+ All Categories
Home > Documents > AV02-1959EN+DS+MGA-22003+05Apr12

AV02-1959EN+DS+MGA-22003+05Apr12

Date post: 05-Apr-2018
Category:
Upload: praphul-mc
View: 215 times
Download: 0 times
Share this document with a friend

of 15

Transcript
  • 8/2/2019 AV02-1959EN+DS+MGA-22003+05Apr12

    1/15

    MGA-220032.3-2.7 GHz 3x3mm WiMAX and WiFi Power Amplifer

    Preliminary Data Sheet

    Description

    Avago Technologies MGA-22003 linear power amplier is

    designed or mobile and xed wireless data applications

    in the 2.3 to 2.7 GHz requency range. The PA is optimized

    or IEEE 802.16 WiMAX/WiBro modulation but can be used

    or any high linearity applications. The PA exhibits at gain

    and good match while providing linear power eciency

    to meet stringent mask conditions. It utilizes Avago Tech-

    nologies proprietary GaAs Enhancement-mode pHEMT

    technology or superior perormance across voltage and

    temperature levels.

    The MGA-22003 is packaged in a 3x3x1 mm package or

    space-constrained applications.

    Applications

    Portable WiMAX/WiBro and WiFi applications

    WiMAX/WiBro and WiFi Access points

    Functional Block Diagram

    Features

    Advanced GaAs E-pHEMT

    50 all RF ports

    9dB gain step in low power mode with Idsq reduction

    Integrated CMOS compatible pins or shutdown and

    low power mode

    3 to 5V supply

    ESD protection all ports above 800V HBM

    Small size: 3 x 3 x 1 mm

    Stable under all loads or conditions

    -40C to +85C operation

    At 2.5GHz

    Gain o 35dB

    PAE o 18% at SEM compliant Pout=25dBm

    Meets 802.16 masks at 25 dBm Pout, 16QAM WiMAX

    with 3.3V and 512mA

    16QAM WiMAX EVM < -32dB (2.5%) at 25dBm

    Low power Idd, 80mA at Pout=0dBm, 9dB Gain Step

    Device Marking Instruction

    This preliminary data is provided to assist you in the evaluation o product(s) currently under development. Until

    Avago Technologies releases this product or general sales, Avago Technologies reserves the right to alter prices,

    specifcations, eatures, capabilities, unctions, release dates, and remove availability o the product(s) at anytime.

    GND

    16

    RFIN1

    VCC1

    15

    RFOUT11

    ISMN

    BIAS NETWORK

    OMN

    GND

    14

    VCC2

    13

    GND12

    GND10

    GND2

    GND3

    BCTRL4

    N/C9

    N/C8

    BSW6

    PMOD7

    BSPLY5

    NC

    BSPLY

    BSW

    N

    C

    N

    C

    RFOUT

    GND

    GND

    16

    GND

    VCC2

    VCC1

    17

    GND

    GND

    GNDGND

    BCTRL

    RFIN

    5

    15

    1

    3

    6 7 8

    9

    10

    11

    12

    1314

    2

    4

    22003

    KAYYWW

    XXXXX

    3mm x 3mm x 1mm

    Top View

    22003 = Product Code

    KA = Korea ASE

    YY = Year code indicates the year o manuacture

    WW = Workweek code indicates the workweek o manuacture

    XXXXX = Last 5 digit o assembly lot number

  • 8/2/2019 AV02-1959EN+DS+MGA-22003+05Apr12

    2/15

    2

    ELECTRICAL SPECIFICATIONS

    Absolute Minimum and Maximum Ratings

    Table 1. Minimum and Maximum Ratings

    Parameter Specifcations

    CommentsDescription Pin Min. Typical Max. Unit

    Supply Voltage VCC1 VCC2 3.3 5.5 V

    Bias Supply BSPLY 3.3 4.2 V

    Bias Control BCTRL 2.8 4.2 V

    Bias ON/OFF BSW 1.8 4.2 V

    Mode Control PAMODE 1.8 4.2 V

    RF Input Power RFIN 15 dBm Using 16QAM 3/4

    MSL MSL3

    Channel Temperature 150 C

    Storage Temperature -65 150 C

    ESD Human Body Model 800 V

    Man Machine Model 50 V

    Table 2. Operating Range

    Parameter Specifcations

    CommentsDescription Pin Min. Typical Max. Unit

    Supply Voltage VCC1

    VCC2

    3 3.3 5 V

    Bias Supply BSPLY 3 3.3 3.5 V

    13 mA

    Bias Control BCTRL 2.75 2.8 2.85 V

    .7 uA

    Bias ON/OFF BSW 1.65 1.8 2.2 V

    7 25 uA

    Mode Control PAMODE 1.65 1.8 2.2 V

    17 25 uA

    RF Output Power RFOUT 25 dBm Using 16QAM 3/4

    Frequency Range 2.3 2.7 GHz

    Thermal Resistance,ch-b 23.4 C/W Channel to board

    Case Temperature -40 +85 C

  • 8/2/2019 AV02-1959EN+DS+MGA-22003+05Apr12

    3/15

    3

    Table 3. RF Electrical Characteristics

    Parameter

    Perormance

    CommentsMin. Typical Max. Unit

    Input Return Loss -10 dB

    Gain Flatness 1 dB Over any 10MHz

    Gain Variation (VCC) -1 1 dB 3V to 5V

    High Power Mode EVM -32 -27 dB Vcc=3.3V

    -34 -30 Vcc=3.6V

    SEM-A @5.05MHz -30.6 -13 dBm/100kHz IBW=100kHz

    SEM-B @6.5MHz -22.3 -13 dBm/MHz IBW=1MHz

    SEM-C @10.5MHz -26.6 -19

    SEM-D @11.5MHz -27.5 -25SEM-E @15.5MHz -35.3 -29.5

    SEM-F @20.5MHz -42.5 -37

    Pout (SEM Compliant) +25 dBm 802.16e

    Total DC Current 501 560 mA Pout=25dBm

    464 Pout=24dBm

    Gain 32 35 38 dB

    Low Power Mode EVM -30 dB Pout=0dBm

    Gain Step 8 10 15 dB

    Total DC Current 70 mA Pout=0dBm

    P1dB 31 dBm CW Single Tone

    Psat 32 dBm CW Single Tone

    2o -12 -10 dBm/MHz 2.3-2.4GHz

    -29 -27 2.5-2.7GHz

    3o -35 -27 dBm/MHz

    Settling Time 0.2 0.5 uS

    Icc leakage current 10 40 uA

    Noise Power in Cell Band -142 dBm/Hz

    Noise Power in GPS Band -133 dBm/Hz

    Noise Power in PCS -137 dBm/Hz

    WiMAX (802.16e) Electrical Specifcations

    All data measured on an FR4 demo board at Vcc1 = Vcc2 = 3.3V, Tc = 25C, 50 at all ports. Unless otherwise specied,

    all data is taken with OFDM 16-QAM convolutional coding modulated signal per IEEE 802.16e with 10MHz BW operat-

    ing over the BW o 2.3GHz to 2.7GHz.

  • 8/2/2019 AV02-1959EN+DS+MGA-22003+05Apr12

    4/15

    4

    Selected perormance plots

    Figure 1. EVM Frequency Sweep at 25C and Pout=25dBm over Vcc Figure 2. EVM Frequency Sweep at 25C and Pout=26dBm over Vcc

    Figure 3. EVM Frequency Sweep at Vcc=3.3V and Pout=25dBm over Tambient Figure 4. EVM Power Sweep at Vcc=3.3V and 25C over Frequency

    Figure 5. EVM Power Sweep at Vcc=3.3V and -30C over Frequency Figure 6. EVM Power Sweep at Vcc=3.3V and +85C over Frequency

    EVM Frequency Sweep (Vcc=3.0 to 5.0V)Tambient=25C and Pout=25dBm

    -40

    -38

    -36

    -34

    -32

    -30

    -28

    -26

    -24

    -22

    -20

    2300 2400 2500 2600 2700

    Frequency (MHz)

    EVM

    (dB)

    3V03V3

    3V64V2

    5V0

    EVM Frequency Sweep (Vcc=3.0 to 5.0V)Tambient=25C and Pout=26dBm

    -36.00

    -34.00

    -32.00

    -30.00

    -28.00

    -26.00

    -24.00

    -22.00

    -20.00

    2300 2400 2500 2600 2700

    Frequency (MHz)

    EVM

    (dB)

    EVM Frequency Sweep (Tambient=-30C to +85C)

    Vcc=3.3V and Pout=25dBm

    -40

    -38

    -36

    -34

    -32

    -30

    -28

    -26

    -24

    -22

    -20

    2300 2400 2500 2600 2700

    Frequency (MHz)

    EVM

    (dB)

    -30C25C+85C

    EVM Power Sweep (Freq=2.3 to 2.7GHz)

    Tambient=25C and Vcc=3.3V

    -44.00

    -42.00

    -40.00

    -38.00

    -36.00

    -34.00

    -32.00

    -30.00

    -28.00

    -26.00

    -24.00

    -22.00

    -20.00

    20.0 21.0 22.0 23.0 24.0 25.0 26.0

    Pout (dBm)

    EVM

    (dB)

    EVM Power Sweep (Freq=2.3 to 2.7GHz)Tambient=-30C and Vcc=3.3V

    -44.00

    -42.00

    -40.00

    -38.00

    -36.00

    -34.00

    -32.00

    -30.00

    -28.00

    -26.00

    -24.00

    -22.00

    -20.00

    20.0 21.0 22.0 23.0 24.0 25.0 26.0

    Pout (dBm)

    EVM

    (dB)

    EVM Power Sweep (Freq=2.3 to 2.7GHz)Tambient=+85C and Vcc=3.3V

    -44.00

    -42.00

    -40.00

    -38.00

    -36.00

    -34.00-32.00

    -30.00

    -28.00

    -26.00

    -24.00-22.00

    -20.00

    20.0 21.0 22.0 23.0 24.0 25.0 26.0

    Pout (dBm)

    EVM

    (dB)

    3V03V3

    3V64V2

    5V0

    2.3GHz2.4GHz

    2.5GHz2.6GHz

    2.7GHz

    2.3GHz2.4GHz

    2.5GHz2.6GHz

    2.7GHz2.3GHz2.4GHz

    2.5GHz2.6GHz

    2.7GHz

  • 8/2/2019 AV02-1959EN+DS+MGA-22003+05Apr12

    5/15

    5

    Gain Frequency Sweep (Vcc=3.0 to 5.0V)Tambient=25C and Pout=25dBm

    32

    33

    34

    35

    36

    37

    38

    39

    40

    2300 2400 2500 2600 2700

    Frequency (MHz)

    Gain

    (dB)

    Gain Frequency Sweep (Tambient=-30C to +85C)Vcc=3.3V and Pout=25dBm

    32

    33

    34

    35

    36

    37

    38

    39

    40

    2300 2400 2500 2600 2700

    Frequency (MHz)

    Gain

    (dB)

    Gain Power Sweep (Freq=2.3 to 2.7GHz)Tambient=25C and Vcc=3.3V

    32.00

    33.00

    34.00

    35.00

    36.00

    37.00

    38.00

    39.00

    40.00

    20.0 21.0 22.0 23.0 24.0 25.0 26.0

    Pout (dBm)

    Gain

    (dB)

    Gain Power Sweep (Freq=2.3 to 2.7GHz)Tambient=-30C and Vcc=3.3V

    32.00

    33.00

    34.00

    35.00

    36.00

    37.00

    38.00

    39.00

    40.00

    20.0 21.0 22.0 23.0 24.0 25.0 26.0

    Pout (dBm)

    Gain

    (dB)

    Gain Power Sweep (Freq=2.3 to 2.7GHz)Tambient=+85C and Vcc=3.3V

    32.00

    33.00

    34.00

    35.00

    36.00

    37.00

    38.00

    39.00

    40.00

    20.0 21.0 22.0 23.0 24.0 25.0 26.0

    Pout (dBm)

    Gain

    (dB)

    0.4

    0.42

    0.44

    0.46

    0.48

    0.5

    0.52

    0.54

    0.56

    0.58

    0.6

    2300 2400 2500 2600 2700

    Frequency (MHz)

    Itotal(A)

    3V03V3

    3V64V2

    5V0 -30C25C+85C

    2.3GHz2.4GHz

    2.5GHz2.6GHz

    2.7GHz

    2.3GHz2.4GHz

    2.5GHz2.6GHz

    2.7GHz

    2.3GHz2.4GHz

    2.5GHz2.6GHz

    2.7GHz

    3V03V3

    3V64V2

    5V0

    Total Current Frequency Sweep (Vcc=3.0 to 5.0V)Tambient=25C and Pout=25dBm

    Figure 7. Gain Frequency Sweep at 25C and Pout=25dBm over Vcc Figure 8. Gain Frequency Sweep at Vcc=3.3V and Pout=25dBm over Tambient

    Figure 9. Gain Power Sweep at Vc c= 3.3V and 25C over Po ut Figure 10. Gain Power Sweep at Vcc =3.3V and -30C over Pout

    Figure 11. Gain Power Sweep at Vcc=3.3V and -+85C over Pout Figure 12. Total Current Frequency Sweep at 25C and Pout=25dBm over Vcc

  • 8/2/2019 AV02-1959EN+DS+MGA-22003+05Apr12

    6/15

    6

    Figure 13. Total Current Frequency Sweep at 3.3V and Pout=25dBm over

    Tambient

    Figure 14. Total Current Power Sweep at 3.3V and 25C over Frequency

    Figure 15. Total Current Power Sweep at 3.3V and -30C over Frequency Figure 16. Total Current Power Sweep at 3.3V and +85C over Frequency

    Total Current Frequency Sweep (Tambient=-30C to +85C)Vcc=3.3V and Pout=25dBm

    0.40

    0.42

    0.44

    0.46

    0.48

    0.50

    0.52

    0.54

    0.56

    0.58

    0.60

    2300 2400 2500 2600 2700

    Frequency (MHz)

    Itotal(A)

    Total Current Power Sweep (Freq=2.3 to 2.7GHz)Tambient=25C and Vcc=3.3V

    0.30

    0.34

    0.38

    0.42

    0.46

    0.50

    0.54

    0.58

    0.62

    20.0 21.0 22.0 23.0 24.0 25.0 26.0

    Pout (dBm)

    Itotal(A)

    Total Current Power Sweep (Freq=2.3 to 2.7GHz)Tambient=-30C and Vcc=3.3V

    0.30

    0.34

    0.38

    0.42

    0.46

    0.50

    0.54

    0.58

    0.62

    20.0 21.0 22.0 23.0 24.0 25.0 26.0

    Pout (dBm)

    Itotal(A)

    Total Current Power Sweep (Freq=2.3 to 2.7GHz)Tambient=+85C and Vcc=3.3V

    0.300

    0.340

    0.380

    0.420

    0.460

    0.500

    0.540

    0.580

    0.620

    20.0 21.0 22.0 23.0 24.0 25.0 26.0

    Pout (dBm)

    Itotal(A)

    2.3GHz2.4GHz

    2.5GHz2.6GHz

    2.7GHz-30C25C+85C

    2.3GHz2.4GHz

    2.5GHz2.6GHz

    2.7GHz2.3GHz2.4GHz

    2.5GHz2.6GHz

    2.7GHz

  • 8/2/2019 AV02-1959EN+DS+MGA-22003+05Apr12

    7/15

  • 8/2/2019 AV02-1959EN+DS+MGA-22003+05Apr12

    8/15

    8

    Figure 23. SEM at Vcc=3.3V, -30C and 2.5GHz over Vcc (2dB Post-PA loss assumed) Figure 24. SEM at Vcc=3.3V, -30C and 2.6GHz over Vcc (2dB Post-PA loss assumed)

    Figure 25. SEM at Vcc=3.3V, -30C and 2.7GHz over Vcc (2dB Post-PA loss assumed) Figure 26.SEM at Vcc=3.3V, 25C and 2.5GHz over Vcc (2dB Post-PA loss assumed)

    Figure 27. SEM at Vcc=3.3V, 25C and 2.6GHz over Vcc (2dB Post-PA loss assumed) Figure 28. SEM at Vcc=3.3V, 25C and 2.7GHz over Vcc (2dB Post-PA loss assumed)

    WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)Vcc=3.3V, Freq=2.5GHz and T ambient=-30C

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    -25.00 -15.00 -5.00 5.00 15.00 25.00

    freq_offset (MHz)

    Pout(dB

    m/MHz)

    WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)Vcc=3.3V, Freq=2.6GHz and Tambient=-30C

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    -25.00 -15.00 -5.00 5.00 15.00 25.00

    freq_offset (MHz)

    Pout(dB

    m/MHz)

    WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)Vcc=3.3V, Freq=2.7GHz and Tambient=-30C

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    -25.00 -15.00 -5.00 5.00 15.00 25.00

    freq_offset (MHz)

    Pout(dBm/MHz)

    WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)Vcc=3.3V, Freq=2.5GHz and Tambient=25C

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    -25.00 -15.00 -5.00 5.00 15.00 25.00

    freq_offset (MHz)

    Pout(dBm/MHz)

    WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)Vcc=3.3V, Freq=2.6GHz and Tambient=25C

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    -25.00 -15.00 -5.00 5.00 15.00 25.00

    freq_offset (MHz)

    Pout(dBm/MHz)

    WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)Vcc=3.3V, Freq=2.7GHz and Tambient=25C

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    -25.00 -15.00 -5.00 5.00 15.00 25.00

    freq_offset (MHz)

    Pout(dBm/MHz)

    Spec25dBm24dBm23dBm22dBm

    21dBm

    Spec25dBm24dBm23dBm22dBm

    21dBm

    Spec25dBm24dBm23dBm22dBm

    21dBm

    Spec25dBm24dBm23dBm22dBm

    21dBm

    Spec25dBm24dBm23dBm22dBm

    21dBm

    Spec25dBm24dBm23dBm22dBm

    21dBm

  • 8/2/2019 AV02-1959EN+DS+MGA-22003+05Apr12

    9/15

    9

    Figure 29. SEM at Vcc=3.3V, +85C and 2.5GHz over Vcc (2dB Post-PA loss assumed) Figure 30. SEM at Vcc=3.3V, +85C and 2.6GHz over Vcc (2dB Post-PA loss assumed)

    Figure 31. SEM at Vcc=3.3V, +85C and 2.7GHz over Vcc (2dB Post-PA loss assumed)

    WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)Vcc=3.3V, Freq=2.5GHz and Tambient=85C

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    -25.00 -15.00 -5.00 5.00 15.00 25.00

    freq_offset (MHz)

    Pout(dBm/MHz)

    WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)Vcc=3.3V, Freq=2.6GHz and Tambient=85C

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    -25.00 -15.00 -5.00 5.00 15.00 25.00

    freq_offset (MHz)

    Pout(dBm/MHz)

    WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)Vcc=3.3V, Freq=2.7GHz and Tambient=85C

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    -25.00 -15.00 -5.00 5.00 15.00 25.00

    freq_offset (MHz)

    Pout(dBm/MHz)

    Spec25dBm24dBm23dBm22dBm

    21dBm

    Spec25dBm24dBm23dBm22dBm

    21dBm

    Spec25dBm24dBm23dBm22dBm

    21dBm

  • 8/2/2019 AV02-1959EN+DS+MGA-22003+05Apr12

    10/15

    10

    Table 4. Pin Description

    Top Pin No. Function

    1 VCC2

    3 B_SPLY

    5 VCC1

    7 NC

    9 PAMOD

    11 NC

    13 NC

    15 B_CTRL

    17 NC

    19 NC

    Bottom Pin No. Function

    2 VCC2_S

    4 GND

    6 GND

    8 GND

    10 GND

    12 GND

    14 B_SW

    16 GND

    18 GND

    20 GND

    Recommended turn on sequence

    Apply VCC1 and VCC2 3.3V

    Apply BSPLY 3.3V

    Apply BCTRL 2.8V

    Apply BSW 1.8V

    For HPM Apply PAMOD 1.8V or LPM Apply PAMOD 0V

    Apply RF In, not to exceed 15dBm

    Typical Test Conditions:

    Pin HPM LPM

    VCC1,2 3.3V 3.3V Supply Voltage

    PAMOD 1.8V 0V Low Power Mode

    B_SPLY 3.3V 3.3V Bias Voltage

    B_CTRL 2.8V 2.8V Bias Control

    B_SW 1.8V 1.8V PA Enable

    Notes: VCC1, VCC2 and B_SPLY can be tied together to reduce supply

    voltages, but B_CTRL needs to be a regulated voltage which is optimized

    or 2.8V.

    Evaluation Board Description

    Demoboard Top Pins Demoboard Bottom Pins

  • 8/2/2019 AV02-1959EN+DS+MGA-22003+05Apr12

    11/15

    11

    Application Circuit MGA-22003

    1 RF In

    2 GND

    3 GND

    4 BCTRL

    GND 12

    RF Out 11

    GND 10

    NC 9

    BCTRL

    RF In

    RF Out

    100pF

    GND16

    VCC115

    GND14

    VCC213

    5BSPL

    Y

    6BSW

    7PAMOD

    8NC

    100pF

    BSPLY BSW

    Vdd1

    100pF

    Vdd2

    100pF

    100pF0.1uF

    100pF

    0.1uF

    10uF

    47uF

    10uF

    1 RF In

    2 GND

    3 GND

    4 BCTRL

    GND 12

    RF Out 11

    GND 10

    NC 9

    GND16

    VCC115

    GND14

    VCC213

    5BSPLY

    6BSW

    7NC

    8NC

    Using 3.3V or 5V Supply and connecting Vcc1, Vcc2, BSLPY and BCTRL

    Notes: BCTRL regulates the device current, thus R1 and R2 should have

    good tolerance rating. I available, a voltage regulator is the preerred

    method o bias.

    In this example we set R2 at 10MOhm and solve or R1 with simple voltage

    divider equation. Use high resistance values to limit leakage current.

    Vbat

    Vcc1 Vcc2 BSPLY

    R1

    R2

    BCTRL

    3.3V Example :

    R2VBCTRL = *VBATT

    R1 + R2

    10M2.85V = *3.3V R1 + 10M

    R1 = 1.58M

    R2 = 10M

    Given :

    VBCTRL = 2.85V

    VBAT = 3.3V

    R2 = 10M

    R1 = ?

    5.0V Example :

    R2VBCTRL = *VBATT

    R1 + R2

    10M2.85V = *5.0V R1 + 10M

    R1 = 7.54M

    R2 = 10M

    Given :

    VBCTRL = 2.85V

    VBAT = 5.0V

    R2 = 10M

    R1 = ?

  • 8/2/2019 AV02-1959EN+DS+MGA-22003+05Apr12

    12/15

    12

    Flexible BCTRL Optimization

    BCTRL voltage on MGA-22003 directly controls the bias current o the device. I the user requires lower current or

    perhaps higher power than the typical operation, then this can be accomplished by a simple BCTRL change. A more

    sophisticated use might include BCTRL as part o a closed loop system where sotware dynamically adjusts BCTRL

    depending on the output power required.

    Low Current Operation: 400mA at 25dBm Pout with

    BCTRL = 1.8V and VCC = 3.3V

    Example 1 is very typical o mobile device application

    where ~400mA o current consumption is required. With

    the above settings at ull power o 25dBm, IDD drops rom

    500mA to 418mA with some trade-of in EVM but still

    meeting SEM.

    Table 5. Low Current Biasing

    Optimal settings or BCTRL (2.3G - 2.7G)

    VCC = BSPLY = 3.3V

    Pout BCTRL Idd EVM

    25dBm 1.8V 418mA -27.9dB

    24dBm 1.7V 367mA -27.6dB

    23dBm 1.7V 330mA -27.0dB

    Idsq x 94mA x

    Table 6. Typical Biasing

    Typical settings or BCTRL (2.3G - 2.7G)

    VCC = BSPLY = 3.3V

    Pout BCTRL Idd EVM

    25dBm 2.8V 501mA -32dB

    24dBm 2.8V 464mA -33dB

    23dBm 2.8V 435mA -35dB

    Idsq x 240mA x

    Hi Power Operation: 26dBm Pout with

    BCTRL = 2V and VCC = 5V

    Example 2 is more typical o CPE applications where cur-

    rent consumption is less important and higher power is

    required. With BCTRL at 2V and VCC at 5V MGA-22003 is

    able to achieve higher than 26dBm Pout and still meet

    SEM. Generally as VCC increases SEM improves.

    EVM Frequency Sweep (Vcc = 3.0 to 5.0V)Tambient = 25C and Pout = 26dBm

    -36.00

    -34.00

    -32.00

    -30.00

    -28.00

    -26.00

    -24.00

    -22.00

    -20.00

    2300 2400 2500 2600 2700

    Frequency [MHz]

    EVM

    [dB]

    3V33V64V25V0

    Idd Frequency Sweep (BCTRL = 1.4 to 2.5V)Tambient = 25C and Pout = 25dBm and Vbat = 3.3

    0.300

    0.320

    0.340

    0.360

    0.380

    0.400

    0.420

    0.440

    0.460

    0.480

    2300.00 2400.00 2500.00 2600.00 2700.00

    Frequency [MHz]

    Idd[mA]

    1V4 1V6 1V8 2V0 2V2 2V5

  • 8/2/2019 AV02-1959EN+DS+MGA-22003+05Apr12

    13/15

    13

    Land Pattern

    Figure 32. Recommended ootprint Figure 33. Recommended soldermask opening

    3.000.10

    1.500.10

    Top view through package

    3.000.10

    1.500.10

    0.550.100.300.10

    0.600.10

    0.200.10

    0.100.10

    NCBCTRL 94

    BSPLY

    5

    BSW

    PAMOD

    6 7

    NC

    8

    RFOUT

    15

    RFIN

    GND

    GND

    1

    3

    2

    16

    GND

    VCC2

    VCC1

    17

    14

    GND

    13

    GND12

    10

    11

    GNDGND

    3.000.10

    Top view through package

    3.000.10

    0.650.100.400.10

    1.600.10

    0.550.10

    0.100.10

    NCBCTRL 94

    5 6 7 8

    RFOUT

    15

    RFIN

    GND

    GND

    1

    3

    2

    16

    GND

    VCC2

    VCC1

    17

    14

    GND

    13

    GND12

    10

    11

    GNDGND

    BSPLY

    BSW

    PAMOD

    NC

    3.000.10

    3.000.10

    0.300.10

    1.500.10

    0.150.10

    1.500.10

    Top view through package

    0.300.10

    0.20

    0.10

    0.600.10

    NC94

    5 6 7 8

    RFOUT

    15

    GND

    GND

    1

    3

    2

    16

    GND

    VCC2

    VCC1

    17

    14

    GND

    13

    GND12

    10

    11

    GNDGND

    BCTRL

    RFIN

    BSPLY

    BSW

    PAMOD

    NC

    Figure 34. Package dimensions

    Notes:

    1. All units are in millimeters

    2. package is symmetrical

  • 8/2/2019 AV02-1959EN+DS+MGA-22003+05Apr12

    14/15

    14

    Ordering Inormation

    Part Number No. o Devices Container

    MGA-22003-BLK 100 Antistatic Bag

    MGA-22003-TR1 3000 7" Reel

    MGA-22003-TR2 7000 13" Reel

    Tape and Reel Inormation

    3.400.10

    1.700.10

    3.4

    00.1

    0

    0.300.05

    12.0

    00.3

    0

    5.5

    00.0

    5

    4.000.102.000.05

    1.7

    50.1

    0

    8.000.101.50MIN

    1.50 +0.10

    0.00

    B

    A N C

    W3

    W2

    W1

    13

    .0

    +0.50

    0.20

    120

    2.00

    10

    .50

    Size

    A

    B 1.5min.

    C

    D 20.2min.

    N

    W1

    W2

    12mm

    W3

    330+2.0

    2.0

    13.0+0.5

    0.2

    100+3.0

    0.0

    12.4+3.0

    0.0

    16.4+2.0

    2.0

    13.65+1.75

    0.75

  • 8/2/2019 AV02-1959EN+DS+MGA-22003+05Apr12

    15/15

    For product inormation and a complete list o distributors, please go to our web s ite: www.avagotech.com

    Avago, Avago Technologies, and the A logo are trademarks o Avago Technologies in the United States and other countries.

    Data subject to change. Copyright 2005-2012 Avago Technologies. All rights reserved.

    AV02-1959EN - April 5, 2012

    This preliminary data is provided to assist you in the evaluation o product(s) currently under development. Until

    Avago Technologies releases this product or general sales, Avago Technologies reserves the right to alter prices,

    specifcations, eatures, capabilities, unctions, release dates, and remove availability o the product(s) at anytime.

    Handling and Storage

    Profle Feature Sn-Pb Solder Pb-Free Solder

    Average ramp-up rate (TL to TP) 3C/sec max 3C/sec max

    Preheat

    Temperature Min ( Tsmin)

    Temperature Max (Tsmax)

    Time (mon to max) (ts)

    100C

    150C

    60-120 sec

    100C

    150C

    60-180 sec

    Tsmax to TL

    Ramp-up Rate 3C/sec max

    Time maintained above:

    Temperature (TL) Time (TL)

    183C60-150 sec

    217C60-150 sec

    Peak temperature (Tp) 240 +0/-5C 260 +0/-5C

    Time within 5C o actual Peak Temperature (tp) 10-30 sec 10-30 sec

    Ramp-down Rate 6C/sec max 6C/sec max

    Time 25C to Peak Temperature 6 min max 8 min max

    Typical SMT Reow Prole or Maximum Temperature = 260+0/-5C

    TIME

    TEMPERATURE

    tp

    t 25C TO PEAK

    tsPREHEAT

    TL

    TP

    Tsmax

    Tsmin

    tL

    CRITICAL ZONE

    TL TO TPRAMP UP

    RAMP DOWN

    25


Recommended