+ All Categories
Home > Documents > AVEREM Process Engineering

AVEREM Process Engineering

Date post: 25-Feb-2022
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
50
AVEREM Process Engineering 20.04.2016 AVEREM Process Engineering - Services and Specialties - Equipment – Methods – Balances – Models
Transcript

AVEREM Process Engineering

20.04.2016

AVEREM Process Engineering

- Services and Specialties -

Equipment – Methods – Balances – Models

AVEREM Process Engineering

Background and

Experience

Equipment – Methods – Balances – Models

20.04.2016

AVEREM Process Engineering

Martin Schottler - Educational Background

� Study of Chemistry at the universities of Saarbrücken and Darmstadt (Germany)

� Master- and PhD thesis in the sector of gas phase reaction kinetics and chemistry/physics of

flames.

� 1982 Master thesis, 1986 PhD thesis completed.

� 1987 - 1989 Siemens Mikroelektronik Technologiezentrum, Munich (Germany) -

Semiconductor processing and engineering, mainly wet processes.

� 1989 - 1996 Hoechst AG, Dept. of Process Engineering (Group: reaction engineering),

Frankfurt (Germany)

� 1996 - 2010 MEISSNER+WURST / M+W Zander / M+W Group, Stuttgart (Germany)

Design support for high tech facility installations like in semiconductor or

solar fabs.

� 2010 - 2013 Consulting as a freelancer

� 2014 – today Foundation of AVEREM, Managing Director

07.11.1320.04.2016

Equipment – Methods – Balances – Models

AVEREM Process Engineering

Branches and Industries - Experience

07.11.1320.04.2016

Equipment – Methods – Balances – Models

AVEREM Process Engineering

Engineering Experience

Gathering AnalysisDefinition

of actionsPriorities Realisation

know - how

Efficiency

Engineering

Process

Engineering

Cost

Engineering

20.04.2016

AVEREM Process Engineering

Equipments and

Methods

Equipment – Methods – Balances – Models

20.04.2016

AVEREM Process Engineering

Equipments and Methods - Specialties

� VOC Exhaust Treatment

� Oxidation, Adsorption, Biology

� Condensation Plants for Solvent Recovery

� Ecobalance of VOC treatment

� Aqueous/Solvent wet absorbers („Wet Scrubbers“)

� Corrosives, Solvents

� Nitrous Gases (Process Choice vs. DENOX)

� Dry Absorber Configuration and Geometry

� Chemical Absorption, Effiency and Lifetime

� Flow Pattern

� Recommendation of Process – Dimensioning – Process Total Cost

Comparison

07.11.1320.04.2016

AVEREM Process Engineering

Example: Column dimensions

20.04.2016

AVEREM Process Engineering

Example: NOx absorption in liquids

07.11.13

I II III IV V

NO

"Nitrite" "Nitrate"

NO2

N2O

3N

2O

4

HNO2

HNO3

NO2

-NO

3

-

Water

Gas

8 species, 12 reactions,

dimensioning by validated

calculation models

20.04.2016

AVEREM Process Engineering

NOx Absorption: quantitative comparison, published

07.11.13

Process Comparison (2010)

Absorber Model & Parameter

Determination:

� Inclusion of literature data

� Simulation runs for refinement

� Cost models

� Process Choice

� Dimensions

� Efficiencies

� Energy Consumption

� Chemical Consumptions

� Engineering

20.04.2016

AVEREM Process Engineering

Balances and

Models

07.11.1320.04.2016

Modeling based on physics

Mass transferFluid mechanics

Balances Thermodynamics

• Mastering the processes

• Saving of measurements and tests

• Better decision support

AVEREM Process Engineering

Balances and Models

� Thermodynamic process models („Flowsheets“)

� Reaction Kinetics, homogeneous and heterogeneous reactions

� Mass Transfer gas-liquid� Rates of evaporation

� Rates of absorption

� Coupled absorption/reaction processes

� CFD (Computational fluid dynamics) calculations� Pipe flow pattern, vessel flow pattern

� Room air flow, stack flow, air flow around buildings

� „Bird's Eye“ Balances using Sankey Diagrams� Material and energy flow

� Cost flow

� Audit for capacities and reserves

� Ecobalance and CO2Footprint

07.11.1320.04.2016

AVEREM Process Engineering

Modeling General Approach

T H E O R Y

EMPIRICISM

MEASURE-

MENTS

POSTULATE

B U I L D VALIDATE U S E

I M P R O V E

Communicate

20.04.2016

AVEREM Process Engineering

The Underestimation Award for Process Modelling

U1 = Underestimation of Communication Difficulties

U2 = Underestimation of Validation Time and Effort

U3 = Underestimation of Model Maintenance

20.04.2016

Our experience will help to

overcome underestimation

AVEREM Process Engineering

CFD: Computational

Fluid Dynamics

20.04.2016

Equipment – Methods – Balances – Models

AVEREM Process Engineering

Example: stack flow

Investigation of proper

flow at stack orifice

20.04.2016

AVEREM Process Engineering

Example: chemical filter flow inhomogeneities

20.04.2016

AVEREM Process Engineering

Example: Pharmaceutical cleanroom airflow

FFU

Re

turn

Air

Sh

aft

PlenumDuct

Ro

om

Air

Sh

aft

(to

Air

Ha

nd

lin

g U

nit

)

Room Air

Supply

Tool

100 fpm,

0.5 m/s

5 to 20 FFUs, 100% Coverage

Cu

rta

in

20.04.2016

AVEREM Process Engineering

Example: Pharmaceutical cleanroom heat loads

FFU

Re

turn

Air

Sh

aft

PlenumDuct

Ro

om

Air

Sh

aft

(to

Air

Ha

nd

lin

g U

nit

)

Room Air

Supply

10 …

100 …

1000 W

100 … 300 W

Operator

100 W

Light

50 … 100 W

Ceiling, walls, autoclave door, rabbits …

Cooled AirC

urta

in

20.04.2016

AVEREM Process Engineering

Mass Transfer

Equipment – Methods – Balances – Models

20.04.2016

AVEREM Process Engineering

Example: mass transfer gas – liquid with chemical reaction

20.04.2016

Since the transport (diffusion) phenomena

in the two boundary film (gas and liquid)

are determining, the underlying theory is

called „two film theory“.

AVEREM Process Engineering

Case by case analysis (Levenspiel)

Cases give by the two film theory to mathematically describe the

rate of combined mass transfer and liquid reaction at different

rate of mass transfer and chemical reaction, respectively.

(O. Levenspiel, Chemical Reaction Engineering, 2nd edition, New York 1972)

rate of mass transfer rate of chemical reaction

AVEREM Process Engineering

Example: Contactor properties

A / Vliq A / VR Vliq / VR Vliq / Vfilm

m2/m3 m2/m3 - -

Spray tower 1200 60 0.05 2-10

Packed tower 1200 100 0.08 10-100

Plate column 1000 150 0.15 40-100

Agitated vessel 200 200 0.90 150-800

Bubble column 20 20 0.98 4,000-10,000

source: Westerterp, acc. to Levenspiel

A: Interfacial area

Vliq: Liquid volume

VR: Reactor volume

Vfilm Liquid film volume

AVEREM Process Engineering

Thermodynamic Flowsheet

Models

20.04.2016

AVEREM Process Engineering

07.11.13

Example: CDA generation

20.04.2016

AVEREM Process Engineering

General approach

Flowsheet

Process Library

Process Conditions

Own Process

Calculator

Interpretation of results

Thermodynamic Model

modification

modification

20.04.2016

AVEREM Process Engineering

Example: study of evaporation behaviour

� Desorption efficiency as a function of liquid polar compounds content

� Composition of the two liquid phases after condensing

20.04.2016

AVEREM Process Engineering

Example: Exhaust air purification

07.11.1320.04.2016

� Purification efficiency

� Absorption liquid flow and regeneration

� Impurities and their behaviour

� Exhaust composition

� Heat balance

20.04.2016

AVEREM Process Engineering

Sankey Diagram

Analysis

20.04.2016

AVEREM Process Engineering

Example I: Site Flow Analysis

Thermodynamics: None

20.04.2016

AVEREM Process Engineering

Semiconductor site / 45% water recycling, energy flow

07.11.13

T1: Process Equipment

T2: UPW Production

T3: CDA Production

T4: MAHU

T5: Waste Water Treatment

T6: Exhaust Treatment

T7: Solid / Liquid waste

T8: Chillersand CWD

T9: Cooling Towers

P2: Electrical Energy

P3: Water discharged

P4: Air exhausted

P5: Waste

P4: Air exhaustedP2: Electrical Energy

P2: Electrical Energy

P2: Electrical Energy

P6: WWT

P6: WWT

P6: WWT

P7: Production

P4: Air exhausted

P8: EX

P7: Production

P9: Return Air

P10: Wafers P11: PV Wafer finished

P12:CT Heat

P1: Raw Water

P3: Water discharged

P13: CoolingP13: Cooling

P13: CoolingP14:WST

P14:WST

P13: Cooling

P8: EX

P1: Raw Water

P15: Outside Air

P15: Outside AirP2: Electrical Energy

P7: Production

P16:MAHU

P16:MAHU

P15: Outside Air

P3: Water discharged

40,110 kWh

T10: Return AirManagement

T11: CT WaterDispatch

P18: CT Water

P18: CT Water

P3: Water discharged

P19: Return Air2

P19: Return Air2

20,000 kWh

8,352 kWh

P13: Cooling

P2: Electrical Energy

P2: Electrical Energy

P20: UPW Recycling T12: UPW Recycling

P6: WWT

P20: UPW Recycling

P21: From Recycling

P21: From Recycling

20.04.2016

� „Bird's Eye“ View to Production

� Engineering Case Studies

� Optimisation

AVEREM Process Engineering

Semiconductor site / 45% water recycling, water flow

07.11.13

T1: Process Equipment

T2: UPW Production

T3: CDA Production

T4: MAHU

T5: Waste Water Treatment

T6: Exhaust Treatment

T7: Solid / Liquid waste

T8: Chillersand CWD

T9: Cooling Towers

P2: Electrical Energy

P3: Water discharged

P4: Air exhausted

P5: Waste

P4: Air exhaustedP2: Electrical Energy

P2: Electrical Energy

P2: Electrical Energy

P6: WWT

P6: WWT

P6: WWT

P7: Production

P4: Air exhausted

P8: EX

P7: Production

P9: Return Air

P10: Wafers P11: PV Wafer finished

P12:CT Heat

P1: Raw Water

P3: Water discharged

P13: Cooling

P13: Cooling

P13: CoolingP14:WST

P14:WST

P13: Cooling

P8: EX

P1: Raw Water

P15: Outside Air

P15: Outside AirP2: Electrical Energy

P7: Production

P16:MAHU

P16:MAHU

P15: Outside Air

P3: Water discharged

80,220 kg

158.7 m3/h

132.3 m3/h

T10: Return AirManagement

T11: CT WaterDispatch

P18: CT Water

P18: CT Water

P3: Water discharged

P19: Return Air2

P19: Return Air2

P13: Cooling

P2: Electrical Energy

P2: Electrical Energy

P20: UPW RecyclingT12: UPW Recycling

P6: WWT

P20: UPW Recycling

P21: From Recycling

P21: From Recycling

220 m3/h

98.11 m3/h

99 m3/h

121 m3/h

� „Bird's Eye“ View to Production

� Engineering Case Studies

� Optimisation

20.04.2016

AVEREM Process Engineering

Example of use: scenario analysis / PV cell production

20.04.2016

0,00

0,50

1,00

1,50

2,00

2,50

3,00

Process

Equipment

Total Facility Chiller / Process

Cooling

Air Handling Bulk Gases Compressed Dry

Air

Rest

Ele

ctri

cal

po

we

r d

em

an

d o

f th

e f

aci

liti

es

/ M

W

Worst of all

Standard Scenario (2)

Best of all

� „Bird's Eye“ View to Production

� Engineering Case Studies

� Optimisation

AVEREM Process Engineering

Example II: Sensitivity Analysis / Business Cases

Thermodynamics: None

20.04.2016

AVEREM Process Engineering

Production network with multiple recycling loops

Gas

Reactor

Conden-

sation

DistillationGas

Reactor

Raw materials Main Product

Gas

cleaning

Gas

Liquid

Solid

Gas

Reworked

raw material

Side Product

Residues

To raw material

production

20.04.2016

AVEREM Process Engineering

Production network with multiple recycling loops

Gas

Reactor

Conden-

sation

DistillationGas

Reactor

Raw materials Main Product

Gas

cleaning

Gas

Liquid

Solid

Gas

Reworked

raw material

Side Product

Residues

To raw material

production

P1: Matières premières .

P2: Produits recyclés .

P3: Produits finis .T1: Réacteur Siemens .(Déposition)

T2: Condensation .

T3: Distillation .(3CS/4CS)

T4: Conversion .4CS - 3CS

T5: Purification H2 .

P3: Produits finis .

B

P9: Recyclage H2 .

B

P9: Recyclage H2 .

P1: Matières premières .

A

P10: Vers Dépo .

A P10: Vers Dépo .

P11: Produits résiduels .

P11: Produits résiduels .

787.2 kg/h

787.2 kg/h

202 kg/h

853 kg/h

32.51 kg/h

853 kg/h

1,027 kg/h

1,671 kg/h

12.04 kg/h

118.2 kg/h

775.2 kg/h

41.03 kg/h

Main product

Side product 4CS

Side product 4CS

recirculated3rd, external

recycling loop C

Raw material 3CS

Raw material 3CS

recirculatedA

20.04.2016

AVEREM Process Engineering

Lowering 4CS sales

P1: Matières premières .

P2: Produits recyclés .

P3: Produits finis .

P4: Recyclage 3CS .

T1: Réacteur Siemens .(Déposition)

T2: Condensation .

T3: Distillation .(3CS/4CS)

T4: Conversion .4CS - 3CS

P5: Vers Cond. .

P6: Vers Dist. .

P7: Vers Conversion .

P8: Vers Purif. H2 .

T5: Purification H2 .

P3: Produits finis . P9: Recyclage H2 .

P9: Recyclage H2 . P1: Matières premières .

P10: Vers Dépo .

P10: Vers Dépo .

P11: Produits résiduels .

P11: Produits résiduels .

787.24 kg/h

787.24 kg/h

202 kg/h

852.95 kg/h

32.506 kg/h

852.95 kg/h

1,027.2 kg/h

x 0.5

787

P1: Matières premières .

P2: Produits recyclés .

P3: Produits finis .

P4: Recyclage 3CS .

T1: Réacteur Siemens .(Déposition)

T2: Condensation .

T3: Distillation .(3CS/4CS)

T4: Conversion .4CS - 3CS

P5: Vers Cond. .

P6: Vers Dist. .

P7: Vers Conversion .

P8: Vers Purif. H2 .

T5: Purification H2 .

P3: Produits finis . P9: Recyclage H2 .

P9: Recyclage H2 . P1: Matières premières .

P10: Vers Dépo .

P10: Vers Dépo .

P11: Produits résiduels .

P11: Produits résiduels .

964.13 kg/h

964.13 kg/h

202 kg/h

931.1 kg/h

34.916 kg/h

931.1 kg/h

1,103.3 kg/h

964

+ 22%

+ 15%

Basic scenario Lowered sales scenario

20.04.2016

AVEREM Process Engineering

No 4CS sales – basic scenario

P1: Matières premières .

P2: Produits recyclés .

P3: Produits finis .

P4: Recyclage 3CS .

T1: Réacteur Siemens .(Déposition)

T2: Condensation .

T3: Distillation .(3CS/4CS)

T4: Conversion .4CS - 3CS

P5: Vers Cond. .

P6: Vers Dist. .

P7: Vers Conversion .

P8: Vers Purif. H2 .

T5: Purification H2 .

P3: Produits finis . P9: Recyclage H2 .

P9: Recyclage H2 . P1: Matières premières .

P10: Vers Dépo .

P10: Vers Dépo .

P11: Produits résiduels .

P11: Produits résiduels .

787.24 kg/h

787.24 kg/h

202 kg/h

852.95 kg/h

32.506 kg/h

852.95 kg/h

1,027.2 kg/h

= 0

787

P1: Matières premières .

P2: Produits recyclés .

P3: Produits finis .

P4: Recyclage 3CS .

T1: Réacteur Siemens .(Déposition)

T2: Condensation .

T3: Distillation .(3CS/4CS)

T4: Conversion .4CS - 3CS

P5: Vers Cond. .

P6: Vers Dist. .

P7: Vers Conversion .

P8: Vers Purif . H2 .

T5: Purification H2 .

P3: Produits finis . P9: Recyclage H2 .

P9: Recyclage H2 . P1: Matières premières .

P10: Vers Dépo .

P10: Vers Dépo .

P11: Produits résiduels .

P11: Produits résiduels .

1,237 kg/h

1,237 kg/h

202 kg/h

1,049.2 kg/h

38.559 kg/h

1,049.2 kg/h

1,218.4 kg/h

1,237

+ 57%

+ 37%

Basic scenario No sales scenario

20.04.2016

AVEREM Process Engineering

Example III: Carbon Footprint of VOC removal from

exhaust gas

Thermodynamics: Undergraduate Level

20.04.2016

AVEREM Process Engineering

Electrical energy consumption

T1: Dispatch_ein

T2: Absorption

T3: Ventilation

P1: VOC

P9: VOC_Luft

P10: VOC_liq

P11:Luft

T4: Dptch_aus

T5: Desorption T6: Kond1

P14: VOC_liq

P16:Abs CO2

P17: DL_AK1

P21: Ausschls_D

P23: Parameter

P24: DL_AK2

P6:Pel_Hz_uaP12

P7:Hvent CO2

P5:Pel_Hz_ua

P3: Energie ext

P4: Liq_N

P2: Luft

P25: Anfahren

T7: Anfahren Venti

T8: Anfahren Heizg

P26: CO2

P27: Kosten

Desorption

Kondensation 1

Absorption

P28

T11: Anfahren Kondensation

P29: Anf_Venti

P30: Anf_Hz

P31: Anf_Kond

T12 P32: Anfahren

Anfahren

P33

P34

P35

P36

P33

T13: Anfahren Absorption P37: Anf_Abs

P35

P34

P36

T14

P38

P39

P40

P41

P42: DL

T15: AK T16: Kond2

T17: Disp_Kond

P43 P44

P45P46

P47P22:Luft

P48: Ausgeschleust

Aktivkohle Kondensation 2

T18

P49:Disp_Kl

P50:KM3

P51:KM2

P52:KM1

Kälteerzeugung

P51:KM2 P50:KM3 P50:KM3

← Steady state

flow diagram

← Startup

calculation without

flow diagram

20.04.2016

AVEREM Process Engineering

CO2production layout

CO2 Analyse

T9: CO2 Analyse

P7:Hvent CO2

P6:Pel_Hz_ua

P5:Pel_Hz_ua

P16:Abs CO2

Die hier berechnete CO2 Emission ist die SUMME der direkten und indirekten Emissionen und nicht nur der stoffliche CO2 Fluss aus dem Netz

P28

Kondensation

Hauptventilator

Desorption

Absorption

P32: Anfahren

P51:KM2

P50:KM3 T19 P53: Kond_CO2

P52:KM1 T20 P54:Des_CO2

← Analysis

layout „elsewhere“

on the same sheet

20.04.2016

AVEREM Process Engineering

Example IV: Ultrapure Water Plant - Debottlenecking

Thermodynamics: Undergraduate level

20.04.2016

AVEREM Process Engineering

Handling of peak flow

T15: Stufe 2Pumpen

T16: Wärme-tauscher

T17: Haupt-Ionentauscher

T15: Stufe 2Pumpen

T16: Wärme-tauscher

m3/h

kWkW

ave

Peak

20.04.2016

AVEREM Process Engineering

Definition of capacities

Design point /

normal operation

limit of normal

operation

„max“ defined by spec. of apparatus

but already exceeding spec. of

process

Reserve 1

RKF

Reserve 2

R2KF

+-

additional

capacity

required

20.04.2016

AVEREM Process Engineering

Spare capacity display

T15: Stufe 2Pumpen

T16: Wärme-tauscher

T17: Haupt-Ionentauscher

T18: Kerzen-

Green: full and true reserve

Yellow: reserve with compromise on spec

Red: Lack of capacity

@ the flow resulting in calculation

Sankey arrows displayed are either

water flow (m3/h), energy (kW), or

capacity (m3/h) – based on the same

basic calculation

20.04.2016

AVEREM Process Engineering

Environmental Impact

AVEREM Process Engineering

Ecobalance (LCA)

07.11.13

AVEREM Process Engineering

IMPACT 2002+ valuation for LCA

07.11.1320.04.2016

AVEREM Process Engineering

LCA example: cryst. Si-PV cell fabrication

07.11.13

� Scale effects

� Mono- vs. polycrystalline Si

� Weighing of Si production vs. cell production

� Influence of VOC and NOx treatment

� g CO2/kWh as benchmark figure

20.04.2016

AVEREM Process Engineering

07.11.13

AVEREM Process Enginering

AVEREM Verfahrenstechnik GmbH

Bismarckstr. 75

70197 Stuttgart (Germany)

www.averem.com - [email protected]

+49 - 711 - 914 968 70

+49 - 151 - 235 607 45 (mobile)

20.04.2016


Recommended