHG4andIGHMareofdifferentabundancebetweenthetwosamples,demonstratingthehighinter-individualvariation of protein expression level.

ConclusionThePreOmicsiSTKitcanseamlesslybeusedontheBravosystemwithouttheneedforprotocoladaptation.Usingthiscombinationofmethods,theuserisequippedwitharobust,sensitive,andrapidtechniquefortheidentificationofplasma proteins, ultimately resulting inLC/MS/MS-gradepeptidesinonlytwo hoursoftotalsampleprocessingtime. Due to the automation afforded bytheBravoLiquidHandlingPlatform,results from the whole workflow replicateswerealsohighlyreproducible.Thereproducibilityoftheworkflowwassufficienttoelucidatesignificantdifferencesbetweenthetwoplasmasamples.Weconcludethatthisdegreeofreproducibilityismorethanadequatetodiscovernovelbiologicallyrelevantchangeswithintheplasmaproteome,

especiallyinlongitudinalstudies,ashasbeenshowninanotherstudybyGeyer;et al.(2017)1.ThisApplicationNotedemonstratesthesefeaturesbyperforming a sample preparation of 48 replicatesof1µLofplasmafromonefemale and one male individual, resulting inatotalof96 samplesprocessed.

Onaverage,300proteinswerecoveredwithin the plasma proteome per run, includingclassicfunctionsoftheplasmaproteomethatcanbeusedtostratifysamplesaccordingtobiologicallyrelevant parameters. By taking advantageofthecombinationofhighthroughputandrobustnessaffordedbymergingthetwotechnologiesintooneworkflow, the preparation of hundreds or even thousands of plasma samples hasbecomefeasible.Webelievethatthissynergywillbeindispensableforlarge-scaleclinicalresearchapplications.

Page 8: Automated Plasma Proteomic Sample Preparation · tube of digest, and shake (RT; 500 rpm; 10 minutes) 5. Add 120 µL of digest to rows 1–6 to an MTP & DIGEST 6. Add 120 µL of stop

www.agilent.com/chem

For Research Use Only. Not for use in diagnostic procedures.

This information is subject to change without notice.

© Agilent Technologies, Inc. 2018 Printed in the USA, November 21, 2018 5994-0306EN

References1. Geyer,P.E.;et al. Revisiting

biomarkerdiscoverybyplasma proteomics.Molecular Systems Biology 2017, 13(9),942.

2. Geyer,P.E.;et al. Plasma Proteome ProfilingtoAssessHumanHealthandDisease.Cell Systems 2016, 2(3),185–195.http://doi.org/10.1016/j.cels.2016.02.015

3. Kulak,N.A.;et al. Minimal, encapsulatedproteomic-sampleprocessingappliedtocopy-numberestimationineukaryoticcells.Nature Methods 2014.http://doi.org/10.1038/nmeth.2834

4. Anderson,L.Sixdecadessearchingfor meaning in the proteome. Journal of Proteomics 2014, 107, 24–30.http://doi.org/10.1016/j.jprot.2014.03.005.

5. Cox,J.;Mann,M.MaxQuantenableshighpeptideidentificationrates,individualizedp.p.b.-rangemassaccuraciesandproteome-wideproteinquantification.Nature Biotechnology 2008, 26(12), 1367–1372.http://doi.org/10.1038/nbt.1511

6. Cox,J.;et al.Andromeda:apeptidesearchengineintegratedintotheMaxQuant environment. J. Proteome Res. 2011, 10(4),1794–1805.http://doi.org/10.1021/pr101065j

7. Cox,J.;et al.Accurateproteome-widelabel-freequantificationbydelayednormalizationandmaximalpeptideratioextraction,termedMaxLFQ.Molecular & Cellular Proteomics 2014, 13(9),2513-26.


Recommended