+ All Categories
Home > Documents > AVC Radiologia

AVC Radiologia

Date post: 08-Aug-2018
Category:
Upload: f1940003
View: 227 times
Download: 0 times
Share this document with a friend

of 19

Transcript
  • 8/22/2019 AVC Radiologia

    1/19

    September 2004Jay Chyung Phd, HMS III

    Gillian Lieberman, MD

    Imaging ischemic strokes:Imaging ischemic strokes:Correlating radiologicalCorrelating radiological

    findings with thefindings with the

    pathophysiologicalpathophysiological evolutionevolutionof an infarctof an infarctJayJayChyungChyung, PhD, HMS III, PhD, HMS III

    Gillian Lieberman, MDGillian Lieberman, MD

  • 8/22/2019 AVC Radiologia

    2/19

    September 2004

    2

    Jay Chyung Phd, HMS III

    Gillian Lieberman, MD

    Patient A: historyPatient A: history91 y.o. woman

    Acute onset R sided weakness

    and aphasia

  • 8/22/2019 AVC Radiologia

    3/19

    September 2004

    3

    Jay Chyung Phd, HMS III

    Gillian Lieberman, MD

    DDxDDxStroke (Ischemic ~80% or Hemorrhagic ~20%)

    Transient ischemic attack (TIA)

    Seizure with post-ictal

    paralysis

    Intracranial tumor (with secondary hemorrhage,

    seizure, or hydrocephalus)

    Migraine

    Metabolic encephalopathy

  • 8/22/2019 AVC Radiologia

    4/19

    September 2004

    4

    Jay Chyung Phd, HMS III

    Gillian Lieberman, MD

    Acute Stroke ManagementAcute Stroke ManagementNon-contrast head CT

    Quickly identifies hemorrhagic strokes (fresh blood is

    bright on CT)Ischemic stroke

    Can administer tPA within 3hrs (systemic) or 6 hrs (intra- arterial)Identify source of ischemicstroke: Embolic, Thrombotic,

    Low-flow

    Prevent secondary damageand expansion of infarct

    Hemorrhagic stroke

    DO NOT administer tPAMildly reduce blood pressure

    Administer products toreduce interstitial fluid levels

    (eg. Mannitol)

  • 8/22/2019 AVC Radiologia

    5/19

    September 2004

    5

    Jay Chyung Phd, HMS III

    Gillian Lieberman, MD

    Patient A: NonPatient A: Non--contrast CTcontrast CTFindings*** No evidence of

    hemorrhage***

    Loss of gray-white matterdistinction in L MCA

    territory

    Sulcal

    effacement

    Slight mass effect on L lateralventricle

    No midline shift

    PACS, BIDMC

  • 8/22/2019 AVC Radiologia

    6/19

    September 2004

    6

    Jay Chyung Phd, HMS III

    Gillian Lieberman, MD

    Patient A: Progression of InfarctPatient A: Progression of InfarctFindings

    No evidence ofhemorrhagic

    transformation

    Hypodensity in region ofL MCA infarctMass effect on L lateralventricle with midline

    shift

    PACS, BIDMC

  • 8/22/2019 AVC Radiologia

    7/19

    September 2004

    7

    Jay Chyung Phd, HMS III

    Gillian Lieberman, MD

    Mechanisms of ischemic stroke injuryMechanisms of ischemic stroke injuryEvent in Neurons TimeLoss of blood supply

    0

    O2

    depletion 10 sec

    Glucose depletion

    2-4 min

    Conversion to anaerobic respiration 2-4 minExhaustion of cellular ATP 4-5 minNEURONS have very limited stores of energy in the forms of

    phosphocreatine and glycogen. In contrast, GLIAL cells havegreater energy reserves and are less energy demanding.

  • 8/22/2019 AVC Radiologia

    8/19

    September 2004

    8

    Jay Chyung Phd, HMS III

    Gillian Lieberman, MD

    Mechanisms of ischemic stroke injuryMechanisms of ischemic stroke injury

    ATP depletion

    Na+

    -K+

    ATPase dysfunctionLoss of electrochemical gradient: Anoxic depolarization

    Ca++

    influx

    Phospholipase and protease activationNecrosis

    Apoptosis pathway

    Edema, FAS death ligands, cytokine release, free radical generation, acidosis

    Massive glutamate release

    Mitochondrial

    dysfunction

  • 8/22/2019 AVC Radiologia

    9/19

    September 2004

    9

    Jay Chyung Phd, HMS III

    Gillian Lieberman, MD

    Early CT changes from intracranialEarly CT changes from intracranial

    edemaedema

    Loss of blood supply

    Cell death

    ATP depletion

    EDEMA

    Edema: 0-20 HU; Gray matter: ~46 HU; White matter: ~40 HU

    1.

    Effacement of gray-white matter distinction asedema reduces the small difference in gray and

    white matter attenuations

    2. Effacement of sulci due to swelling withinlimited space3.

    Mass effect on ventricles due to swelling within

    limited space

    * Earliest CT changes seen several hours to daysafter initial loss of blood supply depending on

    size of infarct and volume of edema.

  • 8/22/2019 AVC Radiologia

    10/19

    September 2004

    10

    Jay Chyung Phd, HMS III

    Gillian Lieberman, MD

    Progression of an ischemic infarctProgression of an ischemic infarctLoss of blood supply

    Cell death

    ATP depletion

    EDEMA

    CYTOKINES

    FAS DEATH

    LIGANDS

    FREE RADICAL

    DAMAGE

    ACIDOSIS

    Increase in infarct size over time is possible

    Ischemic Penumbra

    -

    the region surrounding the

    infarcted tissue is subjected to numerous stresses: Decreased perfusion Abnormal cerebrovascular pressureautoregulation Compression by neighboring edema

    Active inflammation

    Free radical damage from infarcted

    region and

    neutrophils, astrocytes, microglia Induction of apoptosis by FAS death ligands

    CELL DEATH

  • 8/22/2019 AVC Radiologia

    11/19

    September 2004

    11

    Jay Chyung Phd, HMS III

    Gillian Lieberman, MD

    Pt B: Progression of an ischemic infarctPt B: Progression of an ischemic infarct

    Time = 3.25 hr

    30 hr

    8 days

    Late CT changes:

    Increased infarction area, mass effect on ventricle, loss of sulci,

    hypodensity

    in infarcted

    tissue

    * Hypodensity

    due to replacement of tissue by fluid

    [Figure from Pantano et al. 1999. Stroke 30:502-507]

  • 8/22/2019 AVC Radiologia

    12/19

    September 2004

    12

    Jay Chyung Phd, HMS III

    Gillian Lieberman, MD

    Hemorrhagic transformation ofHemorrhagic transformation of

    ischemic strokeischemic strokeHemorrhagic transformation of ischemic stroke results from

    reperfusion injury.

    Reperfusion injury:

    Restoration of blood flow through a

    previously occluded intracranial vessel that results in vessel walldestruction and hemorrhage.

    Spontaneous or tPA-induced clot lysis

    O2

    combines with toxic metabolites to generate superoxide O2-

    Invading neutrophils

    convert O2

    to O2

    -

    Blood-brain barrier destruction from free radical damage to

    endothelial cells AND ischemic endothelial cell death (3-4 hrs)

    Loss of blood supply

    Cell death

    ATP depletion

    FREE RADICAL

    DAMAGE:

    METABOLIC

    BYPRODUCTS

    NEUTROPHILS

    O2

    HEMORRHAGE

  • 8/22/2019 AVC Radiologia

    13/19

    September 2004

    13

    Jay Chyung Phd, HMS III

    Gillian Lieberman, MD

    Patient C: HemorrhagicPatient C: Hemorrhagic

    transformation of an ischemic stroketransformation of an ischemic stroke

    [Figure from http://www.strokecenter.org/education/ais_pathogenesis/16_hemorrhagic_conversion.htm]

    J Ch Phd HMS III

  • 8/22/2019 AVC Radiologia

    14/19

    September 2004

    14

    Jay Chyung Phd, HMS III

    Gillian Lieberman, MD

    tPAtPA--induced hemorrhagicinduced hemorrhagic

    transformation: potential treatmenttransformation: potential treatment1.

    tPA

    treatment for ischemic stoke often leads to secondary

    hemorrhagic transformation due to reperfusion injury

    2.

    Current models state that reperfusion injury occurs in large part

    from free radical damage following clot-lysis

    3.

    Therefore, delivery of tPA

    WITH

    anti-oxidants should reduce the

    probability of hemorrhagic transformations

    Animals models support co-administration of tPA

    with anti-oxidants

    in the prevention of secondary hemorrhagic transformation

    Lapchak

    and Zivin. 2003. STROKE 34(8):2013-8

    Lapchak et al. 2001. STROKE 32(1):147-153

    J Ch Phd HMS III

  • 8/22/2019 AVC Radiologia

    15/19

    September 2004

    15

    Jay Chyung Phd, HMS III

    Gillian Lieberman, MD

    Ischemic strokes: imaging with MRIIschemic strokes: imaging with MRI

    DiffusionDiffusion--Weighted Imaging (DWI)Weighted Imaging (DWI)

    DWI signal intensity is related to the apparentdiffusion coefficient (ADC) of watermolecules (independent of the amount of

    water)

    ADC(water) decreases by ~50% within 5-10min of ischemic stroke due to intracellularedema and also possibly decreased

    temperature

    recall that ATP is depleted from

    neurons within 4-5 min.

    *** DWI changes can be seen within minutes

    of an ischemic stroke.

    Loss of blood supply

    Massive depolarization

    ATP depletion

    intracellular ions

    INTRACELLULAR

    EDEMA

    Cell death

    EXTRACELLULAR

    EDEMA

    J Ch Phd HMS III

  • 8/22/2019 AVC Radiologia

    16/19

    September 2004

    16

    Jay Chyung Phd, HMS III

    Gillian Lieberman, MD

    Pt D: Imaging ischemic strokes withPt D: Imaging ischemic strokes with

    MRI DiffusionMRI Diffusion--Weighted Imaging (DWI)Weighted Imaging (DWI)

    PACS, BIDMC

    Left inferior

    temperal/occipital

    lobe ischemic infarct

    J Ch Phd HMS III

  • 8/22/2019 AVC Radiologia

    17/19

    September 2004

    17

    Jay Chyung Phd, HMS III

    Gillian Lieberman, MD

    Summary slideSummary slideLoss of bloodsupply

    Cell Death

    ATP depletion

    Edema, cytokine release,

    free radical damage, FAS

    death ligands

    Reperfusion injury

    Hemorrhagictransformation

    Cell Death

    DWI:

    increased signal intensity(5-10 min post-ischemic injury)

    Early CT changes:GW & sulcal

    effacement,

    mass effect (hrs to days)

    Bright lesionon CT

    Late CT changes:Hypodensity, mass effect,

    possibly enlarged infarct

    region

    Jay Chyung Phd HMS III

  • 8/22/2019 AVC Radiologia

    18/19

    September 2004

    18

    Jay Chyung Phd, HMS III

    Gillian Lieberman, MD

    ReferencesReferencesEaston JB et al. Cerebrovascular

    diseases,

    Chapter 366 in Harrisons Principles of Internal Medicine

    1998, 14th

    Edition: 2325-2348.

    Ishikawa M et al. Platelet-leukocyte-endothelial cell interactions after middle cerebral artery occlusion andreperfusion.

    J Cereb

    Blood Flow Metab. (2004) 24(8):907-15.

    Lapchak

    PA et al. Pharmacological effects of the spin trap agents N-t-butyl-phenylnitrone

    (PBN) and 2,2,6, 6-

    tetramethylpiperidine-N-oxyl (TEMPO) in a rabbit thromboembolic

    stroke model: combination studies with the

    thrombolytic tissue plasminogen

    activator.

    Stroke

    (2001) 32(1):147-153.

    Lapchak

    PA and Zivin

    JA. Ebselen, a seleno-organic antioxidant, is neuroprotective

    after embolic strokes in rabbits:

    synergism with low-dose tissue plasminogen

    activator.

    Stroke

    (2003) 34(8):2013-8.

    Onteniente

    B et al. Molecular pathways in cerebral ischemia.

    Mol Neurobiol.

    (2001) 27(1):33-72.

    Pantana

    P et al. Delayed increase in infarct volume after cerebral ischemia: Correlations with thrombotic treatment

    and clinical outcomes.

    Stroke

    (1998) 30:502-507.

    Sen

    S. Magnetic resonance imaging in acute stroke.

    eMedicine: http://www.emedicine.com/neuro/topic431.htm

    (2004).

    Wang X and Lo EH. Triggers and mediators of hemorrhagic transformation in cerebral

    ischemia.

    Mol Neurobiol. (2003) 28(3):229-44.

    Welch KMA et al. Magnetic resonance assessment of acute and chronic stroke.

    Prog. in Cardiovasc. Dis.

    (2000)43(2): 113-134.

    http://www.strokecenter.org/education/ais_pathogenesis/16_hemorrhagic_conversion.htm

    All websites as of 9/20/04

    Jay Chyung Phd HMS III

    http://www.emedicine.com/neuro/topic431.htmhttp://www.emedicine.com/neuro/topic431.htmhttp://www.strokecenter.org/education/ais_pathogenesis/16_hemorrhagic_conversion.htmhttp://www.strokecenter.org/education/ais_pathogenesis/16_hemorrhagic_conversion.htmhttp://www.strokecenter.org/education/ais_pathogenesis/16_hemorrhagic_conversion.htmhttp://www.emedicine.com/neuro/topic431.htm
  • 8/22/2019 AVC Radiologia

    19/19

    September 2004

    19

    Jay Chyung Phd, HMS III

    Gillian Lieberman, MD

    AcknowledgementsAcknowledgementsDan Cornfeld, MD

    Larry Barbaras

    Gillian Lieberman, MD

    Pamela Lepkowski


Recommended