+ All Categories
Home > Documents > AWS IFS-02 - 2002.pdf

AWS IFS-02 - 2002.pdf

Date post: 04-Apr-2018
Category:
Upload: huselius
View: 367 times
Download: 32 times
Share this document with a friend

of 55

Transcript
  • 7/29/2019 AWS IFS-02 - 2002.pdf

    1/55

    IFS:2002

    INTERNATIONAL INDEXOF

    WELDING FILLER METAL

    CLASSIFICATIONS

    Compiled by the

    International Institute of Welding

    Commission II

    AMERICAN WELDING SOCIETY550 N.W. LeJeune Road, Miami, FL 33126

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    2/55

    ii

    International Standard Book Number: 0-87171-703-4

    American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126

    2002 by American Welding Society. All rights reservedPrinted in the United States of America

    Photocopy Rights

    Authorization to photocopy items for internal, personal, or educational classroom use only, or the internal, personal, oreducational classroom use only of specific clients, is granted by the American Welding Society (AWS) provided that theappropriate fee is paid to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: 978-750-8400;

    online: http://www.copyright.com.

    http://www.copyright.com/http://www.copyright.com/
  • 7/29/2019 AWS IFS-02 - 2002.pdf

    3/55

    iii

    AWS IFS-2002

    Keywords Classification comparisons, shielded metal arc welding (SMAW) classifications,

    submerged arc welding (SAW) classifications, gas metal arc welding (GMAW) classifications,

    gas tungsten arc welding (GTAW) classifications, flux cored arc welding (FCAW)

    classifications, carbon steels,low-alloy steels, stainless steels, nickel alloys, aluminum alloys, hard-facing alloys, titaniumalloys, filler metals for welding cast irons

    International Index of

    Welding Filler Metal

    Classifications

    Compiled by theInternational Institute of Welding

    Commission II

    Prepared by the

    AWS Technical Services Division

    Under the Direction of the

    Technical Activities Committee

    Approved byAWS Board of Directors

    Abstract

    This document updates IFS:1998, the first document that proposed to establish a generic

    system for identification of welding filler metals for use in ISO specifications. Since that issue,additional ISO draft standards for welding filler metals have been prepared, many of which

    have taken cognizance of the proposed generic system. In doing so, several refinements in the

    generic system have been adopted. This document also recognizes revisions proposed in draftnational standards since the earlier edition. IIW representatives from Europe, Canada, Japan,

    China, Australia, Argentina, Brazil, Russia, and the United States collaborated in providing the

    data from specifications in their respective countries.

    AMERICAN WELDING SOCIETY

    550 N. W. LeJeune Road, Miami, Florida 33126

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    4/55

    iv

    Foreword

    The American Welding Society (AWS) and other member societies of the International Institute of Welding(IIW) receive many inquiries concerning comparison classifications of filler metals produced in the industrialized

    countries of the world. The cross-referencing of AWS classifications with those of foreign specifications was first

    accomplished in AWS publication, International Specification Cross Reference List, IFS-87. Since then, the

    standards of many individual European countries have been superceded by standards prepared by the EuropeanCommittee for Standardization, which is known by its acronym CEN (Comit Europenne de Normalization). In

    addition, other national bodies have revised filler metal standards and have added new classifications.

    During the past two decades, the IIW and the International Organization for Standardization (ISO), through its

    Committee ISO TC44/SC3, have been active in drafting international standards for welding consumables.The cross-referencing of specifications is becoming increasingly important in this era of multinational

    enterprises. Like its predecessors, this publication in electronic format provides a listing of similar products that

    may be expected to meet the requirements of different national and international specifications. Though similaritiesexist in the many such specifications, there are frequently significant differences in requirements. Caution should

    be exercised in the selection of the reported comparable classifications. In critical applications or when engineering

    or other codes exist in construction or repair activities, the applicable specifications of the selected alternate filler

    metal should be reviewed for conformity with the applicable codes. Neither AWS nor IIW assumes responsibilityfor the accuracy of the comparisons. Fabricators should verify properties and compositions as part of a normal

    quality assurance program.An index number is the basis for establishing the comparability of various classifications. This number,

    described in detail in Annex A, is based upon what has been termed a generic system for filler metal

    designations. The designations have been adopted in several recently drafted international specifications. Theindex number with the initials WFM (weld filler metal) appears in the first column in each of the tables and

    becomes the cross-reference identification in the compilation of grades shown for each national specification.

    Unlike its predecessor, the tables in the present electronic format allow the properties that define theclassification to appear in the same table with columnar headings for specifications with comparable filler metals.

    The considerably larger tables no longer need to be divided into sizes that fit the printed page. The computer allows

    the scrolling of such tables, permitting the user to view the portion of direct interest. Furthermore, the searching

    capability enables the user to locate and address the portions of the tables needed.The principal tables are arranged first according to product type and then by welding process. For example,

    the unalloyed carbon steels are in sequential tables, first as covered electrodes for SMAW, then as flux-cored wires

    for flux cored arc welding (FCAW), and then as solid and composite (metal-cored) wires for submerged arcwelding (SAW), gas metal arc welding (GMAW), and gas tungsten arc welding (GTAW). Likewise, low-alloysteels; stainless steels; nickel-, aluminum-, and titanium- alloys along with hard-facing and other surfacing alloys;

    and cast iron filler metals are grouped together in sequential tables for the different welding processes.

    Because national and international specifications are subject to frequent review and revision, this documentwill require updating from time to time. CEN specifications listed herein may have existed at the time of this

    publication as provisional specifications (prEN) and are assumed to become EN specifications by dropping the

    provisional designation. Similarly, revisions to AWS specifications that have not yet been published but are in

    various stages of acceptance are included in the listings in this document. ISO specifications that at the time ofinclusion in this publication may have existed as Draft International Standards (DIS or FDIS) are presented without

    the draft prefixes. Users of these tables must be aware that specifications that were in the draft stages before final

    publication may be altered or classifications may be added or deleted from the final specifications.

    Comments and inquiries concerning this publication are welcome. They should be sent to the Managing

    Director, Technical Services Division, American Welding Society, 550 NW LeJeune Road, Miami, FL 33126.

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    5/55

    v

    Acknowledgements

    Subcommission XIID of the International Institute of Welding, chaired by David Shackleton, initiated the

    task of assigning the designations for welding filler metals in 1984 and appointed R. David Thomas, Jr. as

    rapporteur. This task group was comprised of Raul Timerman (Argentina), Roger Daemon (Belgium), FritzWeyland (Germany), David Ellis (United Kingdom), Lea Roberts (Canada), and Damian Kotecki (United States).

    In 1989, the task group sought and received acceptance of the generic system for filler metal designations at the

    IIW Annual Assembly in Helsinki, Finland.11

    In 1995 in Stockholm, Sweden, Commission XII agreed to the publication by the American Welding Society

    of an index of filler metals classifications in national specifications. Following the publication ofInternational

    Index of Welding Filler Metal Classifications IFS:1998, IIW Commission II agreed to undertake the revisions

    needed to update this project. Many persons have contributed to the updating of this project. The AmericanWelding Society is especially pleased to acknowledge the efforts of the following persons.

    CONTRIBUTORS

    Argentina - Estela Surian

    Australia - Milo Dumovic

    Brazil - Giovanni CrisiCanada - Lea Roberts

    China - Paio Duonggang

    Europe - David Widgery, Lennart Wittung, Vincent Van der Mee

    ISO - David Widgery, Damian Kotecki

    Japan - Shinsuke Tsutsumi, Yoji Nakai

    Russia - Irena Schmeleva, Youri Kouskov, Elena MikheevaUSA - David Thomas

    USA (AMS) - Richard LaFave

    EXPERT REVIEWERS

    Carbon and Low-Alloy Steel Covered Electrodes - Lea Roberts

    Carbon and Low-Alloy Steel Flux Cored Wires - Michael Merlo

    Carbon and Low-Alloy Steel Submerged Arc Wires - Dennis Crockett

    Carbon and Low-Alloy Steel GMAW and GTAW Wires - David FinkStainless Steel Filler Metals - Damian Kotecki

    Nickel Alloy Filler Metals - David Jordan, Russel Fuchs

    Aluminum Alloy Filler Metals - Paul Dickerson, Lance Vernam

    Copper Alloy Filler Metals - Keith ThornberryHard-Facing and Other Surfacing Filler Metals - Ravi Menon

    Titanium Alloy Filler Metals - Damian Kotecki, Rick Sutherlin

    Filler Metals for Cast Iron - Sam Kiser, Pat Hunt

    FINAL REVIEWERS

    Technical Activities Committee - David Fink, Damian Kotecki, Harvey Casstner

    Technical Council Vic Matthews, Scott Chapple

    1 IIW doc. XII-1141-89 Generic system for designating welding filler metals -- proposal for submission to ISO

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    6/55

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    7/55

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    8/55

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    9/55

    TABLE 3. Carbon Steel Wires for SAWUSA Canada Brazil Australia Japan

    AWS CSA ABNT AS JISC Mn Si Other 14171A 14171B A5.17/A5.17M W48.6 NBR 10617 1858.2 Z3351

    Note a (Note b) (Note b) (Note b)

    S1000 0.1 0.5 0.05 S1 SU11 EL12 EL12 EL 12 EL12 YS-S1

    S1001 0.1 0.7 0.05 ELM12

    S1100 0.08 0.5 0.05 EL8 EL 8 EL8

    S1110 0.08 0.5 0.2 S1Si SU12 EL8K EL8K EL 8K EL8K

    S2000 0.1 1 0.05 S2 SU22 EM12 EM12 EM 12 EM12 YS-S2

    S2001 0.1 1.3 0.05

    S2010 0.1 1 0.2 S2Si SU21 EM12K EM12K EM 12K EM12K

    S2020 0.1 1 0.5 S2Si2 SU25 EM13K EM13K EM 13K EM13K

    S2021 0.1 1.1 0.5 Ti 0.1 SU24 EM14K EM14K

    S2030 0.1 1.3 0.75 EM11K EM11K

    S2210 0.15 1.1 0.2 SU23 EM15K EM15K EM 15K EM15K YS-S3

    S3000 0.12 1.6 0.15 SU32 EH10K EH10K YS-S5S3001 0.12 1.6 0.05 S3 SU33 YS-S4

    S3010 0.12 1.8 0.4 SU42 EH12K EH12K EMH12K

    S3011 0.12 1.6 0.25 S3Si

    S3020 0.12 1.6 0.6 YS-S8

    S3030 0.12 1.6 1 SU31 EH11K EH11K

    S3100 0.08 1.6 0.05 EMH12

    S4000 0.12 2 0.05 S4 SU41 EH14 EH14 EH 14 EH14

    S4010 0.12 2 0.3 S4Si

    S4020 0.12 2.2 0.4 SU42 YS-S7

    S4110 0.08 2 0.8

    S5000 0.12 2.5 0.05 SU51 YS-S6

    a. See Annex A, Paragraph A2.0 for a description of the WFM index system, and Pararaph A2.1.2 as it applies to this table. Note: the initial desigby "C" for metal-cored composite wires

    b. Tubular metal-cored wires have initial designators "EC".

    ISOWFM No. Nominal Composition

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    10/55

    Table 4 Carbon Steel Wires for GMAW and GTAWCanada Australia

    WFN No. CSA AS

    C Mn Si Other 14341A 14341B CD636A CD636B A5.18 A5.18M 48.4 2717.1 Z3312 Z3316

    (Note a)(Note c) (Note c)

    S2030 0.1 1.2 0.6 G2Si SG3 W2Si SW3 ER70S-3 ER48S-3 ER49S-3 ES3

    S2032 0.1 1 0.5 Al 0.6 G2Al ES5

    S2040 0.1 1 0.8

    S2040A 0.1 1.3 0.8 SG4 SW4 ER70S-4 ER48S-4 ER49S-4 ES4

    S2040B 0.1 1.3 0.7 SG16 SW16 YGW16

    S2043 0.1 1.3 0.7 Ti + Zr 0.1 SG15 YGW15

    S2131 0.06 1.2 0.6 Ti 0.1, Zr 0.1, Al 0.1 G2Ti SG2 W2Ti SW2 ER70S-2 ER48S-2 ER49S-2 ES2

    S2231 0.15 0.8 0.6 Zr 0.1, Al 0.4, Ce 0.2

    S2241 0.2 1 0.8 Al 0.4, Ce 0.4

    S3040 0.1 1.6 1 SG6 SW6 ER70S-6 ER48S-6 ER49S-6 ES6

    S3040 0.1 1.5 0.8 G3Si1 SG12 W3Si1 SW12 YGW12

    S3041 0.1 1.6 0.7 Ti + Zr 0.15, Al 0.3 SG13 YGW13

    S3043 0.1 1.7 0.8 Ti+Zr 0.15 SG11 YGW11 YGT50

    S3050 0.1 1.5 1.2 G3Si2 SG14 YGW14&17

    S4023 0.1 1.8 0.4 Ti+Zr 0.15 SG17

    S4040 0.1 1.8 0.7 SG7 SW7 ER70S-7 ER48S-7 ER49S-7 ES7

    S4043 0.1 2 0.8 Ti+Zr 0.15 SG18 YGW18&19

    S4050 0.1 1.8 1 G4Si1 W4Si1

    Notes:

    a. See Annex A, Paragraph A2.0 for a description of the WFM index system, and Pararaph A2.1.2 as it applies to this table. Note: the initial designator "S" is replaced by "C" for met

    b. See specification for mechanical property designators, which precede the composition designators

    c. For tubular metal-cored composite wires, "R" is deleted and "S" is replaced with "C".

    Japan

    Nominal Composition JIS

    (Note c)(Note b)

    14341

    ISO ISO

    CD636-1

    USA

    AWS

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    11/55

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    12/55

    TABLE 5B. Low Alloy Cr-Mo Steel Covered ElectrodesCanada A rgentina Australi a

    Nominal AMS CSA IRAM-IAS AS/NZS GB/T

    Strength C Mn Cr Mo Other A B A5.5 A5.5M W48 U500-127 1553.2 5118

    MPa (Note b)

    E48xx- 1M3 490 0.1 0.5 EMo x E49xx-MM3 E70xx-A1 E49xx-A1 E49xx-A1 E48xx-A1 E48xx-A1 E50xx-A

    E55xx- CM 550 0.1 0.6 0.5 0.5 ECrMo0.5 x E55xx-CM E80xx-B1 E55xx-B1 E55xx-B1 E55xx-B1 E55xx-B1 E50xx-B

    E55xx- C1M 550 0.1 0.5 0.5 1.1 E55xx-C1M E80xx-B5 E55xx-B5 E5518-B5 E5516-B5 E5516-B5 E5516-B

    E55xx- C1MV 550 0.1 1 0.5 1 V 0.4 EMoV x

    E55xx- 1CM 550 0.1 0.6 1.2 0.5 ECrMo1 x E55xx-1CM E80xx-B2 E55xx-B2 E55xx-B2 E55xx-B2 E55xx-B2 E5515-B

    E55xx- 1CML 490 0.04 0.6 1.2 0.5 ECrMo1L x E55xx-1CML E70xx-B2L E49xx-B2L E55xx-B2L E55xx-B2L E55xx-B2L E55xx-B

    E55xx- 1C1MV 550 0.1 0.4 1.2 1 V0.3, Nb 0.2 E5515-B2V

    E55xx- 1CMV 550 0.1 0.6 1.2 0.5 V 0.3 ECrMoV1 x E5515-B

    E55xx- 1C1MVW 550 0.1 0.4 1.2 1 V 0.4, W 0.4 E5515-B2

    E62xx- 2C1M 620 0.1 0.6 2.2 1 ECrMo2 x E62xx-2C1M E90xx-B3 E62xx-B3 E62xx-B3 E62xx-B3 E62xx-B3 E55xx-B

    E55xx- 2C1ML 550 0.04 0.6 2.2 1 ECrMo2L x E55xx-2C1ML E80xx-B3L E55xx-B3L E55xx-B3L E62xx-B3L E60xx-B

    E55xx- 2CM1L 550 0.04 0.6 2 0.5 E55xx-2CM1L E80xx-B4L E55xx-B4L E55xx-B4L E5515-B4L E5515-B4L E5515-B

    E55xx- 2C1MV 550 0.1 0.6 2.6 0.9 V 0.4, Nb 0.5 E5515-B3V

    E55xx- 2CMV 550 0.1 0.6 2 0.5 V E5515-B3

    E55xx- 5CM 550 0.08 0.6 5 0.5 ECrMo5 x E55xx-5CM E80xx-B6 E55xx-B6 6467 E55xx-B6 E4216-B6 E41xx-5Cr

    E55xx- 5CML 550 0.04 0.6 5 0.5 E55xx-5CML E80xxB6L E55xx-B6L E55xx-B6L E42xx-B6L

    E55xx- 5CMV 550 0.1 0.6 5 0.5 V 0.3

    E55xx- 7CM 550 0.08 0.6 7 0.5 E55xx-7CM E80xx-B7 E55xx-B7 E55xx-B7 E42xx-B7 E41xx-7Cr

    E55xx- 7CML 550 0.04 0.6 7 0.5 E55xx-7CML E80xx-B7L E55xx-B7L E55xx-B7L E42xx-B7L

    E55xx- 9C1M 550 0.08 0.6 9 1 ECrMo9 x E55xx-9C1M E80xx-B8 E55xx-B8 E55xx-B8 E42xx-B8 E41xx-9Cr

    E55xx- 9C1ML 550 0.04 0.6 9 1 E55xx-9C1ML E80xx-B8L E55xx-B8L E55xx-B8L E42xxB8L

    E62xx- 5C1MV 620 0.11 1 9 1 Nb 0.05, V 0.2 ECrMo91 x E62xx-9C1MV E90xx-B9 E55xx-B9 E55xx-B9

    E62xx- 12CMV 620 0.2 1 11 1 W 0.5, V 0.3 ECrMoWV12 x

    Notes:

    a. See Annex A, Paragraph A2.0 for a description of the WFM index system and A2.1.1 and A2.2 as they apply to this table.

    b. The "x" denotes coating, B = basic, R = rutile.

    (Note a)

    WFM No.

    ISO

    3580Nominal Composition

    USA

    AWS

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    13/55

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    14/55

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    15/55

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    16/55

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    17/55

    TABLE 7A Low Alloy Medium Strength Steel Wires for SAW (excl. Cr-Mo & High Strength -- NoteUSA Australia

    Nominal Composition AWS AS

    C Mn Si Ni Cr Mo Other 14171A 14171B A5.23/A5.23M 1858.2

    (Note e) (Note e) (Note c)

    S1001- 1M3 0.1 0.5 0.1 0.5 S1Mo

    S1000- 1M3 0.1 0.8 0.1 0.5 SU1M3 EA1 EA1

    S3001 2M1 0.1 1.1 0.1 0.3 SU2M1

    S2000- 2M3 0.1 1.2 0.1 0.5 S2Mo SU2M3 EA2 EA2

    S4001- 3M1 0.12 1.6 0.1 0.3 SU3M1

    S4010- 3M1 0.12 1.8 0.4 0.3

    S3000- 3M3 0.1 1.5 0.1 0.5 S3Mo SU3M3 EA4 EA3

    S3010- 3M3 0.12 1.5 0.4 0.5

    S4000- 4M1 0.12 2 0.1 0.3 SU4M1

    S4000- 4M3 0,1 2 0.1 0.5 S4Mo SU4M3 EA3 EA4

    S4020- 4M3 0.1 1.8 0.7 0.5 SU4M31 EA3K

    S5010- 5M3 0.12 2.5 0.1 0.5 SU5M3

    S2000- N2 0.1 1 0.2 1 S2Ni1 SUN2 ENi1 ENi1

    S2010- N2 0.1 1.1 0.6 1 SUN21 ENi1K

    S3000- N3 0.1 1.7 0.5 1.5 SUN31

    S2000- N3 0.1 1 0.2 1.5 S2Ni1,5 SUN3

    S3000- N3 0.1 1.5 0.2 1.5 S3Ni1,5

    S2000- N5 0.1 1 0.2 2.3 S2Ni2 SUN5 ENi2 ENi2

    S2000- N7 0.1 0.9 0.2 3.5 S2Ni3 SUN7 ENi3 ENi3

    S4005- N1M3 0.12 2 0.1 0.6 0.5 SUN1M3 EF2 EF2

    S2002- N2M1 0.1 1.4 0.2 1 0.2 SUN2M1 ENi5

    S2005- N2M3 0.1 1.2 0.2 1 0.5 S2Ni1Mo SUN2M3 EF1 EF1

    S3005- N2M3 0.1 1.5 0.2 1.1 0.5 S3Ni1Mo SUN2M31

    S4005- N2M3 0.12 2 0.1 1 0.5 SUN2M32 EF3 EF3 Y

    S4008- N2M3 0.12 2.3 0.2 1.1 0.8 Y

    S2005- N3M3 0.1 0.9 0.2 1.5 0.5

    S3004- N3M3 0.1 1.5 0.2 1.5 0.4 S3Ni1,5Mo

    S2002- N4M1 0.15 0.8 0.2 1.9 0.2 ENi4 ENi4

    S1000- N1CC 0.1 0.5 0.3 0.6 0.7 Cu 0.6 SUNCC1 EW EW

    S3000- CC 0.1 1.3 0.2 0.4 Cu 0.3 SUCC Y

    S3000- NCC3 0.1 1.3 0.2 0.6 0.7 Cu 0.4 SUNCC3 Y

    Notes:a. See Annex A, paragraph A2.0 for a description of the WFM index system, and pararaphs A2.1.2 and A2.2 as they apply to this table. N

    by "C" for metal-cored composite wires.

    b. See Tables 7B for Cr-Mo alloy steels and 7C for weld metal classification with minimum tensile strengths of 600 MPa or greater.

    c. The initial digit, "F", followed by designators for the mechanical properties precedes the composition designators. Tubular metal-cored

    d. Composition designators are followed by designators for mechanical properties.

    e. Designators for the mechanical properties precede the composition designators.

    (Note a)

    Manganese Molybdenum Alloy Steels

    Weathering Alloy Steels

    Nickel Alloy Steels

    Nickel Molybdenum Alloy Steels

    WFN No.

    ISO

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    18/55

    TABLE 7B Low Alloy Cr-Mo Steel Wires for SAWUSA Australia

    AWS AS

    C Mn Si Ni Cr Mo Other A5.23/A5.23B 1858.2

    S1100- CM 0.06 0.6 0.2 0.6 0.5 EB1

    S2000- CM 0.13 1.2 0.2 0.6 0.5

    S3000- CM 0.12 2 0.2 0.6 0.5

    S4000- CM 0.12 2.4 0.2 0.8 0.9

    S1210- CMH 0.2 0.6 0.5 0.5 1 EB5 EB5

    S1001- CMV 0.1 0.8 0.2 0.5 0.8 V 0.3

    S1021- CMV 0.1 0.8 0.6 0.5 0.8 V 0.3S1000- 1CM 0.1 0.8 0.2 1 0.5

    S1200- 1CM 0.2 0.6 0.2 1 0.5

    S2101- 1C1M 0.1 1 0.2 1 1 V 0.2

    S1001- 1CMV 0.08 0.5 0.2 1 0.6 V 0.2

    S2030- 1CM 0.1 1 0.6 1 0.5

    S2031- 1C1MV 0.1 1 0.6 1 1 V 0.2

    S3011- 1CMV 0.08 1.4 0.6 1.1 0.6 V 0.3

    S1001- 2C1MVNb 0.08 0.5 0.2 1.3 0.9 V 0.3, Nb 0.2

    S1200- 2CMV 0.3 0.5 0.6 1.3 0.5 V 0.25 EB2H EB2C

    S1000- 2CM 0.1 0.7 0.2 1.5 0.5 EB2 EB2

    S1001- 2CM 0.1 0.7 0.2 1.5 0.5 c EB2R

    S2000- 2CM 0.12 1.2 0.4 1.5 0.5

    S1001- 2CMV 0.09 0.6 0.2 1.6 0.6 Ti .08, V 0.25

    S1100- 2CM 0.04 0.6 0.2 2 0.6

    S1000- 3C1M 0.1 0.6 0.2 2.6 1 EB3 EB3

    S1001- 3C1M 0.1 0.6 0.2 2.6 1 c EB3RS2000- 3C1M 0.12 1 0.2 2.4 1

    S2010- 3C1M 0.1 1 0.6 2.6 1

    S1100- 3C1ML 0.04 0.6 0.2 2.6 1

    S2100- 3C1ML 0.04 1 0.6 2.6 1

    S1000- 4C1M 0.12 0.7 0.2 3.3 1

    S2000- 4C1M 0.12 1.2 0.2 3.3 1

    S1010- 5CM 0.1 0.5 0.2 5 0.5

    S1100- 6CM 0.06 0.6 0.3 5.5 0.6 EB6 E5Cr

    S1110- 6CM 0.06 0.6 0.5 5.5 0.6

    S2000- 6CM 0.1 1.2 0.4 5.5 0.6

    S2200- 6CM 0.3 0.9 0.4 5.5 0.6 EB6H EB6C

    S2110- 7CM 0.06 0.6 7 0.6 E7Cr

    S2100- 9C1M 0.06 0.4 0.4 9.3 1 EB8 E9Cr

    S2110- 9C1M 0.06 0.6 0.6 9.3 1

    S2001- 9C1MV 0.1 1 0.2 0.5 9 0.9 V 0.2, Nb 0.06, N 0.05 EB9

    S2201- 12C1MWV 0.25 0.8 0.2 0.5 11.5 1 W 0.5, V 0.3

    S2211- 12C1MWV 0.2 0.7 0.4 0.5 11.5 1 W 0.5, V 0.3

    Notes:

    a. See Annex A, paragraph A2.0 for a description of the WFM index system, and pararaphs A2.1.2 and A2.2 as they apply to this table. Not

    replaced by "C" for metal-cored composite wires.

    b. The initial digit, "F", followed by designators for the mechanical properties precedes the composition designators. Tubular metal-cored wir

    c. Low residual elements, Cu 0.15 max., S & P 0.010 max. each, As, Sb, Sn 0.005 max. each.

    WFM No. Nominal Composition

    (Note a)

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    19/55

    TABLE 7C Low Alloy Steel High Strength Steel Wires for SAWUSA Australia Japan

    Nominal Composition AWS AS JIS

    C Mn Si Ni Cr Mo Note A5.23/A5.23M 1858.2 Z 3351(Note b) (Note c)

    S3005- N3M2 0.08 1.6 0.4 1.8 0.4 e EM2 EM2

    S3005- N4M3 0.12 1.6 0.2 2.1 0.4 YS-NM2

    S2003- N6M1 0.12 1.1 0.2 3 0.3 YS-NM4

    S2006- N6M3 0.12 1.1 0.2 3 0.5 YS-NM5

    S4006- N6M3 0.12 1.6 0.2 3 0.5 YS-NM6

    S2002- N1C1M1 0.2 0.8 0.2 0.6 0.5 0.2 EF4 EF4

    S4005- N2C1M3 0.1 1.8 0.2 1 0.4 0.5 YS-NCM1

    S3115- N4C1M3 0.06 1.6 0.4 2.3 0.5 0.5 e EM3 EM3

    S3005- N4C1M3 0.12 1.7 0.2 1.9 0.4 0.5 EF6 EF6 YS-NCM

    S4105- N5C1M3 0.08 1.6 0.4 2.6 0.4 0.5 e EM4 EM4

    S4005- N5C1M3 0.13 2 0.1 2.5 0.4 0.5 EF5 EF5

    S4105- N5C1M3 0.1 1.8 0.4 2.5 0.6 0.6 YS-NCM

    S4105- N5C2M3 0.08 1.8 0.2 2.6 0.9 0.5 YS-NCM

    S2005- N7C3M3 0.12 0.7 0.2 3.5 1.5 0.5 YS-NCM

    S2005- N10C1M3 0.12 0.7 0.2 5 0.5 0.5 YS-NCM

    Notes:

    a. See Annex A, paragraph A2.0 for a description of the WFM index system, and pararaphs A2.1.2 and A2.2 as they apply to this table

    "S" is replaced by "C" for metal-cored composite wires.

    b. The initial digit, "F", followed by designators for the mechanical properties precedes the composition designators. Tubular metal core

    designators "EC"

    c. Composition designators are followed by designators for mechanical properties.

    d. Designators for the mechanical properties precedes the composition designators.

    e. Ti, Zr, Al, each 0.10 max. (See specification for use of Ti, V. Zr in composite tubular weld deposits in these and other classifications.

    (Note a)

    WFM No.

    Nickel-Molybdenum Steels

    Nickel-Chromium-Molybdenum Steels

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    20/55

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    21/55

    TABLE 8B Low Alloy Cr-Mo Steel Wires for GMAW and GTAWAustralia China

    AS GB/T

    C Mn Si Ni Cr Mo Other A5.28 A5.28M 2717.1 8110 Z 3316 Z 3317

    (Note d)

    S2240- 1C 0.2 1 1 1

    S3130-CM 0.1 1.4 0.5 0.5 0.5 YG CM-x

    S3131-CMT 0.1 1.4 0.4 0.5 0.5 Ti 0.2

    S3131-CMT 0.08 1.3 0.7 0.5 0.3 Ti 0.2

    S2101-CMV 0.1 0.8 0.2 0.5 0.7 V 0.3 S2131-CMV 0.1 0.9 0.6 0.5 0.7 V 0.3

    S1300 1CM 0.18 0.5 0.2 1 0.2

    S3130-1CM 0.08 1.3 0.6 1 0.5

    S2100-1CM 0.08 0.7 0.2 1.5 0.9 0.3

    S1001-1CMV 0.08 0.5 0.2 1 0.6 V 0.2

    S3131-1CMV 0.08 1.4 0.6 1.1 0.6 V 0.3

    S2101-1C1MV 0.1 1 0.2 1.1 1 V 0.2

    S2131-1C1MV 0.1 1 0.6 1.1 1 V 0.2

    S2100-1CM 0.1 0.8 0.2 1.1 0.5

    S1130-2CM 0.1 0.6 0.6 1.3 0.5 ER80S-B2 ER55S-B2 ESB2 ER55-B2

    S2130-2CM 0.1 1 0.6 1.3 0.5 YGT 1CM YG 1CM-x

    S1030-2CML 0.04 0.6 0.6 1.3 0.5 ER70S-B2L ER49S-B2L ESB2L

    S1131 2CMVNb 0.08 0.5 0.2 0.8 1.3 0.9 V 0.3, Nb 0.2

    S2030-2CML 0.04 1 0.6 1.3 0.5 YGT 1CML

    S2131-2CMT 0.1 1.2 0.6 1.3 0.5 Ti 0.2

    S3131-2CMT 0.1 1.6 0.6 1.3 0.5 Ti 0.2 ER62-B3

    S1101-2CMVT 0.1 0.6 0.2 1.6 0.5 Ti 0.1, V 0.3

    S1111-2CMVT 0.12 0.6 2 0.5 Ti 0.1, V 0.3

    S1010-2CM 0.04 0.6 0.2 2 0.6

    S5130-3CM 0.08 2.3 0.6 2.5 0.4

    S1120-3C1M 0.1 0.6 0.3 2.5 1

    S1130-3C1M 0.1 0.6 0.6 2.5 1 ER90S-B3 ER62S-B3 ESB3

    S2120-3C1M 0.08 1 0.3 2.5 1 ER62-B3L YGT 2CM YG 2CM-x

    S1030-3C1ML 0.04 0.6 0.2 2.3 1

    S1030-3C1ML 0.04 0.6 0.6 2.5 1 ER80S-B3L ER55S-B3L ESB3L

    S2020-3C1ML 0.04 1 0.4 2.5 1 YGT 2CML

    S2131-3C1MT 0.1 1.2 0.6 2.5 1 Ti 0.2

    S3131-3C1MT 0.1 2 0.6 2.5 1 Ti 0.2

    S1030-4C1M 0.1 0.6 0.6 3 1 YGT 3CM YG 3CM-x

    S1120-6CM 0.08 0.6 0.4 5.5 0.6 ER80S-B6 ER55S-B6 ES5Cr YGT 5CM YG 5CM-x

    S1130-6CM 0.08 0.6 0.3 6 0.6

    S1130-7CM 0.08 0.6 0.6 7 0.6 ES7Cr

    S1120-9C1M 0.08 0.6 0.4 9 1

    S1130-9C1M 0.08 0.6 0.6 9 1 ER80S-B8 ER55S-B8 ES9Cr

    S2101-9C1MV 0.1 1 0.2 0.7 9 1 c ER90S-B9 ER62S-B9

    S1211-12C1MWV 0.2 0.6 0.4 0.5 12 1 W 0.5, V 0.3

    S2201-12C1MWV 0.25 0.8 0.2 0.5 12 1 W 0.5, V 0.3Notes:

    a. See Annex A, paragraph A2.0 for a description of the WFM index system, and pararaphs A2.1.2 and A2.2 as they apply to this table. Note: the initial designator "S" is replaced by "C

    b. For tubular metal-cored composite wires are replace "S" with "C".

    c. Nominal V = 0.2, Nb = 0.6, N = 0.5d. The "x" designates shielding gas, "C" = CO2, "A" = 80% argon + CO2, "g" = not specified.

    Japan

    WFN No.

    Nominal Composition AWS JIS

    USA

    (Note a) (Note b)

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    22/55

    TABLE 8C Low Alloy High Strength Steel Wires for GMAW and GTAWAustralia Japan China Russia

    AMS AS JIS GB/T GOSTC Mn Si Ni Cr Mo Other A5.28 A5.28M 2717.1 Z 3316 8110 2246

    C3130-3M2 0.1 1.5 0.6 0.4 E90C-D2 E62C-D2

    S4130-4M31 0.1 2 0.6 0.5 ER90S-D2 ER62S-D2 ESD2

    S3122-3M2CT 0.1 1.5 0.4 1 0.4 c, Cu 0.5 G

    S3131-3M2T 0.1 1.4 0.6 1 0.4 c G

    S3131-N3M1T 0.1 1.5 0.6 1.2 0.3 c

    S3131-N2M3T 0.1 1.7 0.6 1 0.5 c

    S4131-N2M3 0.1 2 0.7 1 0.4 G

    S3011-N4M2T 0.06 1.5 0.4 1.6 0.4 c ER100S-1 ER69S-1 YGT 70 ER69-1 G

    C3020-N3M3 0.1 1.5 0.5 1.5 0.45 E90C-K3 E62C-K3

    C3020-N3M3 0.1 1.5 0.5 1.5 0.45 E100C-K3 E69C-K3

    C3020-N3M3 0.1 1.5 0.5 1.5 0.45 E110C-K3 E76C-K3

    S4121-N5M2T 0.1 1.9 0.4 2.3 0.4 c G

    S3131-N1C1M3 0.1 1.5 0.7 0.6 0.5 0.2 c YGT-6x G

    S2111-N4C1M3T 0.1 1 0.2 2 0.5 0.5 Ti 0.1 -10XH2MT

    S3122-N3CM1T 0.1 1.5 0.5 1.4 0.3 0.2 c, V 0.1 G

    S4131-N3CM3T 0.1 2 0.7 1.5 0.3 0.5 c G

    S4131-N4CM3T 0.1 2 0.8 2 0.3 0.6 c G

    S2111-N5C1M1T 0.09 1 0.2 2.3 0.4 0.3 c, Ti 0.1 -08XH2MTA

    S3021-N5CM2T 0.07 1.6 0.4 2.3 0.3 0.4 c ER110S-1 ER76S-1 YGT 80 ER76-1

    C3020-N3C1M3 0.1 1.5 0.5 1.5 0.4 0.45 E110C-K4 E76C-K4

    C3020-N3C1M3 0.1 1.5 0.5 1.5 0.4 0.45 E120C-K4 E83C-K4S3131-N5CM2T 0.09 1.6 0.5 2.5 0.3 0.4 c ER120S-1 ER83S-1 ER83-1

    S4130-N5CM2 0.1 2 0.7 2.5 0.3 0.4 G

    S3021-N6CM3T 0.08 1.6 0.4 3 0.3 0.5 c YGT-80

    S2122-N5C2M3A 0.09 1.2 0.4 2.3 0.9 0.5 Al 0.12 -08XH2M

    S1310-N3C2M 0.4 1.8 0.8 0.3 6456*

    S1011-N40MCo 0.05 18.5 5.2 c, Co 8.5 6463

    S0112-N20C4MC 0.12 0.1 0.2 10 2 1 Co 8, V 0.06, 6455

    S3110-N5C2 0.1 1.75 2.8 0.8 0.85 6469*

    S1310-1CM 0.3 0.5 0.2 1 0.2 6457

    S1310-1CM 0.4 1 0.2 6452*

    S1332 1CMV 0.3 0.5 0.6 1.2 0.5 V 0.25 6458

    S1232-1CMV 0.2 0.5 0.7 1 1 V 0.1 6459

    S1133-CMZ 0.13 0.6 0.7 0.6 0.2 Zr 0.1 6460

    S2312-1CV 0.3 0.8 0.2 1 V 0.2 6462

    Notes: * No UNS #

    a. See Annex A, paragraph A2.0 for a description of the WFM index system, and pararaphs A2.1.2 and A2.2 as they applies to this table. Note: the initial designator "S" is replaced by

    by "C" for metal-cored composite wires.

    b. For tubular metal-cored composite wires are replace "S" with "C".

    c. May contain up to 0.1 each Ti, Zr, Al.

    d. See specification for mechanical property and shielding gas designators which precede the composition designators.

    Nominal Composition AWS

    USA

    WFN No.

    (Note a) (Note b)

    Manganese-Molybdenum Alloy Steels

    Nickel-Molybdenum Alloy Steels

    Chromium Alloy Steels

    Nickel-Chromium-Alloy Steels

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    23/55

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    24/55

    TABLE 9 A Stainless Steel Covered ElectrodesUSA Australia China Japan

    WFN No. AWS AS/NZS GB/T JIS

    C Mn Cr Ni Mo Nb Other 3581A 3581B A5.4/A5.4M 1553.3 983 Z 3221

    (Note a) (Note c) (Note b) (Note b) (Note b) (Note b)

    ES317 0.06 1.5 19 13 3.5 ES317 E317 E317 E317 D317

    ES317L 0.03 1.5 19 13 3.5 ES317L E317L E317L E317L D317L

    ES317LN 0.03 3 19 13 3.5 N 0.1 E19 13 4 N L

    ES317LMoN 0.03 2 19 17 4.5 N 0.1 E18 16 5 N L

    ES317LMnN 0.03 7 19 16 3 N 0.1 E20 16 3 Mn N L E317LMnES318 0.06 1.5 18 12 2.5 0.6 E19 12 3 Nb ES318 E318 E318 E318 D318 -0

    ES318V 0.06 1.5 18 12 2.5 V 0.5 E318V

    ES320 0.06 1.5 20 34 2.5 0.8 Cu 3.5 ES320 E320 E320 E320

    ES320LR 0.02 2 20 34 2.5 0.3 Cu 3.5 ES320LR E320LR E329LR E320LR

    ES329 0.06 1 25 7 2 D329J1

    ES330 0.2 1.5 15 35 E18 36 ES330 E330 E330 E330

    ES330H 0.4 1.5 15 35 ES330H E330H E330H E330H

    ES330NbW 0.2 2.5 16 35 2.5 1.5 W 2.5 E330MoMnWNb -2

    ES330MoNb 0.04 6 15.5 35 6.5 1 -0

    ES347 0.06 1.5 19 10 0.6 E19 9 Nb ES347 E347 E347 E347 D347 -0

    ES347L 0.03 1.5 19 10 0.3 ES347L D347L -0

    S347nL 0.08 2 19.5 9.3 1.1 -0

    ES347Mo 0.08 2 19 9.5 0.7 1 -0

    ES349 0.1 1.5 19 9 0.5 1 V 0.2, W 1.5 E349 E349 E349 D349

    ES381 0.1 1.5 16 25 6 E16-25MoN

    ES383 0.02 1.5 28 31 3.5 Cu 1 E27 31 4 Cu L ES383 E383 E383 E383

    ES384 0.11 1.6 15 25 6 N 0.2 -1

    ES384V 0.09 2.3 15 25 6 V 1.2, N 0.15 -0ES385 0.02 1.5 20 25 4.5 Cu 1.6 E20 25 5 Cu N L ES385 E385 E385 E385

    ES392 0.03 1.5 22 9 3 N 0.15 E22 9 3 N L ES2209 E2209 E2209 E2209

    ES3952 0.03 0.5 25 5 2 Cu 3, N 0.15 E2552

    ES3953 0.05 1 25 7.5 3.5 Cu 2, N 0.2 ES2553 E2553 E2553 E2553

    ES3953Ni 0.03 1 26 10 3.5 Cu 2, N 0.15 E25 9 3 Cu N L E2593

    ES3954 0.03 1 25 9 3.5 Cu 0.4, N 0.25 E25 9 4 N L E2594

    ES3956 0.03 1 25 7 2 N 0.1 E25 7 2 N L

    ES409V 0.15 0.6 10 0.7 0.7 V 0.3 E11MoVNi -1

    ES409W 0.15 0.6 11 0.9 1 V 0.3, W 0.5 E11MoVNiW -1

    ES410 0.1 0.5 12 E13 ES410 E410 E410 E410 D410 -1

    ES410Ni 0.06 0.4 13 1.3 -1

    ES410NiMo 0.05 0.5 12 4.5 0.5 E13 4 ES410NiMo E410NiMo E410NiMo E410NiMo

    ES409Nb 0.1 0.5 12 1 ES409Nb E409Nb D409Nb

    ES430 0.08 0.5 16 E17 ES430 E430 E430 E430 D430

    ES430Nb 0.08 0.5 16 1 ES430Nb E430Nb D430Nb -1

    ES430NiNb 0.09 16 4 0.1 -1

    ES446Ni 0.1 1.5 25 5 E25 4

    ES446NiVT 0.08 24 6 0.08 V 0.1, i 0.6 -0ES630 0.04 0.5 16 4.7 0.2 Cu 3.6 E630 E630 D630

    Notes:

    a. See Annex A for a description of the WFM index system, and Paragraph A2.3 as it applies to this Table.

    b. A two-digit suffix designator identifies the type of electrode coating. (See Specifications.)

    c. Type of covering follows the designation, B = basic, R = rutile

    ISO

    Nominal Composition

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    25/55

    TABLE 9B Stainless Steel Flux Cored Wires

    USA

    AWS

    C Mn Cr Ni Mo Nb Other 17633A 17633B A5.22/A5.22M

    (Note a) (Note b) (Note b) (Note c)

    TS307Mn 0.1 6 18 8 T 18 8Mn

    TS307 0.1 4 19 9.5 1 TS307 E307T E3

    TS308 0.06 1.5 19 10 TS308 E308T E3

    TS308L 0.03 1.5 19 10 T 19 9L TS308L E308LT E3

    TS308H 0.06 1.5 19 10 TS308H E308HT E3

    TS308Mo 0.06 1.5 19 10 2.5 TS308Mo E308MoT E3TS308LMo 0.03 1.5 19 10 2.5 TS308LMo E308LMoT E3

    TS308HMo 0.1 1.5 20 10 2 TS308HMo

    TS308Mo3 0.06 1.5 20 10 3 T 20 10 3

    TS309 0.08 1.5 23 13 TS309 E309T E3

    TS309L 0.03 1.5 23 13 T 23 12L TS309L E309LT E3

    TS309H 0.1 1.5 21 12 T 22 12H

    TS309J 0.06 1.5 26 13

    TS309Mo 0.1 1.5 23 13 2.5 TS309Mo E309MoT E3

    TS309LMo 0.03 1.5 23 13 2.5 T 23 12 2L TS309LMo E309LMoT E3

    TS309LNiMo 0.03 1.5 22 16 3 E309LNiMoT

    TS309LNb 0.03 1.5 23 13 0.8 TS309LNb E309LCbT E3

    TS310 0.15 1.5 26 21 T 25 20 TS310 E310T E3

    TS312 0.12 1.5 29 9 T 29 9 TS312 E312T E3

    TS16-8-2 0.1 1.5 16 8 1.5 TS16-8-2

    TS316 0.06 1.5 18 12 2.5 TS316 E316T E3

    TS316L 0.03 1.5 18 12 2.5 T 19 12 3L TS316L E316LT E3

    TS316H 0.06 1.5 18 12 2.5 TS316H

    TS316LCu 0.03 1.5 18 13 2 Cu 1.5 TS316LCu

    TS317 0.06 1.5 19 13 3.5 TS317

    TS317L 0.03 1.5 19 13 3.5 TS317L E317LT E3

    TS317LN 0.03 3 19 13 3.5 N 0.15 T 19 13 4NL

    TS317LMN 0.03 2 18 16 4 N 0.15 T 18 16 5NL

    TS318 0.06 1.5 18 12 2.5 0.7 T 19 12 3Nb TS318

    TS347 0.06 1.5 19 10 0.8 T 19 9Nb TS347 E347T E3

    TS347L 0.03 1.5 19 10 0.6 TS347L

    TS392 0.03 1.4 22 9 3 N 0.15 T 22 9 3NL TS2209 E2209T E2

    TS395 0.03 1 25 9 3.5 Cu 2,N 0.15 TS2553 E2553T E2

    TS409 0.08 0.5 12 Ti 1 T 13Ti TS409 E409T E4

    TS409Nb 0.1 0.8 12 1 TS409Nb

    TS410 0.1 0.8 12 T 13 TS410 E410T E4

    TS410NiMo 0.05 0.7 12 4.5 0.5 T 13 4 TS410NiMo E410NiMoT E4

    TS410LNiMo 0.02 0.7 12 4.5 0.5

    TS410NiTi 0.03 0.5 11.5 4 Ti 0.8 E410NiTiT E4

    TS430 0.08 0.8 17 T 17 TS430 E430T E4

    TS430Nb 0.08 0.8 17 1 TS430Nb

    Notes:

    a. See Annex A for a description of the WFM index system, and Paragraph A2.3 as it applies to this Table.

    b. Suffix designators are used to indicate core ingredients, shielding gas, and positionality. (See Table 9C for comparable metal-cored tubular wires

    c. Metal-cored tubular wires are classified with solid solid wires as shown in Table 9C.

    ISO

    WFM No. Nominal Composition

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    26/55

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    27/55

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    28/55

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    29/55

    TABLE 10 B Nickel Alloy Flux Cored Wires

    Mn Fe Ni Co Cr Mo Nb W Other

    (Note a) IS

    TNi 6002-xy 0.5 19 48 1.5 22 9 0.5 TNi 6

    TNi 6022-xy 0.5 4 56 21 13.5 3 TNi 6

    TNi 6062-xy 3 10 70 15 3 TNi 6

    TNi 6082-xy 3 2 72 20 2.5 Ti 0.5 TNi 6

    TNi 6092-xy 2 10 68 15 1.5 2 TNi 6

    TNi 6182-xy 8 8 66 15 2 TNi 6

    TNi 6617-xy 1.5 3 55 12 23 9 `0.5 Al 1.5, Ti 0.5 TNi 6

    TNi 6625-xy 0.5 6 52 21.5 9 3.6 TNi 6

    TNi 6276-xy 0.5 6 57 1 16 16 4 V 0.3 TNi 6

    Notes

    a. See Annex A for a description of the WFM index system, and Paragraph A2.4 as it applies to this Table.

    WFN No. Nominal Composition

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    30/55

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    31/55

    TABLE 11. Aluminum Alloy Solid Wires and Rods

    Australia Brazil

    AWS AMS AS ABNT

    Si Fe Cu Mn Mg Cr Ti Others Al Numeric Optional A5.10/A5.10M SAE 2717.2 9111

    (Note a) (Note c) (Note b)

    SAl 1070 99.70 Al 1070

    SAl 1080A 99.80 Al 1080A Al 99,8(A)

    SAl 1100 0.12 99.00 Al 1100 ER1100 E1100 1100

    SAl 1188 99.88 ER1188

    SAl 1200 99.00 Al 1200SAl 1445 0.15 0.25 99.45

    SAl 1450 0.15 99.50 Al 1450 Al 99,5Ti

    SAl 2010 4.6 0.4 0.35 0.25 Ag 0.7 Rem. 4233

    RAl 2060 4.6 0.4 0.25 0.25 Rem. R-206.0 4244

    SAl 2319 6.3 0.3 0.15 V 0.1, Zr 0.2 Rem. Al 2319 ER2319 4191 E2319 2319

    SAl 3103 1.2 Rem. Al 3103 Al Mn1

    SAl 3303 0.3 0.4 1.3

    RAl 3550 5 1.2 0.5 Rem. R-C355.0 4245

    RAl 3560 7 0.35 Rem. R-A356.0 356

    RAl 3570 7 0.55 Rem. R-357.0 4246

    RAl 3571 7 0.5 0.12 Rem. Al 3571 R-A357.0

    SAl 4008 7 0.4 0.1 Ti 0.1 Rem. 4181

    SAl 4009 5 1.2 0.5 Rem. Al 4009 ER4009

    SAl 4010 7 0.4 Rem. Al 4010 ER4010

    SAl 4011 7 0.6 0.12 Be 0.05 Rem. Al 4011 R4011

    SAl 4018 7 0.65 Rem. Al 4018 AlSi7Mg

    SAl 4043 5.2 Rem. Al 4043 AlSi5 ER4043 4190 E4043 4043

    SAl 4043A 5.2 Rem. Al 4043A AlSi5(A)SAl 4044 8.5

    SAl 4046 10 0.35 Rem. Al 4046 AlSi10Mg

    SAl 4047 12 Rem. Al 4047 AlSi12 ER4047 4047

    SAl 4047A 12 Rem. Al 4047A AlSi12(A)

    SAl 4145 10 4 Rem. Al 4145 ER4145 E4145

    SAl 4643 4 0.2 Rem. Al 4643 ER4643 4189

    SAl 5039 0.4 3.8 Zn 2.8 Rem. E5039

    SAl 5087 0.9 4.8 0.15 Zr 0.15 Rem. Al 5087 AlMg4,5MnZr

    SAl 5183 0.8 4.7 0.15 Rem. Al 5183 AlMg4,5Mn0,7(A) ER5183 E5183 S

    SAl 5249 0.8 2 Zr 0.15 Rem. Al 5249 AlMg2Mn0,8Zr

    SAl 5356 0.12 5 0.12 0.13 Rem. Al 5356 AlMg5Cr(A) ER5356 E5356 5356

    SAl 5356A 0.4 5 0.12 Be 0.004, Zr 0.3

    SAl 5554 0.8 2.7 0.12 Rem. Al 5554 ER5554 E5554

    SAl 5556 0.7 5 0.12 0.12 Rem. Al 5556 ER5556 E5556

    SAl 5556A 0.8 5.3 0.12 0.12 Rem. Al 5556A AlMg5Mn

    SAl 5556B 0.7 5.3 0.15 Be 0.004

    SAl 5556C 0.7 6.3 Be 0.004, Zr 0.3

    SAl 5556D 1 6.3 Be 0.0002, Zr 0.06SAl 5556E 0.1 0.3 6.4 0.15 V 0.1, Zr 0.2

    SAl 5654 3.5 0.25 0.1 Rem. Al 5654 AlMg3,5Ti ER5654 E5654

    SAl 5654A 0.7 0.5 3.5

    SAl 5754 e 3.1 e Rem. Al 5754 AlMg3

    Notes

    a. See Annex A for a description of the WFM index system, and Paragraph A2.5 as it applies to this Table. (Note: for cast rods the initial designator is "R".)

    b. ER signifies the grade is classified for either GMAW or GTAW; R, for GTAW only.

    c. Numerical figures designate minimum Al.

    d. Suffix designators "-WY" apply for use in GMAW or "-BY" for GTAW

    e. Mn + Cr nominally 0.35%

    WFN No.

    USAISO

    18273Nominal Composition

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    32/55

    Table 12A. Copper Alloy Covered ElectrodesUSA

    AWSAl Mn Sn Fe Si Ni P Other A5.6/A5.6M

    (Note a)

    ECu 1898 ECu

    ECu 5180 5 0.2 ECuSn-A EC

    ECu 5210 8 0.2 ECuSn-C EC

    ECu 6180 10 3 ECuAl-A2ECu 6182 8 3 EC

    ECu 6220 11.5 3.5 ECuAl-B

    ECu 6221 8.5 1 0.2 E

    ECu 6223 9 4 E

    ECu 6328 9 2 4.5 5 ECuNiAl E

    ECu 6337 8.5 4 1ECu 6338 8 12.5 3 2 ECuMnNiAl

    ECu 6561 1 1.5 E

    ECu 6560 1 1 3.2 ECuSi E

    ECu 7061 1.8 1.5 10 Ti, 0.2 E

    ECu 7158 1.8 0.6 31 Ti, 0.2 ECuNi E

    Notes:

    a. See Annex A for a description of the WFM index system, and Paragraph A2.6 as it applies to this Ta

    Nominal Composition (Cu = rem.)WFM No.

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    33/55

    Table 12B. Copper Alloy Solid Wires

    China J

    AWS AWS GB/T

    Al Mn Sn Fe Si Ni P Other A5.7/A5.7M A5.8/A5.8M 9460 Z

    SCu 1897 0.03 Ag 1

    SCu 1898 0.3 0.75 0.3 ERCu HSCu YCu

    SCu 6511 1 0.2 1.8 0.1

    SCu 6560 1 3.5 ERCuSi-A HSCuSi YCu

    SCu 6561 2.4 YCu

    SCu 5180 5.5 0.2 ERCuSn-A YCu

    SCu 5210 8.5 0.2 ERCuSn-C HSCuSn YCu

    SCu 5211 0.25 9.5 0.25

    SCu 5410 12 0.2

    SCu 7061 1 2 10 Ti 0.35 YCu

    SCu 7158 1 0.6 30 Ti 0.35 ERCuNi HSCuNi YCu

    SCu 6061 4.8 0.8 0.8

    SCu 6100 8 ERCuAl-A1 HSCuAl

    SCu 6101 9 1 1 1.5 YCu

    SCu 6102 8 1.5 2 2.4 YCu

    SCu 6180 10 1 ERCuAl-A2 YCu

    SCu 6240 11 3.2 ERCuAl-A3

    SCu 6328 9 1.2 4 5 ERCuNiAl HSCuAlNi YCu

    SCu 6329 11 0.2 3 6

    SCu 6338 7 12.5 3 2.2 ERCuMnNiAl

    SCu 4700 0.6 Zn 40 RBCuZnA

    SCu 4701 0.1 0.4 0.3 Zn 40

    SCu 6800 0.3 1 0.1 0.5 Zn 40 RBCuZnB

    SCu 6810 0.15 1 0.2 Zn 40 RBCuZnCSCu 7730 10 Zn 40 RBCuZnD

    Notes:

    a. See Annex A for a description of the WFM index system, and Paragraph A2.6 as it applies to this Table.

    b. Prepared by CEN/TC121/SC3 WG4 dated 4/3/01, submitted by Van Nassau (CEN WI 216)

    Nominal Composition (Cu = rem.)

    USA

    Brass

    Copper

    Silicon Bronze

    Phosphor Bronze

    Cupro-Nickel

    Aluminum Bronze

    WFNo.

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    34/55

    Table 13A - Hard Facing Electrodes (Iron base alloysUSA Australia Japan Chi

    Hardness Structure AWS AS/NZS JIS GB

    HRC A5.13 2576 Z 3251 98

    (Note a) (Note b) (Note c) C Mn Si Cr Ni Mo W Other (Note f)

    EF7302 20 FS 0.1 3 EDPMn2

    EF7303 30 FS 0.1 3.4

    EF7304 30 FS 0.1 4 EDPMn4

    EF7305 40 FS 0.1 4.5 EDPMn5

    EF7310 20 FS 0.2 1 1 1120 EDPCrMo-

    EF7312 40 FS 0.16 1.6 1.1 0.8EF7314 30 FS 0.2 1.5 0.8 2 1 EFe1 1130 DF 2 A EDPCrMo-

    EF7320 20 FS 0.2 2.5 2.5 V 6.5 EDTV

    EF7400 50 M1 0.4 5 1450 EDPMn6

    EF7401 54 M1 0.35 6

    EF7402 40 M1 0.3 1.8 0.8 0.5

    EF7403 30 M1 0.3 2 1 1430 EDPCrMo-

    EF7413 55 M1 0.55 2 0.6 2.2 EFe5 1855 DF 2 B EDPCrMnS

    EF7418 40 M1 0.2 1 0.8 2.8 0.5 0.5 V 0.2 EFe2 1440 EDPCrMoV

    EF7419 50 M1 0.4 2 2 1450 EDPCrMo-

    EF7422 50 M1 0.4 4 2 1445 EDPCrMo-

    EF7423 45 M1 0.4 2 1.5 0.8 1450 EDRCrMnM

    EF7424 60 M1 0.8 0.8 1.3 4

    EF7430 60 M1 0.65 1 0.8 6 0.5 EFe3 1860 EDPCrMo-

    EF7453 30 MA 1 4.5 7

    EF7458 55 MA 0.4 0.7 2 9.5

    EF7460 60 MA 1.5 1.2 0.8 4 EFe4 1860 EDPCrMnS

    F7462 56* MA 1 12 0.5

    EF7464 60* MA 1.2 2 1.4 12 V 1,

    EF7466 31 MA 0.7 11 3

    EF7471 45 MB 0.3 0.5 1.5 7.5 B 0.3 EDPCrSi-A

    EF7475 60 MAB 0.8 0.5 2.5 7.5 B 0.7 EDPCrSi-B

    EF7501 55 M2 0.7 0.7 1 2.8 0.5 Ti 0.2

    EF7510 56 M2 0.3 1.5 1.3 5 0.5 2

    EF7512 50 M2 0.4 6 2.5 3 V 2 EDRCrMoW

    EF7520 62* M2 0.9 3.5 3.5 1.3 V 1

    EF7521 50 M2 0.9 3.5 4 5 V 2.3 EDRCrMoW

    EF7522 63* M2 1 4.8 3.3 5.8 V 1.5

    EF7523 55 M2 0.8 4 5 6 V 1.5 EDD-A

    EF7525 55 M2 0.7 4 7 2 V 1 EDD-B1

    EF7527 55 M2 0.4 4 7 2 V 1 EDD-C

    Notes:

    a. See Annex A for a description of the WFM index system, and Paragraph A2.8 and Table A7 as they apply to this Table.

    b. Hardness of austenitic alloys (AM) depend on work hardening. Asterisk indicates hardness after postweld heat treatment.

    c. Microstructure is based on IIW doc. II-E-249-96.d. See document CEN TC121/SC 3 N523, being considered as an ISO standard.

    e. See Annex Table A8 for definitions.

    f. The first digit signifies the alloy group, the second digit, the alloy type, the final two digits the Hc hardness as welded.

    WFM No.Nominal Properties

    Iron Base Alloys

    Nominal Composition

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    35/55

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    36/55

    Table 13A - Hard Facing Electrodes (Iron-base alloys)USA Australia Japan China

    Hardness Structure AWS AS/NZS JIS GB/T

    HRC A5.13 2576 Z 3251 984

    (Note a) (Note b) (Note c) C Mn Si Cr Ni Mo W Other (Note f)

    EF8302 b A 0.1 1.5 5.5 16.5 8 1320 EDCrNi-A

    EF8304 b A 0.2 6 19 7 * 1320

    EF8308 b A 0.15 2.5 6 19 8.5 EDCrNi-CEF8309 b A 0.2 2 24 14 2 Nb 0.8

    EF8310 b A 0.06 2 21 18 2 Nb 0.8

    EF8316 b A 0.1 3 5 18 9 5 Nb 0.8 EDCrNi-B

    EF8510 50 PAE 2 1.5 16 6 2150

    EF8515 50 PAE 3 2 35 2

    EF8520 45 PAE 2.5 0.5 27 EDZCr-B

    EF8530 55 PAE 2 1 1.5 28 2 2 EFeCr-A5 EDZCr-A

    EF8535 48 PAE 4 4 3 28 4 EDZCr-C

    EF8540 40 PAE 2.5 2.5 30 6.5 EDZCr-A

    EF8610 55 NE 3.5 4 4 EDZ-A1

    EF8611 55 NE 4 0.8 6.5 2655

    EF8612 55 NE 3 1 1 8 Ti 1.5 EFeCr-A2 EDZCr-A

    EF8613 55 NE 3.5 1 2.2 17 1 EFeCr-A3 EDZCr-A

    EF8616 55 NE 4 5 1.5 23 3.2 EFeCr-A1A EDZCr-A

    EF8618 60 NE 4 1 1.5 26 EFeCr-A7 2360 EDZCr-A

    EF8621 60 NE 3 1 1.8 27 1.5 EFeCr-A6 EDZCr-A

    EF8624 60 NE 4 2.5 1 26 2 EFeCr-A4 EDZCr-A

    EF8625 52 NE 3 28 4

    EF8626 60 NE 4 5 28 1 3 3 Co 3 DFCrA

    EF8627 60 NE 4 30 2.5 2460 EDZ-A2

    EF8629 55 NE 3.5 1 1 35 1 EFeCr-A8 EDZCr-A

    EF8642 60 NEB 3.2 1.2 23 Ti 1, B 1

    EF8644 58 NEB 3.5 2.5 27 B 1.5 EDZCr-D

    EF8720 60 KKA 6 2.5 1.3 14 Ti 5 EFeCr-E1 EDZ-E1

    EF8722 60 KKA 5 2 30 1 Nb

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    37/55

    Table 13B - Hard Facing Electrodes (Non Iron-base)

    Australia Japan Ch

    Hardness Structure AWS SAE AS/NZS JIS GB

    HRC A5.13 AMS 2576 Z3251 98

    (Note a) (Note b) (Note c) C Fe Cr Ni Mo W Mn Si Other Co (Note f)

    ECo 3004 45 Co-PC 1.9 29 4.5 2 Rem

    ECo 3006 40 Co-PC 1 3 30 1.5 4.5 1 1.5 Rem ECoCr-A 5788 DCoCrA EDCoC

    ECo 3011 50 Co-PC 1.5 23 21 9 2.5 B 1.8 Rem 4450

    ECo 3012 40 Co-PC 1.4 3 30 1.5 8 1 1.5 Rem ECoCr-B 4240 DCoCrB EDCoCECo 3113 50 Co-PKE 2.3 3 29 1.5 12.5 1 1.5 Rem ECoCr-C 4350 DCoCrC EDCoC

    ECo 3021 25 Co-CS 0.2 2 28 3 5 0.8 1.5 Rem ECoCr-E 4125 EDCoC

    ECo 3022 25 Co-CS 0.3 3 28 1.8 5 6 Rem 4125 DCoCrD EDCoC

    HRC C Fe Cr Ni Mo W Si Other

    ENi 9904 g Ni-NS 0.06 10 15 Rem. 6 1 Nb 1 51XX

    ENi 9906 g Ni-NS 0.06 5.5 16 Rem 16 4 0.5 ENiCrMo-5A 5425

    ENi 9946 52 Ni-CB 0.8 4.5 15 Rem 0.5 4.5 B 3.5 ENiCr-C 5250 EDNiC

    ENi 9961 50 Ni-C 2.6 23 27 21 8.5 3 0.5 1 Co 14 ENiCrFeCo EDNiC

    HB Cu Fe Al Ni Sn Mn Si Other

    ECu 4710 g Cu-AS 58 0.75 1 0.1 Zn Rem 63XX

    ECu 4730 g Cu-AS 48 11 0.1 Zn Rem 64XX

    ECu 5180 g Cu-BS Rem 5 1 P 0.5 ECuSn-A 61XX

    ECu 5210 g Cu-BS Rem 8 0.5 P 0.2 ECuSn-C 62XX

    ECu 6180 140 Cu-BT Rem 3 10 ECuAl-A2 65XX

    ECu 6220 140 Cu-BT Rem 3 11.5 1 ECuAl-B 65XX

    ECu 6280 180 Cu-BT Rem 4 12.5 0.5 ECuAl-C 65XX

    ECu 6281 275 Cu-BT Rem 4 13.5 0.5 ECuAl-D 65XX

    ECu 6282 275 Cu-BT Rem 4 14.5 0.5 ECuAl-E

    ECu 6328 g Cu-BT Rem 4.5 9 5 1 ECuNiAl 66XX

    ECu 6338 300 Cu-BT Rem 3 8 2.5 12.5 1 ECuMnNiAl 67XX

    ECu 6560 g Cu-Si Rem 3 ECuSi

    ECu 7158 g Cu-Ni Rem 0.5 31 1.8 Ti 0.3 ECuNi

    Notes:

    a. See Annex A for a description of the WFM index system, and Paragraph A2.8 and Table A7 as they apply to this Table.

    b. Hardness of austenitic alloys (AM) depend on work hardening. Asterisk indicates hardness after postweld heat treatment.

    c. Microstructure is based on IIW doc. II-E-249-96.

    d. See document CEN TC121/SC 3 N523, being considered as an ISO standard.

    e. See Annex Table A8 for definitions.

    f. The first digit signifies the alloy group, the second digit, the alloy type, the final two digits the Hc hardness as welded.

    g. Corrosion resisting applications

    WFM No. Nominal CompositionNominal Properties USA

    Cobalt Base Alloys

    Nickel Base Alloys

    Copper Base Alloys

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    38/55

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    39/55

    Table14A - Hard Facing Bare and Composite Alloy Wires (Iron-base alloys)

    USA Australia Japan

    Hardness Structurea AWS AS/NZS JIS

    HRC A5.21 2576 Z 3326 10543 26101

    (Note a) (Note b) (Note c) C Mn Si Cr Ni Mo W Other {Note h) (Note f) (Note g) {

    CF7710 44 M3 0.15 0.5 0.4 14 Ti 0.2 10X14T

    SF7711 38 M3 0.2 14 20X14

    SF7721 40 M3 0.1 1.5 12 4 1 YF4A-C

    SF7723 50 M3 0.3 1.5 12 1 YF4B-C

    SF7732 40 M3 0.3 13 30X13

    SF7733 42 M3 0.4 11 40X13

    CF7815 55 MK 2.6 2 9.5 Nb 7.5 2501082

    CF7818 57 MK 3.6 10 Nb 9, Ti 2.2 350X108T2

    SF7836 55 MEK 2.5 1 11 0.5 ERFeCr-A

    CF7850 45 MAK 1.8 12 0.3 V 1.2 200X12B

    CF7860 53 MAB 1.8 1.2 1.5 17 B 0.6, Ti 0.6 200X15C1PT

    CF7862 60 MAB 0.9 20 B 3.5, Ti0.4 80X20P3T

    CF7864 64 MAB 1.5 17 B 3.3, Ti 2 150X15P3T2

    SF7905 b AM 1.1 13.5 13A

    SF7907 b AM 1 15 1 12

    CF7909 b AM 0.8 14 0.2 4 9013H4

    SF7921 b AM 0.8 14 4 4 ERFeMn-C

    SF7922 b AM 0.8 14 3 2 1 YFMA-C

    SF7931 b AM 0.8 14 4 0.5 ERFeMn-G

    SF7933 b AM 0.5 14 6 1 ERFeMn-H

    SF7941 b AM 0.9 19 4 0.5 ERFeMn-F

    SF7970 b AMC 0.5 14 13.5 1 1 ERFeMnCr 17b YFME-C

    SF7971 b AMC 0.3 11 11 Ti 0.2 30X1010T

    CF7973 b AMC 0.1 13 0.8 13.5 V I, B 0.5,N 0.1 12X1212C

    CF8302 b A 0.1 1.5 5.5 17.5 8.5 Ti 0.2 10X17H9C5T

    SF8304 b A 0.2 6 19 7 13

    SF8309 b A 0.2 2 24 14 2 Nb 0.8

    SF8310 b A 0.06 2 21 18 2 Nb 0.8CF8431 b AF 0.08 16 2.3 10X15H2T

    SF8525 50 PAE 2 1.5 16 6 21

    SF8530 55 PAE 2 1 28 2 2 ERFeCr-A5

    SF8611 55 NE 4 0.8 6.5 26

    SF8616 55 NE 4 5 1.5 22 0.2 ERFeCr-A1A

    SF8513 55 NE 3 2.5 1.5 17 ERFeCr-A3A 22

    SF8619 60 NE 4 2.5 1 26 2 ERFeCr-A4 23

    SF8620 60 NE 4 1 2 27 ERFeCr-A9 25

    SF8721 60 KKA 4 2 25 3 5 Nb 5 YFCrA-C

    SF8722 60 KKA 5 2 30 Nb 5

    SF8724 60 KKA 5 1 27 4 V 0.5, Nb 4 24

    SF8725 65 KKA 6 2 25 1 Nb 5

    SF8810 60 PKE 6 1.5 1 22 ERFeCr-A10

    Notes

    a. See Annex A for a description of the WFM index system, and Paragraph A2.8 and Table A7 as they apply to this Table.(Note: for composite tubular wires the initial letter

    designation is "T", if flux cored, or "C", if metal cored.)

    b. Hardness of austenitic alloys (AM) depend on work hardening.

    c. Microstructure is based on IIW doc. II-E-249-96

    d. See document CEN TC121/SC 3 N523, being considered as an ISO standard.

    e See Annex Table A8 for definitionsf. Solid Wires. Designation is preceded with the symbol Hn- signifying hardfacing.

    g. Tubular wires. Designations is preceded with - signifying cored wire, then Hn- signifying hardfacing. (See note a regarding WFM number designations for tubular composite wires).

    h. For composite wire designations the "ER" is replaced with "ERC".

    Iron Base Alloys

    200XPB 0.1, Ti 0.15,Al 0.21.2 0.4

    WFM No.

    Nominal PropertiesNominal Composition

    Russia

    GOST

    MEK 2.3 1CF7830 45

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    40/55

    Table 14B - Hard Facing Bare and Composite Alloy Wires (Non Iron-base)

    Aus

    AWS AMS AS/

    Hardness Structure A5.21 SAE 25

    HRC (Note h)

    (Note a) (Note b) (Note c) C Fe Cr Ni Mo W Mn Si Co

    SCo 3006 40 Co-PC 1.1 3 29 1.5 0.5 4.5 0.5 1.5 Rem ERCoCr-A 5788

    SCo 3012 40 Co-PC 1.5 3 29 1.5 0.5 8 0.5 1.5 Rem ERCoCr-B 4

    SCo 3113 50 Co-PKE 2.5 3 30 1.5 0.5 12.5 0.5 1.5 Rem ERCoCr-C 4

    SCo 3114 56 Co-PKE 3.5 3 26 2 0.5 14 0.5 1 Rem ERCoCr-G

    SCo 3120 45 Co-NE 1.8 3 25 22 0.5 12 0.5 1 Rem ERCoCr-FSCo 3221 27 Co-CS 0.3 3 27 3 6 1 1 1 Rem ERCoCr-E 4

    HRC C Fe Cr Ni Mo W Si Other

    SNi 9901 45 Ni-NS 0.01 Rem 15 35 6.2 Mn 6.2, Nb 1.6

    SNi 9902 g Ni-NS 0.1 Rem 17 58

    SNi 9903 g Ni-NS 0.1 21 Rem Ti 0.3

    SNi 9904 45 Ni-NS 0.06 10 15 Rem. 6 1 Nb 1 5

    SNi 9906 45 Ni-NS 0.06 5.5 16 Rem 16 4 ERNiCrMo-5A 5

    SNi 9944 55 Ni-CB 0.4 2.5 10 Rem. 3 B 2.2 ERNiCr-A

    SNi 9945 55 Ni-CB 0.5 3.5 13 Rem. 4 B 3 ERNiCr-B

    SNi 9946 55 Ni-CB 0.8 4.5 16 Rem. 4.5 B 3.5 ERNiCr-C 5

    SNi 9947 55 Ni-CB 0.9 3 10 Rem. 2 5 B 0.5 ERNiCr-D

    SNi 9948 55 Ni-CB 0.3 5.5 17 Rem. 1 7 B 1 ERNiCr-E

    SNi 9961 50 Ni-C 2.7 23 27 21 8.5 3 1 Co 14 ERNiCrFeCo

    SNi 9981 55 Ni-CB 0.8 4.5 16 Rem. WC 35 4.5 B 3.5 5

    HB Cu Fe Al Ni Sn Si Other

    SCu 4710 g Cu-AS 58 0.75 1 Zn Rem 6

    SCu 4730 g Cu-AS 48 11 Zn Rem 6

    SCu 5180 g Cu-BSn Rem 1 5 P 0.25 ERCuSn-A 6

    SCu 5210 g Cu-BSn Rem 8 6

    SCu 5211 g Cu-BSn Rem 10 P 0.2 ERCuSn-D

    SCu 6180 140 Cu-BT Rem 3 10 ERCuAl-A2

    SCu 6240 140 Cu-BT Rem 3 11 ERCuAl-A3 6

    SCu 6280 180 Cu-BT Rem 4 12.5 ERCuAl-C

    SCu 6281 275 Cu-BT Rem 4 13.5 ERCuAl-D

    SCu 6282 275 Cu-BT Rem 4 14.5 ERCuAl-E

    SCu 6328 g Cu-BT Rem 4 9 5 Mn 2 6

    SCu 6338 300 Cu-BT Rem 3 8 2.5 Mn 12.5 6

    SCu 6560 g Cu-Bsi Rem 3 ERCuSi-A

    Notes:

    a. See Annex A for a description of the WFM index system, and Paragraph A2.8 and Table A7 as they apply to this Table.(Note: for composite tubuldesignation is "T", if flux cored, or "C", if metal cored.)

    b. Hardness of austenitic alloys (AM) depend on work hardening.

    c. Microstructure is based on IIW doc. II-E-249-96.

    d. See document CEN TC121/SC 3 N523, being considered as an ISO standard.

    e See Annex Table A8 for definitions.

    f. Solid Wires. Designation is preceded with the symbol Hn- signifying hardfacing.

    g. Tubular wires. Designations is preceded with - signifying cored wire, then Hn- signifying hardfacing. (See note a regarding WFM number design

    h. For composite wire designations the "ER" is replaced with "ERC".

    USA

    WFM No.

    Cobalt Base Alloys

    Nominal PropertiesNominal Composition

    Copper Base Alloys

    Nickel Alloys

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    41/55

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    42/55

    Table 16A. Covered Electrodes for Cast Iron

    ISO USA Ja

    Structure AWS J

    C Mn Si Fe Ni Cu Al Other 1071 A5.15 Z 3

    (Note a) (Note b) (No

    E CI 1010 PF 0.1 0.5 0.1 Rem E C St ESt

    E CI 1011 PF 0.1 0.5 0.5 Rem DFE CI 1110 M 1.0 1.0 0.8 Rem E C Fe-1

    E CI 1210 FC 0.1 0.9 0.8 Rem Nb+V 0.8 E C Fe-2

    E CI 2101 LG 3.3 0.6 2.4 Rem 1.5 (Note d) E C FC-1

    E CI 2102 LG 3.3 0.6 2.4 Rem 1.5 (Note e) E C FC-2

    E CI 2103 LG 3.0 0.5 6.0 Rem E C FC-3

    E CI 3101 FNG 3.5 0.3 3.3 Rem 0.8 Mg 0.06, Ce 0.1 E C FeC-GF

    E CI 3102 PNG 3.0 0.5 2.3 Rem 1.3 Mg 0.06, Ce 0.1 E C FeC-GP

    E CI 4000 NiS 1.0 0.5 1.5 Rem DF

    E CI 4001 NiS 1.0 0.5 1.0 4.0 Rem E C Ni

    E CI 4002 NiS 1.0 1.2 2.0 4.0 Rem 1.2 0.5 E C Ni-CI ENi-CI

    E CI 4004 NiS 1.0 1.2 2.0 4.0 Rem 1.2 2.0 E C Ni-CI-A ENi-CI-A

    E CI 5001 NiS 1.0 0.5 1.0 Rem 60 E C NiFe-1 DFC

    E CI 5002 NiS 1.0 3.0 0.5 Rem 52 1.3 (Note f) E C NiFe-2

    E CI 5003 NiS 1.0 1.2 2.0 Rem 52 1.2 0.5 E C NiFe-CI ENiFe-CI

    E CI 5004 NiS 1 1.2 2 Rem 52 1.3 2 E C NiFe-CI-A ENiFe-CI-A

    E CI 6001 NiMnS 1 12 0.5 Rem 40 E C NiFeMn-CI ENiFeMn-CI

    E CI 7001 CuS 0.5 1.2 0.5 2.5 55 35 E C NiCu

    E CI 7002 CuS 0.5 1.2 0.5 2.5 60 40 E C NiCu-A ENiCu-AE CI 7003 CuS 0.5 1.2 0.5 4.0 65 30 E C NiCu-B ENiCu-B

    E CI 7004 CuS 0.8 1 0.5 1.5 65 30 DFC

    Notes:

    a. See Annex A for a description of the WFM index system, and Paragraph A2.9 and Table A9 as they apply to this Table.

    b. Microstructure: PF = pearlite+ferrite; FC = ferrite+carbide; M = martensite, LG = lamellar graphite; FNG = ferritic nodular graphite; PNG = pearlitic nodular graphite; NiS

    NiMnS = nickel manganese solid solution; CuS = Copper solid solution.

    c. Initial letters are defined as: D = covered electrode; FC = for cast Iron.

    d. Cast iron core rod

    e. Unalloyed steel core rod

    f. Carbide forming elements, up to 3.0%

    WFM No. Nominal Composition

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    43/55

    Table 16B. Flux Cored Wires for Cast Iron

    ISO

    Structure

    C Mn Si Fe Ni Cu Al Other 1071(Note a) (Note b)

    T CI 1201 FC 0.1 0.9 0.8 Rem Nb+V 0.8 T C Fe

    T CI 2102 LG 3.3 0.6 2.3 Rem 1.5 T C FC

    T CI 3101 FNG 3.5 0.3 3.3 Rem 0.8 Mg 0.06, Ce 0.1 T C FeC

    T CI 3102 PNG 3.0 0.5 2.3 Rem 1.3 Mg 0.06, Ce 0.1 T C FeC

    T CI 5001 NiS 1.0 0.5 1.0 Rem 60 T C NiF

    T CI 5002 NiS 1.0 3.0 0.5 Rem 52 1.3 (Note c) T C NiF

    T CI 5003 NiS 1.0 4.0 0.5 Rem 52 1.3 T C NiFeT

    Notes:

    a. See Annex A for a description of the WFM index system, and Paragraph A2.9 and Table A9 as they apply to this Table.

    b. Microstructure: FC = ferrite+carbide; LG = lamellar graphite; FNG = ferritic nodular graphite; PNG = pearlitic nodular graphite; NiS =

    c. Carbide forming elements, up to 3.0%

    WFM No. Nominal Composition

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    44/55

    Table 16C. Solid Rods or Wire for Cast Iron

    ISO

    Structure

    C Mn Si Fe Ni Cu Al Other 1071

    (Note a) (Note b) (Note c)

    R CI 2111 LG 3.3 0.7 3.0 Rem 0.5 R C FeC-1

    R CI 2112 LG 3.3 0.7 2.8 Rem. R C RCI

    R CI 2113 LG 3.3 0.6 2.3 Rem 1.4 Mo 0.35 R C RCI-A

    R CI 3101 FNG 3.5 0.3 3.3 Rem 0.8 Mg 0.06, Ce 0.1 R C RCI-B

    S CI 4003 NiS 0.5 1.3 0.5 2.0 92.0 2.0 S C Ni-CI

    S CI 5001 NiS 1.0 0.5 1.0 Rem 60 S C NiFe-1

    S CI 5002 NiS 1.0 3.0 0.5 Rem 52 1.3 (Note d) S C NiFe-2

    S CI 6002 NiMnS 0.3 12 0.5 Rem 40 S C NiFeMn-CI ER

    Notes:

    a. See Annex A for a description of the WFM index system, and Paragraph A2.9 and Table A9 as they apply to this Table.

    b. Microstructure: LG = lamellar graphite; FNG = ferritic nodular graphite; NiS = nickel solid solution; NiMnS = nickel, manganese solid so

    c. Initial letters define the product form, "R" = cast rod; "S" = solid wire.

    d. Carbide forming elements, up to 3.0%

    WFM No. Nominal Composition

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    45/55

    Annex A, IFS: 2002

    Page 39

    Annex AWeld Filler Metal (WFM) Index Number and the Generic

    System of Designations

    The index system used in compiling the tables of comparable filler metals listed in various

    national and international specifications in this project is identified as the weld filler metal

    (WFM) number. It makes use of the designations, termed the Generic System.1

    A1.0 Generic System

    The designation system was initially developed by Commission XII of the International Institute

    of Welding. Since 1998, the work has been carried out by Commission II. As the members of

    these bodies have had greater involvement in international standards for welding filler metals,modifications became apparent. This section describes the generic system currently employed in

    several of the draft ISO standards as it relates to the (WFM) index numbers.

    A2.0 WFM Index

    The index system begins with alpha digits to identify (1) the form of the filler metal and (2) thealloy system (the latter is omitted in the case of unalloyed and low-alloyed steels). The widelyknown letter E is used as the initial identifier for covered electrodes. Solid wires for the various

    welding processes are identified by the initial letter S. The letter T identifies flux cored

    welding wires and in many countries metal-cored wires as well. In the American WeldingSociety (AWS) system, however, tubular metal cored wires use the letter C and this identifier

    has been adopted for the WFM system. Other less-used filler metal forms such as cast rods, R,

    have distinct letter assignments for the initial designators. Many filler metals, such as stainlesssteel and nickel alloys, are most frequently supplied as solid wire, (S in the solid wire tables)

    but are also supplied as strip, which in the WFM system carries the initial digit B.

    For all except unalloyed and low-alloy steels, the second alpha digit identifies the alloy system.These initial designators are set forth in Table A1.

    Table A1

    Initial Alpha Designators

    First Alpha Digit:

    Form of Filler Metal

    Second Alpha Digit:

    Alloy System

    BStrip NoneCarbon and low-alloy steels

    CComposite wires AlAluminum alloys

    ECovered electrodes CuCopper alloys

    IConsumable inserts CIMaterials for cast iron

    RCast rods FSurfacing alloys*

    SSolid wires NiNickel alloys

    TFlux cored electrodes SStainless steels

    TiTitanium alloys*Noniron-based alloys, e.g. copper and nickel, use Cu and Ni as defined above; cobalt-based

    alloys use Co as the alloy system designator.

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    46/55

    Annex A, IFS: 2002

    Page 40

    The WFM index designators that follow the initial letters depend on the properties thatdefine the classifications. In alloy systems other than steels, the significant property is the

    composition of the filler metal or the weld deposit.

    A2.1 Unalloyed Carbon Steels

    A2.1.1 Covered Electrodes

    For covered electrodes, the mechanical properties of the weld deposit are the means by

    which classifications are distinguished, with numbers assigned to represent the minimum

    tensile strength and, in many cases, the Charpy-V impact temperature. The usability ofthe electrode is defined by the two-digit numbers following the mechanical property

    designators, as shown in Table A2. Figure A1 illustrates how these properties are

    distinguished by the WFM index number. The optional designators are not used in theWFM system but are shown since they appear in many specifications.

    Minimum Tensile Strength in MPa/10

    Usability, type of covering (Table A1)

    E xx xx - x - Hz

    Optional designator for diffusible hydrogen

    Optional designator for improved toughness

    Figure A1 Designation System for Unalloyed Steel Covered Electrodes

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    47/55

    Annex A, IFS: 2002

    Page 41

    Table A2

    Designators to Define Usability of Covered Welding Electrodes

    Symbol* Type of Covering Type of Current Welding Position

    00 Special a.c. & d.c. ()

    01 Rutile Acid a.c. & d.c. ()

    03 Rutile Basic.c. & d.c. (

    )10 Cellulose d.c. (+)

    11 Cellulose a.c. & d.c. (+)

    12 Rutile a.c. & d.c.(-)

    13 Rutile a.c. & d.c. ()

    14 Rutile + Fe powder a.c. & d.c. ()

    15 Basic d.c. (+)

    16 Basic a.c. & d.c. (+)

    18 Basic + Fe powder a.c. & d.c. (+)

    19 Ilmenite a.c. & d.c. ()

    All

    20

    22Iron oxide a.c. & d.c.(-)

    23 Rutile Acid+ Fe powder a.c. & d.c. ()

    24 Rutile + Fe powder a.c. & d.c. ()

    27 Iron oxide + Fe powder a.c. & d.c.(-)

    28 Basic + Fe powder a.c. & d.c. (+)

    Flat &

    HorizontalFillet

    40 Special a.c. & d.c. (+) All

    48 Basic All All

    *Two digits to follow the mechanical property designators.

    2.1.2 Solid and Composite Wires

    The solid wires for unalloyed steels used in submerged arc welding, gas shielded metal arcwelding, and tungsten arc welding all have the initial S designator, as shown in Table

    A1. If similar products are furnished in metal cored tubular (composite) form, the initial

    designator is C. The following three digits define the manganese, carbon, and siliconcontents, leaving the fourth digit available for microalloying or special deoxidizing

    elements such as titanium, aluminum, or zirconium.

    x x x x

    Other deoxidizers, also spare digit to provide distinction

    Si level (0 = low, 1 = medium, 2 = high, n > 2 higher)C level ( 0 = normal, 1 = lower, 2 = higher)

    Mn level (twice the nominal manganese)

    S (solid) or C (composite)

    Figure A2 Designations System for Carbon Steel Bare Wires

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    48/55

    Annex A, IFS: 2002

    Page 42

    2.1.3 Flux Cored WiresFor unalloyed flux cored wire, the WFM number must take into account not only themechanical properties as for covered electrodes (tensile strength and impact temperature),

    but also the type of core ingredients. The designators used are illustrated in Figure A3.

    Figure A3 Designation System for Carbon Steel Flux cored Wires

    The properties are in the as-welded condition unless the letter P is appended (notapplicable to chromium-molybdenum steels where all properties are in the postweld heat

    treatment condition). In order to conform to the proposed ISO specifications with the B

    cohabitation designations, the type of core ingredients and the recommended applicationby which it is classified (positionality, shielding, and current) are defined by a

    designation familiar in the Americas and in many Pacific Rim countries. Table A3

    provides the principal attributes of these designators.

    Table A3Designators to Define Usability of Flux Cored Wires

    Minimum Tensile Strength in MPa/10Impact Temperature, Charpy-V

    Usability (Table A2)

    Positionality (z = 1, all position; otherwise 0)

    Shielding Gas (y = required, otherwise blank)

    PWHT (see text)

    T XX X TXX -- X X X -- X X

    Optional designator for diffusible hydrogen

    Optional designator for enhanced toughness

    Usability

    Designator

    Shielding

    Gas

    Required

    Operating

    Polarity

    Transfer of

    Droplet

    Type of

    Core

    Welding

    Position

    Type of Weld

    Single (S) or

    Multipass (M)

    T1 Yes DCEP Spray Rutile 0 or 1 S and M

    T2 Yes DCEP Spray Rutile 0 S

    T3 No DCEP Globular 0 S

    T4 No DCEP Globular Basic 0 S and M

    T5 Yes DCEP GlobularLime-

    fluoride0 or 1 S and M

    T6 No DCEP Spray 0 S and M

    T7 No DCEN Small/Spray 0 or 1 S and M

    T8 No DCEN Small/Spray 0 or 1 S and MT10 No DCEN Small 0 S

    T11 No DCEN Spray 0 or 1 S and M

    T12 Yes DCEP Spray Rutile 0 or 1 S and M

    T13 No DCEN Short arc 0 or 1 S

    T14 No DCEN Spray 0 or 1 S

    T15 Yes DCEP Fine/Spray Metal* 0 or 1 S and M

    Tn Symbol used in tables when applicable to more than one usability classification

    *T15 usability classifications in ISO refer to metal-cored tubular wires, which in the WFM system are considered

    composite rather than flux cored, filler metals with the initial designator C as shown by Table A1. AWS

    classifications of metal-cored filler metals are listed in tables with solid wires.

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    49/55

    Annex A, IFS: 2002

    Page 43

    A2.2 Low Alloy Steels

    The two attributes for classifying low alloy steel weld metals require tests not only formechanical properties, as in unalloyed steels, but also for alloy composition. The WFM numbers

    incorporate both criteria in the designations: first, the mechanical properties as shown in Figures

    A1 and A3, and subsequently the alloy composition. For solid low alloy steel wires, which areused for the several arc welding processes including submerged arc welding (SAW), gas metal

    arc welding (GMAW), and gas tungsten arc welding (GTAW), among others, the manganese,carbon and silicon levels are defined as shown in Figure A2, and the composition designator is

    appended.

    The WFM system adopts a principle devised recently for the B section of ISO co-habitation

    drafts. Unlike previous designation systems used in IFS: 1998, a new system was developed that

    makes use of the same designation for similar compositions in each filler metal formelectrodes, bare wire, flux cored wire, etc. Figure A4 illustrates the methods used in establishing

    this new designation system.

    MnMo M

    Ni N

    NiMo N M +

    NiCrMo N C M +

    CrMo C M +

    NiCrCu N C C Weatheringsteels CrCu C C

    where:

    = nominal %Mn or %Ni or %Cr = 1, 2, 3, or 4 for low, medium, high, or extra high %Mo = Cr

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    50/55

    Annex A, IFS: 2002

    Page 44

    A2.4 Nickel Alloys

    A confusing system of designations for nickel alloy welding filler metals has evolved over the

    years with designations making use of the element symbols. Recent draft ISO specifications have

    adopted a four-digit numbering system based upon the five-digit Unified Numbering System

    (UNS) numbers.

    In the UNS system, many of the types have zero as the initial digit, making it sensible to dropthat digit for the WFM and ISO draft designations. Where nickel alloys contain over 15% Mo,

    the UNS system uses an initial 1, usually followed by a zero. The ISO 9722 for wrought nickel

    alloys also adopted the four-digits of the UNS numbers, but for the high molybdenum alloys, thisspecification drops the first digit 1, causing the remaining digits to begin with 0.

    Recognizing that designations, such as 0003, would no longer be four-digits in common usage

    where initial zeros are normally dropped, the filler metal ISO draft standards retained the initial1 for the four-digit designations and dropped either a zero or another digit when making use of

    the UNS system.

    The number assignment recognizes the desirability of having numbers for welding filler metals tobe similar to the wrought metals most commonly welded. A conscious effort has been made to

    adopt the ISO 9722 numbers wherever possible. In many cases (though not all), the four-digit

    number includes the common trade designation, e.g., ENi 0276 = Hastelloy C-276. Examples ofdesignations are shown in Table A3.

    Table A3

    Designations for Nickel Alloy Filler Metals.

    ISO and WFM DesignationsTrade

    Designation

    UNS

    Number*Electrode Bare Wire Base Metal

    Nickel N02061 ENi 2061 SNi 2061 NW 2200

    Monel N04060 ENi 4060 SNi 4060 NW 4400

    Inconel N06082 ENi 6082 SNi 6082 NW 6600

    Inconel 625 N06625 ENi 6625 SNi 6625 NW 6625

    Incoweld N07092 ENi 7092 SNi 7092

    Sanicro 28 N08028 ENi 8028 SNi 8028 NW 8028

    Hastelloy B N10001 ENi 1001 SNi 1001 NW 0001

    Hastelloy C-276 N10276 ENi 6276 SNi 6276 NW 0276

    Hastelloy W N10004 ENi 1004 SNi 1004 NW 0004

    *The initial N denotes solid wire; for covered electrodes and flux cored wires, however, a similar numeric digits is

    used starting with "W8" and followed by the final four digits.

    This Ni-Cr-Mo alloy fits more closely with other Ni-Cr-Mo alloys, having the initial 6, than with the NiMoalloys, having the initial 0.

    Flux cored nickel alloy wires make use of the same four-digit designations following the initial

    TNi, after which the designations x and y are added to define the gas shielding, if any, andthe usability, respectively.

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    51/55

    Annex A, IFS: 2002

    Page 45

    A2.5 Aluminum Alloys

    The designation of aluminum alloy filler metals has been made relatively easy by the four-digit

    system established for many years by the Aluminum Association, and used around the world. In

    the UNS system, the five-digit numbers for welding filler metals utilizes 9 for the initial digit,

    which is eliminated in the WFM four-digit numbering system. The cast alloys, whose tradedesignations are quite different, are assigned UNS numbers with other initial designators and

    make use of cast rod initial designator R if produced as cast rods or S if produced in the

    form of drawn wire. In conformance with other non-iron base alloys, the WFM system uses Alfor the alloy designator to match that in the ISO standard rather than simply A as previously

    proposed in the generic system. It then applies the most significant four digits of the UNS

    numbers for its designation, as shown by examples in Table A4.

    Table A4

    Designations for Aluminum Alloy Filler Metals

    Trade Designation UNS Number ISO and WFM Designations1100 A91100 SAl 1100

    2319 A92319 SAl 2319

    4043 A94043 SAl 4043

    5183 A95183 SAl 5183

    5356 A95356 SAl 5356

    5554 A95554 SAl 5554

    5654 A95654 SAl 5654

    C355.0 A33550 RAl or SAl 3355

    A356.0 A13560 RAl or SAl 1356

    357.0 A03570 RAl or SAl 3570

    A357.0 A13570 RAl or SAl 3571

    A2.6 Copper Alloys (New)

    Like the previous nonferrous alloys, the designators for copper alloys make use of the UNS

    numbering system. This system thus avoids the use of element designators, which often becomeconfusing. Examples of the designations are shown in Table A5.

    Table A5

    Designations for Copper Alloy Filler Metals

    ISO and WFM NumbersTrade Designation UNS

    Number Electrode Bare WireCopper C18980 ECu 1898 SCu 1898

    Tin bronze C51800 ECu 5180 SCu 5180

    Aluminum bronze C61800 ECu 6180 SCu 6180

    Silicon bronze C65600 ECu 6560 SCu 6560

    Copper-nickel C71581 ECu 7158 SCu 7158

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    52/55

    Annex A, IFS: 2002

    Page 46

    A2.7 Titanium Alloys (New)

    As for the other nonferrous alloys, titanium alloys lend themselves easily to make use of the UNS

    numbering system. UNS numbers for titanium alloys are assigned in the R-series for reactive

    metals; these all have the numbers R5xxxx. As this project is nearing completion, AWS

    A5.16/A5.16M is in draft form and includes many more filler metals than its predecessor, and

    these are included in Table 15. UNS number assignments to the new alloys are being establishedto closely match the ASTM wrought alloys. A work item has been established to draft the ISO

    specification shown in this Table 15 as ISO 99999 using a designation system shown in TableA6.

    Table A6

    Designations of Titanium Alloy Filler Metals

    Type of Alloy UNS Number ISO and WFM Number

    Unalloyed R501xx STi 01xx

    Pd and Ru onlyR522xx &

    R524xxx

    STi 22xx and

    STi 24xx0.5 Ni alloys R534xx STi 34xx

    0.5 Co alloys R535xx STi 35xx

    5 Al + Sn alloys R545xx STi 45xx

    6 Al + 4 Zr & Mo alloys R546xx STi 46xx

    8 Al + 1 V & Mo alloys R548xx STi 48xx

    5 Al + 1 V with Mo, Sn, & Zr alloys R551xx STi 51xx

    3 Al + 2.5 V alloys R563xx STi 63xx

    6 Al + 4 V alloys R564xx STi 64xx

    2.8 Hard Facing and Other Surfacing Alloys (New)

    Filler metal standards for this group of materials have arisen over the past half-century from alarge number of proprietary compositions having a variety of properties to meet specific

    industrial needs. Attempts to classify them have been problematic. For Tables 13 and 14,

    composition has been the primary means of indexing; many of the iron-based compositions have

    very little overlap by which to ascertain comparable materials in the several nationalspecifications, making the number of classifications large. The listings in the several tables are

    then assigned similar index numbers for roughly comparable hardness and compositions, at least

    in the principal alloys used for comparable applications.

    These tables are offered as an information source for groups intending to prepare ISO standardsfor this class of welding materials. In the mid-1990s, IIW Commission II began a study thatfocused on the microstructure of the deposits. Microstructure and hardness thus appeared to be

    properties whereby comparable materials could be classified. These properties became theprimary basis for assigning index (WFM) numbers in these tables. Table A7 summarizes the

    microstructures set forth in the IIW study3

    and the WFM numbers assigned to the defined

    properties.

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    53/55

    Annex A, IFS: 2002

    Page 47

    Table A7

    Microstructures Assigned to WFM Numbers

    Iron Base NonIron Base

    Table 13 Table 14 Microstructure Table 13 Table 14 MicrostructureEF730x XF 73xx FS ECo 302x SCo 3021 Co-Cs

    EF740x743x XF740x-743x M1 ECo 30043012 SCo 3006-3012 Co-PC

    EF750x769x XF750x768x M2 ECo 311x SCo 311x Co-PKE

    EF77xx XF77xx M3 SCo 312x Co-NE

    M4 Co-LP

    ENi 990x SNi 990x Ni-NS

    EF745x746x MA ENi 996x SNi 996x Ni-C

    EF7471 MB Ni-B

    EF7475 XF786x MAB ENi 9946 SNi 994x Ni-CB

    EF7840X7850 MK Ni-LPEF783x XF763x MEK ECu 47xx SCu 47xx CuAS

    EF83xx XF83xx A ECu 51xx-52xx SCu 51xx52xx CuBSn

    TF84xx AF ECu 6560 SCu 6560 CuBSi

    EF790x796x XF790x794x AM ECu 61xx65xx SCu 61xx-63xx CuBT

    EF797x7980 XF797x AMC ECu 7158 CuNi

    AK

    EF85xx SF85xx PAE

    EF861x862x SF86xx NE

    EF864X NEB

    EF88xx SF86xx PKEEF87xx SF87xx KKA

    The European Community is currently studying existing standards to determine the feasibility of

    establishing an EN standard, and possibly an ISO standard based thereon. One such standard thathas existed for a long time is the German document DIN 8555. The compositions in this

    specification have broad ranges as shown in Table A8. Another source document is a preliminary

    study conducted by the European CEN group designated N541. Since one of the purposes of thisproject is to facilitate standardization of welding filler metals, the columns marked Europe list

    these existing documents which may form a basis for standardization efforts.

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    54/55

    Annex A, IFS: 2002

    Page 48

    Table A8

    Alloy Types in DIN 8555

    Alloy

    Designation*Definition

    1Unalloyed low alloy up to 0.4% C or up to a maximum of 5% of the alloying elements Cr, Mn,

    Mo, Ni in total.

    2Unalloyed with up to no more than 0.4% C or low alloy with more than 0.4% C and up to amaximum of 5% of the alloying elements Cr, Mn,. Mo, Ni in total.

    3 Alloyed with properties of hot working steels.

    4 Alloyed with properties of high speed steels.

    5 Alloyed with more than 5% Cr with low C content (up to about 0.2%).

    6 Alloyed with more than 5% Cr , with a higher C content (about 0.2 to 2.0%).

    7 Mn austenites with 11 to 18% Mn, more than 0.5% C and up to 3% Ni.

    8 Cr-Ni Mn austenites.

    9 Cr-Ni steels (resistant to rusting, acid, and heat).

    10With high C content and high Cr alloying content and without additional carbide forming

    elements.

    20 Co-based, Cr-W alloyed, with or without Ni and Mo.

    21 Carbide-based (sintered cast or cored)

    22 Ni- based, Cr alloyed, Cr-B alloyed.

    23 Ni-based, Mo alloyed, with or without Cr.

    30 Cu-based, Sn-alloyed

    31 Cu-based, Al-alloyed.

    32 Cu-based, Ni-alloyed

    * Covered electrode designations are preceded with E and bare wire with MF.

    In the United States, the AWS Committee on Filler Metals and Allied Materials has recentlyupdated its specifications, which made necessary the redefining of the scope of the two

    standards. The document AWS A5.13/A5.13M now includes all covered electrodes, and

    A5.21/A5.21M has both solid wires and composite (both metal cored and flux cored) wires.

    Likewise, for this project, Tables 13 and 14 are divided between covered electrodes and bare(solid and composite) wires, respectively. In the WFM designation system as shown in Table A1,

    the initial letter for composite wires is T, if flux cored wire, or C, if metal cored wire.

  • 7/29/2019 AWS IFS-02 - 2002.pdf

    55/55

    Annex A, IFS: 2002

    Page 49

    A2.9 Filler Metals for Cast Iron (New)

    As for the hard surfacing alloys, the filler metals for welding and repairing cast iron are

    conveniently classified by their weld metals structure. Most standards for these materials, notably

    ISO 1071, include all forms of filler metalcovered electrodes, cast rods, solid and tubularwires. To accommodate the WFM indexing system, three separate tables are used, one for

    covered electrodes with the initial designator, E, one for composite wires or rods with theinitial designator T (whether flux cored or metal cored), and one for solid wire and cast rods

    with initial designators S and R, respectively.

    In order to avoid any possible conflict confusing these materials with filler metals for the joining

    of wrought metals, the initial designators are followed by CI (see Table A1) with spaces

    separating the CI from the initial letter and from the following numeric designators. Theselatter numbers do not relate to UNS or any other known system but are arbitrarily assigned to

    similar materials, as shown in Table A9.

    Table A9

    Examples of Numerical Designators and WFM Numbers for Materials

    for Welding Cast Irons

    WFM NumbersNumerical

    Designators

    Microstructure

    Covered

    Electrodes

    Tubular Wires or

    Rods

    Solid Wires or Rods

    10xx Pearlitic E CI 1010

    11xx Martensitic E CI 1110 T CI 1101

    12xx Ferrite/Carbide E CI 1210

    21xx Lamellar Graphite E CI 2101 T CI 2101 R CI 2101

    31xx Nodular Graphite E CI 3101 T CI 3101 R CI 310140xx E CI 4000 S CI 4003

    50xxNi Solid Solution

    E CI 5001 T CI 5001 S CI 5001

    60xx Ni Mn Solid Solution E CI 6001 S CI 6002

    70xx Cu Solid Solution E CI 7001

    References

    1 Thomas, R. D., Jr., 1996, Generic System for Designation of Welding Filler Metals,Welding in the World, 37 (3):

    155160; Thomas, R. D., Jr., 1998, Generic System for Designation of Welding Filler Metals, Welding Journal

    77(2): 2932

    2 D. J. Kotecki, The Logic behind the Master Table of Steel Weld Metal Compositions, June 13, 2000

    3 IIW document II-E-249-96,A Classification System for Hardfacing Alloys


Recommended