+ All Categories
Home > Documents > B 65270 en-07

B 65270 en-07

Date post: 28-Jan-2015
Category:
Upload: mt7038
View: 1,095 times
Download: 248 times
Share this document with a friend
Description:
 
Popular Tags:
935
PARAMETER MANUAL B-65270EN/07 FANUC AC SERVO MOTOR @* series FANUC AC SERVO MOTOR #* series FANUC LINEAR MOTOR L*S series FANUC SY NCHRONOUS BUILT-IN SERVO MOTOR D*S series
Transcript
  • 1. FANUC AC SERVO MOTOR @* seriesFANUC AC SERVO MOTOR #* seriesFANUC LINEAR MOTOR L*S seriesFANUC SY NCHRONOUS BUILT-IN SERVO MOTOR D*S seriesPARAMETER MANUAL B-65270EN/07

2. No part of this manual may be reproduced in any form. All specifications and designs are subject to change without notice.The products in this manual are controlled based on Japans Foreign Exchange andForeign Trade Law. The export from Japan may be subject to an export license by thegovernment of Japan.Further, re-export to another country may be subject to the license of the government ofthe country from where the product is re-exported. Furthermore, the product may also becontrolled by re-export regulations of the United States government.Should you wish to export or re-export these products, please contact FANUC for advice.In this manual we have tried as much as possible to describe all the various matters.However, we cannot describe all the matters which must not be done, or which cannot bedone, because there are so many possibilities.Therefore, matters which are not especially described as possible in this manual should beregarded as impossible.This manual contains the program names or device names of other companies, some ofwhich are registered trademarks of respective owners. However, these names are notfollowed by or in the main body.General Safety Precautions When an abnormality such as an alarm or a hardware failure occurs, the operationsdescribed in the specifications are not guaranteed unless otherwise specifically noted.When action corresponding to the abnormality is specifically described, take the action.When no action is described, please contact FANUC. The signals and functions described in the specifications cannot be used separately forsafety functions unless otherwise described as being usable for the safety functions.Their specifications are not assumed to be used as the safety functions in this case, anunexpected danger may be caused. For information about the safety functions, pleasecontact FANUC.Generally, the safety functions represent functions that protect the operators frommachine danger. A wrong device connection or setting can lead to unpredictable operation. When startingto operate the machine for the first time after assembling the machine, replacingcomponents, or modifying parameter settings, exercise the greater care by, forexample, reducing the torque limit value, error detection level, or operating speed or byoperating the machine in such a way that an emergency stop can be made quickly. 3. B-65270EN/07DEFINITION OF WARNING, CAUTION, AND NOTEDEFINITION OF WARNING, CAUTION, AND NOTE This manual includes safety precautions for protecting the user and preventing damage to the machine. Precautions are classified into Warning and Caution according to their bearing on safety. Also, supplementary information is described as a Note. Read the Warning, Caution, and Note thoroughly before attempting to use the machine.WARNING Applied when there is a danger of the user being injured or when there is a damage of both the user being injured and the equipment being damaged if the approved procedure is not observed. CAUTION Applied when there is a danger of the equipment being damaged, if the approved procedure is not observed. NOTE The Note is used to indicate supplementary information other than Warning and Caution. - Read this manual carefully, and store it in a safe place.s-1 4. B-65270EN/07 TABLE OF CONTENTSTABLE OF CONTENTSDEFINITION OF WARNING, CAUTION, AND NOTE .................................s-11 OVERVIEW ............................................................................................. 11.1SERVO SOFTWARE AND SERVO CARDS SUPPORTED BY EACH NC MODEL.......................................................................................................... 21.2ABBREVIATIONS OF THE NC MODELS COVERED BY THIS MANUAL .... 51.3RELATED MANUALS.................................................................................... 62 SETTING iS/iF/iS SERIES SERVO PARAMETERS....................... 82.1INITIALIZING SERVO PARAMETERS.......................................................... 9 2.1.1Before Servo Parameter Initialization ......................................................................9 2.1.2Parameter Initialization Flow .................................................................................10 2.1.3Servo Parameter Initialization Procedure ...............................................................11 2.1.4Setting Servo Parameters when a Separate Detector for the Serial Interface isUsed........................................................................................................................33 2.1.5Setting Servo Parameters when an Analog Input Separate Detector InterfaceUnit is Used ............................................................................................................44 2.1.6Setting Parameters when an iCZ Sensor is Used .................................................46 2.1.7Setting Parameters When an Acceleration Sensor or Temperature DetectionCircuit Is Used........................................................................................................52 2.1.8Actions for Illegal Servo Parameter Setting Alarms ..............................................61 2.1.9Notes on Using the Control Axis Detach Function ................................................773 iS/iF/iS SERIES PARAMETER ADJUSTMENT............................ 783.1SERVO TUNING SCREEN AND DIAGNOSIS INFORMATION .................. 79 3.1.1Servo Tuning Screen ..............................................................................................79 3.1.2Diagnosis Information List.....................................................................................82 3.1.3Actual Current Peak Hold Display .........................................................................85 3.1.4Acceleration Monitor Function ..............................................................................863.2ACTIONS FOR ALARMS ............................................................................ 873.3ADJUSTING PARAMETERS FOR HIGH-SPEED AND HIGH-PRECISION MACHINING ................................................................................................ 96 3.3.1Servo HRV Control Adjustment Procedure ...........................................................96 3.3.2High-speed Positioning Adjustment Procedure....................................................119 3.3.3Rapid Traverse Positioning Adjustment Procedure..............................................122 3.3.4Vibration in the Stop State ...................................................................................127 3.3.5Vibration during Travel........................................................................................129 c-1 5. TABLE OF CONTENTSB-65270EN/073.3.6 Stick Slip ..............................................................................................................1313.3.7 Overshoot .............................................................................................................1324 SERVO FUNCTION DETAILS ............................................................ 1334.1 SERVO HRV CONTROL ........................................................................... 1344.1.1 Servo HRV2 Control ............................................................................................1374.2 HIGH-SPEED HRV CURRENT CONTROL ............................................... 1384.2.1 Servo HRV3 Control ............................................................................................1384.2.2 Servo HRV4 Control ............................................................................................1444.2.3 High-Speed HRV Current Control .......................................................................1494.3 CUTTING/RAPID SWITCHING FUNCTION .............................................. 1504.4 VIBRATION SUPPRESSION IN THE STOP STATE................................. 1564.4.1 Velocity Loop High Cycle Management Function ..............................................1564.4.2 Acceleration Feedback Function ..........................................................................1584.4.3 Variable Proportional Gain Function in the Stop State ........................................1604.4.4 N Pulses Suppression Function ............................................................................1644.4.5 Current Loop 1/2 PI Control Function .................................................................1664.5 MACHINE RESONANCE ELIMINATION FUNCTION ............................... 1684.5.1 Selecting a Resonance Elimination Function .......................................................1684.5.2 Torque Command Filter (Middle-Frequency Resonance Elimination Filter) ......1694.5.3 Resonance Elimination Filter Function(High-Frequency Resonance Elimination Filter) .................................................1714.5.4 Disturbance Elimination Filter Function(Low-Frequency Resonance Elimination Filter) ..................................................1764.5.5 Resonance Elimination Filter L(Low-Frequency Resonance Elimination Filter) ..................................................1804.5.6 Observer Function ................................................................................................1834.5.7 Vibration Damping Control Function ..................................................................1874.5.8 Dual Position Feedback Function (Optional Function)........................................1894.5.9 Machine Speed Feedback Function......................................................................1964.5.10Machining Point Control ......................................................................................1994.6 CONTOUR ERROR SUPPRESSION FUNCTION .................................... 2024.6.1 Feed-forward Function .........................................................................................2024.6.2 Advanced Preview Feed-forward Function..........................................................2064.6.3 RISC Feed-forward Function ...............................................................................2094.6.4 Cutting/Rapid Feed-forward Switching Function ................................................2114.6.5 Feed-forward Timing Adjustment Function.........................................................2134.6.6 Backlash Acceleration Function...........................................................................216c-2 6. B-65270EN/07 TABLE OF CONTENTS 4.6.7Two-stage Backlash Acceleration Function .........................................................223 4.6.8Static Friction Compensation Function ................................................................238 4.6.9Torsion Preview Control Function .......................................................................2414.7OVERSHOOT COMPENSATION FUNCTION .......................................... 2514.8HIGH-SPEED POSITIONING FUNCTION ................................................ 257 4.8.1Position Gain Switching Function........................................................................257 4.8.2Low-speed Integral Function................................................................................261 4.8.3Fine Acceleration/Deceleration (FAD) Function .................................................2634.9SERIAL FEEDBACK DUMMY FUNCTIONS ............................................. 272 4.9.1Serial Feedback Dummy Functions......................................................................272 4.9.2How to Use the Dummy Feedback Functions for a Multiaxis Servo Amplifierswhen an Axis is not in Use...................................................................................2754.10 BRAKE CONTROL FUNCTION................................................................. 2764.11 QUICK STOP FUNCTION ......................................................................... 280 4.11.1 Quick Stop Type 1 at Emergency Stop ................................................................280 4.11.2 Quick Stop Type 2 at Emergency Stop ................................................................282 4.11.3 Lifting Function Against Gravity at Emergency Stop..........................................2834.11.3.1 Lifting function against gravity at emergency stop ......................................... 2834.11.3.2 Function based on the DI signal for switching the distance to lift................... 2874.11.3.3 Method of setting a distance to lift in m........................................................ 290 4.11.4 Quick Stop Function for Hardware Disconnection of Separate Detector.............291 4.11.5 Quick Stop Function for Separate Serial Detector Alarms...................................293 4.11.6 Quick Stop Function at OVL and OVC Alarm ....................................................294 4.11.7 Overall Use of the Quick Stop Functions.............................................................2954.12 UNEXPECTED DISTURBANCE TORQUE DETECTION FUNCTIONDISTURBANCE TORQUE DETECTION................................. 296 4.12.1 Unexpected Disturbance Torque Detection Function ..........................................296 4.12.2 Cutting/Rapid Unexpected Disturbance Torque Detection Switching Function..307 4.12.3 Unexpected Disturbance Torque Detection Switching Function Depending onAcc. ......................................................................................................................3094.13 FUNCTION FOR OBTAINING CURRENT OFFSETS AT EMERGENCY STOP......................................................................................................... 3114.14 LINEAR MOTOR PARAMETER SETTING................................................ 312 4.14.1 Procedure for Setting the Initial Parameters of Linear Motors ............................312 4.14.2 Detection of an Overheat Alarm by Servo Software when a Linear Motor anda Synchronous Built-in Servo Motor are Used.....................................................337 4.14.3 Smoothing Compensation for Linear Motor ........................................................341 c-3 7. TABLE OF CONTENTS B-65270EN/074.15SYNCHRONOUS BUILT-IN SERVO MOTOR PARAMETER SETTING ... 3464.15.1 Procedure for Setting the Initial Parameters of Synchronous Built-in Servo Motors ..................................................................................................................3464.15.2 Detection of an Overheat Alarm by Servo Software when a Synchronous Built-in Servo Motor are Used .............................................................................3824.15.3 Smoothing Compensation for Synchronous Built-in Servo Motor ......................3834.16SETTING PARAMETERS FOR LARGE SERVO MOTORS...................... 3884.16.1 Motor Models and System Configurations...........................................................3884.16.2 Setting Parameters in the Torque Tandem Configuration ....................................3894.16.3 Setting Parameters in the PWM Distribution Module Configuration ..................3914.16.4 Data Measurement and Diagnosis with a PWM Distribution Module (PDM).....3944.17INTERACTIVE FORCE COMPENSATION FUNCTION ............................ 3984.18TORQUE CONTROL FUNCTION ............................................................. 4154.19TANDEM DISTURBANCE ELIMINATION CONTROL(POSITION TANDEM) (Optional Function)................................................ 4184.20SYNCHRONOUS AXES AUTOMATIC COMPENSATION ........................ 4264.21TORQUE TANDEM CONTROL FUNCTION (Optional Function) .............. 4304.21.1 Preload Function ..................................................................................................4364.21.2 Damping Compensation Function........................................................................4394.21.3 Velocity Feedback Average Function ..................................................................4414.21.4 Servo Alarm 2-axis Simultaneous Monitor Function...........................................4424.21.5 Motor Feedback Sharing Function .......................................................................4444.21.6 Full-closed Feedback Sharing Function ...............................................................4454.21.7 Adjustment ...........................................................................................................4464.21.8 Cautions for Controlling One Axis with Two Motors..........................................4504.21.9 Velocity loop integrator copy function ................................................................4514.21.10 Tandem Speed Difference Alarm Function..........................................................4524.21.11 Block Diagrams....................................................................................................4544.22SERVO TUNING TOOL SERVO GUIDE................................................... 4554.22.1 SERVO GUIDE ...................................................................................................4555 DETAILS OF PARAMETERS ............................................................. 4735.1 DETAILS OF THE SERVO PARAMETERS FOR Series 30i, 31i, 32i, 15i,16i, 18i, 21i, 0i, 20i, Power Mate i (SERIES 90D0, 90E0, 90B0, 90B1,90B6, 90B5, AND 9096) ............................................................................ 474 c-4 8. B-65270EN/07TABLE OF CONTENTS6 PARAMETER LIST ............................................................................. 5056.1PARAMETERS FOR HRV1 CONTROL .................................................... 5066.2PARAMETERS FOR HRV2 CONTROL .................................................... 5166.3PARAMETERS FOR HRV1 CONTROL (FOR Series 0i-A) ....................... 531APPENDIXA ANALOG SERVO INTERFACE SETTING PROCEDURE.................. 537B PARAMETERS SET WITH VALUES IN DETECTION UNITS ............ 544B.1PARAMETERS FOR Series 15i ................................................................ 545B.2PARAMETERS FOR Series 16i, 18i, 21i, AND 0i ..................................... 547B.3PARAMETERS FOR Power Mate i ........................................................... 549B.4PARAMETERS FOR Series 30i, 31i, AND 32i .......................................... 551C FUNCTION-SPECIFIC SERVO PARAMETERS ................................. 553D PARAMETERS RELATED TO HIGH-SPEED AND HIGHPRECISION OPERATIONS ................................................................ 563D.1MODEL-SPECIFIC INFORMATION .......................................................... 564 D.1.1Series 15i-MB.......................................................................................................564 D.1.2Series 16i/18i/21i/0i/0i Mate-MB, 0i/0i Mate-MC/20i-FB ..................................567 D.1.3Series 30i/31i/32i-A, 31i-A5 ................................................................................577D.2SERVO PARAMETERS RELATED TO HIGH-SPEED AND HIGH PRECISION OPERATIONS....................................................................... 580E VELOCITY LIMIT VALUES IN SERVO SOFTWARE ......................... 587F SERVO FUNCTIONS .......................................................................... 593G PARAMETERS FOR AND OTHER SERIES ................................... 597G.1MOTOR ID NUMBERS OF SERIES MOTORS...................................... 598G.2MOTOR ID NUMBERS OF SERIES MOTORS ...................................... 600G.3MOTOR ID NUMBERS OF CONVENTIONAL LINEAR MOTORS ............ 601G.4PARAMETERS FOR SERVO HRV2 CONTROL ....................................... 602G.5HRV1 CONTROL PARAMETERS FOR SERIES, SERIES, AND CONVENTIONAL LINEAR MOTORS........................................................ 603G.6HRV2 CONTROL PARAMETERS FOR M SERIES MOTORS................ 612H DETAILS OF HIGH-SPEED AND HIGH-PRECISIONADJUSTMENT .................................................................................... 614 c-5 9. TABLE OF CONTENTSB-65270EN/07I SERVO CHECK BOARD OPERATING PROCEDURE ...................... 637I.1 METHOD OF USING THE SERVO CHECK BOARD ................................ 638I.2 ADJUSTING UNEXPECTED DISTURBANCE TORQUE DETECTIONWITH THE CHECK BOARD ...................................................................... 651I.3 ADJUSTING LINEAR MOTOR AMR OFFSET WITH THE CHECKBOARD (INCREMENTAL TYPE)............................................................... 652I.4 ADJUSTING SMOOTHING COMPENSATION FOR A LINEAR MOTORWITH THE CHECK BOARD ...................................................................... 655I.5 MEASURING FREQUENCY CHARACTERISTICS WITH THE CHECKBOARD...................................................................................................... 661J USING THE SERVO CHECK INTERFACE UNIT ............................... 665c-6 10. B-65270EN/07 1.OVERVIEW1OVERVIEWThis manual describes the servo parameters of the CNC models usingFANUC AC SERVO MOTOR iS, iF, and iS series. Thedescriptions include the servo parameter start-up and adjustmentprocedures. The meaning of each parameter is also explained.Chapter 1, "OVERVIEW", consists of the following sections:1.1 SERVO SOFTWARE AND SERVO CARDS SUPPORTEDBY EACH NC MODEL................................................................21.2 ABBREVIATIONS OF THE NC MODELS COVERED BYTHIS MANUAL ...........................................................................21.3 RELATED MANUALS................................................................2-1- 11. 1.OVERVIEW B-65270EN/071.1 SERVO SOFTWARE AND SERVO CARDS SUPPORTEDBY EACH NC MODELNC product nameSeries and edition of applicable servo software Servo cardSeries 21i-MODEL B(Note1) Series 9096/A(01) and subsequent editions320C52Series 0i-MODEL B (Note1) Supporting i series CNC and SERVO HRV1 control)(Note2) servo cardSeries 0i Mate-MODEL B (Note1)Power Mate i-MODEL D (Note1)Power Mate i-MODEL H (Note1) Series 90B0/H(08) and subsequent editions Series 90B6/A(01) and subsequent editions (Supporting i series CNC and SERVO HRV1, 2, and 3 control) 320C5410(Note3) servo cardSeries 15i-MODEL B Series 90B1/A(01) and subsequent editions(Note4)Series 16i-MODEL BSeries 18i-MODEL B Series 90B5/A(01) and subsequent editionsSeries 0i-MODEL C(Supporting i series CNC and SERVO HRV1, 2, and 3 control)320C5410Series 0iMate-MODEL C (Note5)servo cardSeries 20i-MODEL B Series 90B8/I(09) and subsequent editions(Note6) Series 90D0/A(01) and subsequent editions Servo card for FS30i (Supporting i series CNC and SERVO HRV4 control)Series 30i-MODEL A servo HRV4 control(Note7, Note8)Series 31i-MODEL A Series 90E0/A(01) and subsequent editions Servo card for FS30i (Supporting i series CNC and SERVO HRV2 and 3 control)servo HRV2 and 3 (Note8)Series 32i-MODEL Acontrol NOTE 1 The servo software series of the Series 21i-MODEL B, 0i-MODEL B, 0i Mate MODEL B, or Power Mate i-MODEL D/H depends on the incorporated servo card, as shown below: Servo software Servo cardSeries 9096 320C52 cardSeries 90B0 or Series 90B6 320C5410 card 2 The servo software Series 9096 is compatible with the conventional servo software Series 9090 except for the following function: - Electric gear box (EGB) function can not beused. 3 The servo software Series 90B0 is upwardly compatible with the conventional servo software Series 90A0. Series 90B6 is a successor of Series -2- 12. B-65270EN/07 1.OVERVIEW NOTE 90B0. 4 Series 90B1 is a special series compatible with Series 90B0 and is required when following functions are used. - PWM distribution module - Pulse input DSA - Magnetic pole detection - Analog SDU 5 Servo software Series 90B5, which is a successor of Series 90B0 and supports the same functions as Series 90B6, is used in the Series 0i-MODEL C, 0i Mate-MODEL C, and 20i-MODEL B. 6 Servo software Series 90B8, which is a successor of Series 90B0 and supports the same functions asSeries 90B1, is used in the Series 0i-MODEL C and 0i Mate-MODEL C. 7 When using servo HRV4 control with Series 30i-MODEL A and 31i-MODEL A, use Series 90D0. 8 Servo software Series 90D0 and 90E0 is upwardly compatible with conventional servo software Series 90B0 except the following functions: - Fine Acc./Dec. (FAD) function can not be used. - HRV1 control can not be used.-3- 13. 1.OVERVIEW B-65270EN/07 Servo software series mapHRV1 supported, i not supported 9090HRV1 supported, i supported 9096HRV2 supported, i not supported 90A0 90A6HRV3 supported, i supported 90B0 Support for pole detection, analog SDU, etc. For Series 16i ,For Series 0i-C For Series 16i , and so on and 20i-B and so on For Series 0i-C 90B690B590B190B8 For Series 30i , and so onHRV4 supported 90E090D0-4- 14. B-65270EN/07 1.OVERVIEW1.2ABBREVIATIONS OF THE NC MODELS COVERED BY THIS MANUAL In this manual, the NC product names are abbreviated as follows.NC product name Abbreviations FANUC Series 30i-MODEL ASeries 30i-A Series 30iSeries 30i FANUC Series 31i-MODEL ASeries 31i-A Series 31iFS30i FANUC Series 32i-MODEL ASeries 32i-A Series 32iSeries 15i FANUC Series 15i-MODEL BSeries 15i-B Series 15iFS15i FANUC Series 16i-MODEL BSeries 16i-B Series 16i FANUC Series 18i-MODEL BSeries 18i-B Series 18iSeries 20i FANUC Series 20i-MODEL BSeries 20i-BFS20i FANUC Series 21i-MODEL BSeries 21i-B Series 21i FANUC Series 0i-MODEL C Series 0i-CSeries 16i and so onSeries 16i etc. FANUC Series 0i Mate-MODEL CSeries 0i Mate-C Series 0i FS16i and so on FANUC Series 0i-MODEL B Series 0i-BFS0iFS16i etc. FANUC Series 0i Mate-MODEL BSeries 0i Mate-B Power Mate i-D FANUC Power Mate i-MODEL D Power Mate i PMi-DPower Mate i-D/H Power Mate i-H FANUC Power Mate i-MODEL H(Note 1) PMi-H NOTE 1 In this manual, Power Mate i refers to the Power Mate i-D, and Power Mate i-H.-5- 15. 1.OVERVIEWB-65270EN/071.3 RELATED MANUALSThe following manuals are available for FANUC AC SERVOMOTOR iS, iF or iS series.In the table, this manual is marked with an asterisk (*).Table 1.3 Related manuals of SERVO MOTOR iS/iF/iS series Document Document nameMajor contents Major usagenumberFANUC AC SERVO MOTOR i seriesB-65262ENDESCRIPTIONSFANUC AC SERVO MOTOR i seriesB-65302EN SpecificationDESCRIPTIONS Characteristics Selection of motorFANUC LINEAR MOTOR LiS seriesB-65222EN External dimensions Connection of motorDESCRIPTIONS ConnectionsFANUC SYNCHRONOUS BUILT-IN SERVOMOTOR DiS seriesB-65332ENDESCRIPTIONSFANUC SERVO AMPLIFIER iSV series Specifications and functionsB-65282ENDESCRIPTIONS Installation Selection of amplifier External dimensions and Connection ofFANUC SERVO AMPLIFIER iSV seriesB-65322ENmaintenance area amplifierDESCRIPTIONS ConnectionsFANUC AC SERVO MOTOR i seriesFANUC AC SPINDLE MOTOR i series B-65285EN Start up the systemFANUC SERVO AMPLIFIER i series Start up procedure (Hardware)MAINTENANCE MANUAL Troubleshooting TroubleshootingFANUC AC SERVO MOTOR i series Maintenance of motor Maintenance ofFANUC AC SPINDLE MOTOR i seriesmotor B-65325ENFANUC SERVO AMPLIFIER i seriesMAINTENANCE MANUALFANUC AC SERVO MOTOR i seriesFANUC AC SERVO MOTOR i seriesFANUC LINEAR MOTOR LiS series B-65270EN *FANUC SYNCHRONOUS BUILT-IN SERVO Start up the systemMOTOR DiS series Initial setting(Software)PARAMETER MANUAL Setting parameters Turning the systemFANUC AC SPINDLE MOTOR i series Description of parameters(Parameters)FANUC AC SPINDLE MOTOR i seriesFANUC BUILT-IN SPINDLE MOTORB-65280ENBi seriesPARAMETER MANUAL-6- 16. B-65270EN/07 1.OVERVIEWOther manufactures products referred to in this manual* IBM is registered trademark of International Business Machines Corporation.* MS-DOS and Windows are registered trademarks of Microsoft Corporation.All other product names identified throughout this manual aretrademarks or registered trademarks of their respective companies.In this manual, the servo parameters are explained using the followingnotation:(Example)Series 15i Servo parameter function nameNo.1875(FS15i)Load inertia ratioNo.2021(FS30i, 16i)Series 30i, 31i, 32i, 16i, 18i, 21i, 0i, Power Mate iThe following i/i Pulsecoders are available.Pulsecoder nameResolutionType iA10001,000,000 pulse/rev Absolute iI10001,000,000 pulse/rev Incremental iA16000 16,000,000 pulse/revAbsolute iA128 131,072 pulse/rev Absolute iA6465,536 pulse/revAbsoluteWhen parameters are set, these pulse coders are all assumed to have aresolution of 1,000,000 pulses per motor revolution. NOTE The effect of iA16000 can be increased when used together with AI nano contour control. -7- 17. 2. SETTING iS/iF/iS SERIES SERVO PARAMETERSB-65270EN/072SETTING iS/iF/iS SERIES SERVO PARAMETERS Chapter 2,"SETTING iS/iF/iS SERIES SERVO PARAMETERS", consists of the following sections: 2.1 INITIALIZING SERVO PARAMETERS....................................9 2.1.1 Before Servo Parameter Initialization.................................9 2.1.2 Parameter Initialization Flow............................................10 2.1.3 Servo Parameter Initialization Procedure .........................11 2.1.4 Setting Servo Parameters when a Separate Detector for the Serial Interface is Used ...............................................33 2.1.5 Setting Servo Parameters when an Analog Input Separate Detector Interface Unit is Used ..........................44 2.1.6 Setting Parameters when an iCZ Sensor is Used ...........46 2.1.7 Setting Parameters when the PWM Distribution Module is Used...............................................................................52 2.1.8 Actions for Illegal Servo Parameter Setting Alarms.........61 2.1.9 Notes on Using the Control Axis Detach Function ..........77-8- 18. B-65270EN/072. SETTING iS/iF/iS SERIES SERVO PARAMETERS2.1INITIALIZING SERVO PARAMETERS2.1.1Before Servo Parameter InitializationBefore starting servo parameter initialization, confirm the following: NC model(ex.: Series 16i-B) Servo motor model (ex.: iF8/3000) Pulsecoder built in a motor (ex.: iA1000) Is the separate position detector used? (ex.: Not used) Distance the machine tool moves per revolution of the motor (ex.:10 mm per one revolution) Machine detection unit (ex.:0.001 mm) NC command unit(ex.:0.001 mm)-9- 19. 2. SETTING iS/iF/iS SERIES SERVO PARAMETERS B-65270EN/072.1.2 Parameter Initialization Flow Use the procedure below to initialize the servo parameters. For details of each setting item, see Subsection 2.1.3.Preparation- Turn on the power in the emergency stop state.- Enable parameter writing.- Display the servo setting screen. See 2.1.3 (1).Servo parameter settingDescription of settingReference itemInitialization bit 2.1.3 (2)Motor ID No. setting 2.1.3 (3)AMR setting 2.1.3 (4)CMR setting 2.1.3 (5)Flexible feed gear setting 2.1.3 (6)Motor rotation direction setting 2.1.3 (7)Setting of the number of velocity pulses and the number 2.1.3 (8)of position pulsesReference counter setting 2.1.3 (9)Full-closed system setting 2.1.3 (10)Servo loop gain setting 2.1.3 (11)CNC restart 2.1.3 (12)Absolute position detector setting 2.1.3 (13)Completion of servo parameter initialization - 10 - 20. B-65270EN/07 2. SETTING iS/iF/iS SERIES SERVO PARAMETERS2.1.3Servo Parameter Initialization Procedure(1) Preparation Switch on the NC in an emergency stop state. Enable parameter writing (PWE = 1). Initialize servo parameters on the servo setting screen. For a Power Mate i with no CRT, specify a value for an item number on the servo setting screen. See Fig. 2.1.3. To display the servo setting screen, follow the procedure below, using the key on the NC.- Series 15i Press theSYSTEM function key several times, and the servo setting screen will appear.- Series 0i-C Press the function key several times until the PARAMETER SETTING SUPPORT screen appears. Press soft key [(OPRT)], move the cursor to the SERVO SETTING item, and press [SELECT] to display the PARAMETER SETTING SUPPORT screen. Fig. 2.1.3(a) PARAMETER SETTING SUPPORT screen With 0i-C, two types of servo setting screens are available: the standard screen and the conventional compatible screen. Initialization can be performed by using either of the screens. This manual describes the method of setting using the conventional compatible screen. For the standard screen, refer to "FANUC Series 0i-MODEL C/0i Mate- MODEL C START-UP MANUAL (B-64114EN-1)".- 11 - 21. 2. SETTING iS/iF/iS SERIES SERVO PARAMETERSB-65270EN/07 (Standard screen)(Conventional compatible screen)Fig. 2.1.3(b) 0i-C Servo tuning screen When the servo setting screen (standard screen) is displayed, the servo setting screen (conventional compatible screen) can be displayed by operating the soft keys as follows: [(OPRT)] [ ] [CHANGE]- Series30i,31i,32i,16i,18i,21i,20i,0i-B [SYSTEM] [] [SV-PRM] If no servo screen appears, set the following parameter as shown, and switch the NC off and on again.#7 #6#5#4#3#2#1 #03111SVS SVS (#0)1: Displays the servo screen. When the following screen appears, move the cursor to the item you want to specify, and enter the value directly. Power MateServo set01000 N0000X axisZ axisINITIAL SET BITS 0000101000001010No.2000Motor ID No. 1616No.2020AMR0000000000000000No.2001CMR2 2 No.1820Feed gearN 1 1 No.2084(N/M)M100 100No.2085Direction Set 111 111No.2022Velocity Pulse No. 81928192No.2023Position Pulse No.12500 12500No.2024Ref. counter10000 10000No.1821Fig. 2.1.3(c) Servo setting screenCorrespondence of Power Mate i- 12 - 22. B-65270EN/072. SETTING iS/iF/iS SERIES SERVO PARAMETERS(2) InitializationStart initialization.Do not power off the NC until step (12). #7#6#5#4#3 #2#1 #0INITIAL SET BIT PRMC DGPR PLC0( Note)Reset initialization bit 1 to 0. DGPR(#1)=0After initialization is completed, DGPR (#1) is set to 1.NOTEOnce initialization has been completed, bit 3(PRMC) for initialization is automatically set to 1.(Except Series 30i, 31i and 32i)(3) Motor ID No. settingSpecify the motor ID number.Select the motor ID number of a motor to be used according to themotor model and motor specification (the middle four digits inA06B-****-B***) listed in the following tables.When using servo HRV3 or HRV4 control, please use the motor IDnumber for servo HRV2 control. It is available with the series andeditions listed in the table and later editions.The mark "x" indicates a value that varies depending on the usedoptions.The mark "-" indicates that automatic loading of standard parametersis not supported as of August, 2007.NOTE Series 30i, 31i and 32iSpecify the motor ID number for servo HRV2 control. Other than the Series 30i, 31i and 32iWhen a pair of the values set in parameter No. 1023 (servo axis number) areconsecutive odd and even numbers, set motor ID numbers for servo HRV control ofthe same type.(Correct examples)Servo axes when parameter No.1023= 1,2: Motor ID number for servo HRV2 controlServo axes when parameter No.1023= 3,4: Motor ID number for servo HRV1 control(Wrong examples)Servo axes when parameter No.1023= 1: Motor ID number for servo HRV2 controlServo axes when parameter No.1023= 2,3: Motor ID number for servo HRV1 control With servo software Series 9096, only servo HRV1 control can be used. Be sure tospecify a motor ID number for servo HRV1 control.- 13 - 23. 2. SETTING iS/iF/iS SERIES SERVO PARAMETERS B-65270EN/07 iS series servo motor MotorMotor ID No.90D090B5 90B1 Motor model 90B0 9096specification HRV1 HRV2 90E090B6 90B8 iS2/50000212 162262AHAA A iS2/60000218 -284G-BB - iS4/50000215 165265AHAA A iS8/40000235 185285AHAA A iS8/60000232 -290G-BB -iS12/40000238 188288AHAA AiS22/40000265 215315AHAA AiS30/40000268 218318AHAA AiS40/40000272 222322AHAA AiS50/3000 0275-Bx0x 224324BVAA FiS50/3000 FAN 0275-Bx1x 225325ANAA DiS100/2500 0285 235335ATAA FiS100/2500 FAN 0285 230330P--I -iS200/2500 0288 238338ATAA FiS200/2500 FAN 0288 234334P--I -iS300/2000 0292 115342BVAA -iS500/2000 0295 245345ATAA F iF series servo motor Motor Motor ID No. 90D090B5 90B1 Motor model 90B09096specification HRV1 HRV2 90E090B6 90B8iF1/5000 0202152 252 A HAA AiF2/5000 0205155 255 A HAA AiF4/4000 0223173 273 A HAA AiF8/3000 0227177 277 A HAA A iF12/3000 0243193 293 A HAA A iF22/3000 0247197 297 A HAA A iF30/3000 0253203 303 A HAA A iF40/30000257-Bx0x207 307 A HAA A iF40/3000 FAN0257-Bx1x208 308 A IAA C- 14 - 24. B-65270EN/07 2. SETTING iS/iF/iS SERIES SERVO PARAMETERSiS series servo motor (for 400-V driving)Motor Motor ID No. 90D090B5 90B1Motor model 90B0 9096 specification HRV1 HRV2 90E090B6 90B8iS2/5000HV0213163 263AQAADiS2/6000HV0219 -287G-BB-iS4/5000HV0216166 266AQAADiS8/4000HV0236186 286ANAADiS8/6000HV0233 -292G-BB-iS12/4000HV 0239189 289ANAADiS22/4000HV 0266216 316ANAADiS30/4000HV 0269219 319ANAADiS40/4000HV 0273223 323ANAADiS50/3000HV FAN0276-Bx1x226 326ANAADiS50/3000HV0276-Bx0x227 327BVAAF iS100/2500HV 0286236 336BVAAF iS100/2500HV FAN 0286231 331P--I- iS200/2500HV 0289239 339BVAAF iS200/2500HV FAN 0289237 337P--I- iS300/2000HV 0293243 343BVAAF iS500/2000HV 0296246 346BVAAF iS1000/2000HV0298248 348BVAAF iS2000/2000HV (Note 1) 0091 -340J-BB-NOTE1 The model needs manual setting. (See Subsection 4.16.3, "SettingParameters in the PWM Distribution Module Configuration".)When using the torque control function, contact FANUC.iF series servo motor (for 400-V driving)Motor Motor ID No. 90D090B5 90B1Motor model 90B0 9096 specification HRV1 HRV2 90E090B6 90B8iF4/4000HV0225175 275AQAAEiF8/3000HV0229179 279AQAAEiF12/3000HV 0245195 295AQAAEiF22/3000HV 0249199 299AQAAE - 15 - 25. 2. SETTING iS/iF/iS SERIES SERVO PARAMETERS B-65270EN/07 Ci series servo motor MotorMotor ID No. 90D090B5 90B1 Motor model90B0 9096specificationHRV1 HRV2 90E090B6 90B8 C4/3000i0221171271AHAAA C8/2000i0226176276AHAAA C12/2000i 0241191291AHAAA C22/2000i 0246196296AHAAA C30/1500i 0251201301AHAAA iS series servo motor MotorAmplifier Motor ID No. 90D0 90B590B1Motor model90B09096specification driving HRV1 HRV290E0 90B690B8iS0.2/5000 0111 (Note 1) 4A -260ANA A*iS0.3/5000 0112 (Note 1) 4A -261ANA A*iS0.4/5000 0114 (Note 1) 20A-280ANA A*iS0.5/6000 0115 20A 181 281G-B B- iS1/60000116 20A 182 282G-B B - 20A 153 253BVA A F iS2/40000061 (Note 2) 40A 154 254BVA A F 20A 156 256BVA A F iS4/40000063 (Note 2) 40A 157 257BVA A F 20A 158 258BVA A F iS8/30000075 (Note 2) 40A 159 259BVA A F 20A 169 269K-D E - iS12/2000 0077 (Note 2) 40A 168 268P-- - - iS12/3000 0078 40A 172 272BVA A F iS22/2000 0085 40A 174 274BVA A F NOTE 1 HRV1 control cannot be used with these motors. So, these motors cannot be used with Series 9096. 2 For a motor specification suffixed with -Bxx6, be sure to use parameters dedicated to FS0i.- 16 - 26. B-65270EN/07 2. SETTING iS/iF/iS SERIES SERVO PARAMETERSiS series servo motor (for 400-V driving) MotorAmplifier Motor ID No.90D090B5 90B1 Motor model 90B0 9096specification driving HRV1 HRV2 90E090B6 90B8 iS2/4000HV 0062 10A151 251 J-BC- iS4/4000HV 0064 10A164 264 J-BC- iS8/3000HV 0076 10A167 267 J-BC- iS12/3000HV0079 20A170 270 J-BC- iS22/2000HV0086 20A178 278 J-BC-iS series servo motor (dedicated to FS0i)MotorAmplifier Motor ID No. Motor model90B590B8 specification driving HRV1 HRV2 20A 206306 D IiS 2/40000061-Bxx6 40A 210310 D I 20A 211311 D IiS 4/40000063-Bxx6 40A 212312 D I 20A 183283 D IiS 8/30000075-Bxx6 40A 194294 D I 20A 198298 D IiS 12/2000 0077-Bxx6 40A 200300 - - 20A 202302 D IiS 22/1500 0084-Bxx6 40A 205305 D I The motor models above can be driven only with Series 90B5 and 90B8.- 17 - 27. 2. SETTING iS/iF/iS SERIES SERVO PARAMETERSB-65270EN/07 Linear motor Linear motor parameters for servo HRV2 control Note: The following linear motors are driven by 200V.Motor 90D090B5 Motor model Motor ID No.90B090B1 9096 specification90E090B6 LiS 300A1/40441-B200351 G-BB - LiS 600A1/40442-B200353 G-BB- LiS 900A1/40443-B200355 G-BB- LiS 1500B1/4 0444-B210357 G-BB- LiS 3000B2/2 0445-B110360 G-BB- LiS 3000B2/4 0445-B210362 G-BB- LiS 4500B2/2 0446-B110364 G-BB- LiS 6000B2/2 0447-B110368 G-BB- LiS 6000B2/4 0447-B210370 G-BB- LiS 7500B2/2 0448-B110372 G-BB- LiS 7500B2/4 0448-B210374 G-BB- LiS 9000B2/2 0449-B110376 G-BB- LiS 9000B2/4 0449-B210378 G-BB- LiS 3300C1/2 0451-B110380 G-BB- LiS 9000C2/2 0454-B110384 G-BB- LiS 11000C2/20455-B110388 G-BB- LiS 15000C2/20456-B110392 G-BB- LiS 15000C2/30456-B210394 G-BB- LiS 10000C3/20457-B110396 G-BB- LiS 17000C3/20459-B110400 G-BB- Note: The following linear motors are driven by 400V.Motor 90D090B5 Motor model Motor ID No.90B090B1 9096 specification90E090B6 LiS 1500B1/4 0444-B210358 G-BB- LiS 3000B2/2 0445-B110361 G-BB- LiS 4500B2/2HV 0446-B010363 G-BB- LiS 4500B2/2 0446-B110365 G-BB- LiS 6000B2/2HV 0447-B010367 G-BB- LiS 6000B2/2 0447-B110369 G-BB- LiS 7500B2/2HV 0448-B010371 G-BB- LiS 7500B2/2 0448-B110373 G-BB- LiS 9000B2/2 0449-B110377 G-BB- LiS 3300C1/2 0451-B110381 G-BB- LiS 9000C2/2 0454-B110385 G-BB- LiS 11000C2/2HV0455-B010387 G-BB- LiS 11000C2/20455-B110389 G-BB- LiS 15000C2/3HV0456-B010391 G-BB- LiS 10000C3/20457-B110397 G-BB- LiS 17000C3/20459-B110401 G-BB-- 18 - 28. B-65270EN/07 2. SETTING iS/iF/iS SERIES SERVO PARAMETERS Linear motor parameters for servo HRV1 controlMotor 90D090B5 Motor model Motor ID No.90B090B19096 specification90E090B6 LiS 1500B1/4 0444-B21090AAA AA LiS 3000B2/2 0445-B11091AAA AA LiS 6000B2/2 0447-B11092AAA AA LiS 9000B2/2 0449-B11093AAA AA LiS 1500C2/2 0456-B11094AAA AA LiS 3000B2/4 0445-B210120 AAA AA LiS 6000B2/4 0447-B210121 AAA AA LiS 9000B2/4 0449-B210122 AAA AA LiS 15000C2/30456-B210123 AAA AA LiS 300A1/40441-B200124 AAA AA LiS 600A1/40442-B200125 AAA AA LiS 900A1/40443-B200126 AAA AA127A A AD LiS 6000B2/4 0412-B811 R (160-A driving)128A A AD LiS 9000B2/20413 N (160-A driving)129A A AD LiS 9000B2/4 0413-B811 Q (360-A driving)130A A AD LiS 15000C2/2 0414 Q (360-A driving) (Reference) The parameter table presented in Chapter 6 has two motor ID Nos. for the same linear motor. One of the two is for driving the series servo amplifiers (130A and 240A). Be careful not to use the wrong ID No. servo amplifier driving i servo amplifier driving Motor model Amplifier AmplifiermaximumMotor ID No. maximum Motor ID No.current [A] current [A] LiS 6000B2/4 240121 160 127 LiS 9000B2/2 13093160 128 LiS 9000B2/4 240122 360 129 LiS 15000C2/224094360 130- 19 - 29. 2. SETTING iS/iF/iS SERIES SERVO PARAMETERS B-65270EN/07 Synchronous built-in servo motor Synchronous built-in servo motor for servo HRV2 control NOTE: The following synchronous built-in servo motors are driven by 200V. Motor 90D090B5 90B1Motor model Motor ID No.90B0 9096specification90E090B6 90B8 DiS 22/6000482-B10x421 P--I- DiS 85/4000483-B20x423 N--H - DiS 85/1000 0483-B22x443 P--K- DiS 110/300 0484-B10x425 N--H- DiS 110/10000484-B12x445 P--K- DiS 260/300 0484-B30x427 N--H- DiS 260/600 0484-B31x429 N--H- DiS 260/10000484-B32x447 P--K- DiS 370/300 0484-B40x431 N--H- DiS 1200/2500485-B50x435 N--H- DiS 1500/2000486-B30x437 N--H- DiS 2100/1500487-B30x439 N--H- DiS 3000/1500487-B40x441 N--H-NOTE: The following synchronous built-in servo motors aredriven by 400V. Motor 90D090B5 90B1Motor model Motor ID No.90B0 9096specification90E090B6 90B8 DiS 22/6000482-B10x422 P--I- DiS 85/4000483-B20x424 N--H - DiS 110/300 0484-B10x426 N--H- DiS 260/300 0484-B30x428 N--H- DiS 260/600 0484-B31x430 N--H- DiS 370/300 0484-B40x432 K--H- DiS 1200/2500485-B50x436 N--H- DiS 1500/2000486-B30x438 N--H- DiS 2100/1500487-B30x440 N--H- DiS 3000/1500487-B40x442 N--H- - 20 - 30. B-65270EN/07 2. SETTING iS/iF/iS SERIES SERVO PARAMETERS(4) AMR setting Set, as AMR, a setting value of following table.Motor typeAMR settingiS/iF/iS motor 00000000(other than iS2000HV and iS3000HV)iS2000HV,iS3000HV 00001000Linear motor(Note 1)Synchronous built-in servo motor(Note 2) NOTE 1 When using a linear motor, set AMR according to the description in Section 4.14, "LINEAR MOTOR PARAMETER SETTING". 2 When using a synchronous built-in servo motor, set AMR according to the description in Section 4.15, "SYNCHRONOUS BUILT-IN SERVO MOTOR PARAMETER SETTING".(5) CMR setting Set, as CMR, a specified magnification for the amount of movement from the NC to the servo system. CMR = Command unit / Detection unit CMR 1/2 to 48Setting value = CMR 2 Usually, set CMR with 2, because command unit = detection unit (CMR = 1).(6) Flexible feed gear setting Specify the flexible feed gear (FFG). This function makes it easy to specify a detection unit for the leads and gear reduction ratios of various ball screws by changing the number of position feedback pulses from the Pulsecoder or separate detector. It converts the incoming number of pulses from the position detector so that it matches the commanded number of pulses. When using a linear motor, set FFG according to the description in Section 4.14, "LINEAR MOTOR PARAMETER SETTING". When using a synchronous built-in servo motor, set FFG according to the description in Section 4.15, "SYNCHRONOUSBUILT-INSERVOMOTOR PARAMETER SETTING". (a) Semi-closed feedback loop Setting for the i Pulsecoder (Note 1)Necessary position feedback pulsesFFG numerator ( 32767) per motor revolution =(as irreducible fraction)FFG denominator ( 32767) 1,000,000 (Note 2) - 21 - 31. 2. SETTING iS/iF/iS SERIES SERVO PARAMETERSB-65270EN/07NOTE1 For both FFG numerator and denominator, the maximum settingvalue (after reduced) is 32767.2 i Pulsecoders assume one million pulses per motor revolution,irrespective of resolution, for the flexible feed gear setting.3 If the calculation of the number of pulses required per motorrevolution involves , such as when a rack and pinion are used,assume to be approximately 355/113. Example of setting If the ball screw used in direct coupling has a lead of 5 mm/rev and the detection unit is 1 m The number of pulses generated per motor turn (5 mm) is: 5/0.001 = 5000 (pulses) Because the i Pulsecoder feeds back 1000000 pulses per motor turn: FFG = 5000 / 1000000 = 1 / 200 Other FFG (numerator/denominator) setting examples, where the gear reduction ratio is assumed to be 1:1Detection Ball screw leadunit 6mm8mm 10mm 12mm 16mm20mm1m 6 / 10008 / 100010 / 100012 / 100016 / 100020 / 1000 0.5m12 / 1000 16 / 1000 20 / 100024 / 100032 / 100040 / 1000 0.1m 60 / 1000 80 / 1000100 / 1000 120 / 1000 160 / 1000 200 / 1000 Example of setting If the gear reduction ratio between the rotary axis motor and table is 10:1 and the detection unit is 1/1000 degrees The table rotates through 360/10 degrees when the motor makes one turn. The number of position pulses necessary for the motor to make one turn is: 360/10 (1/1000) = 36,000 pulses FFG numerator36,00036 = = FFG denominator1,000,000 1,000 If the gear reduction ratio between the rotary axis motor and table is 300:1 and the detection unit is 1/10000 degrees The table rotates through 360/300 degrees when the motor makes one turn. The number of position pulses necessary for the motor to make one turn is: 360/300 (1/10000) = 12,000 pulsesFFG numerator12,00012 = = FFG denominator1,000,000 1,000- 22 - 32. B-65270EN/07 2. SETTING iS/iF/iS SERIES SERVO PARAMETERS (b) Full-closed feedback loop Setting for use of a separate detector (full-closed) Number of position pulses corresponding FFG numerator ( 32767)to a predetermined amount of travel =(as irreducible fraction)FFG denominator ( 32767) Number of position pulses corresponding to a predetermined amount of travel froma separate detectorExample of setting To detect a distance of 1-m using a 0.5-m scale, set the following: (L represents a constant distance.) Numerator of FFG L/1 1 = = Denominator of FFG L/0.5 2 Other FFG (numerator/denominator) setting examples Scale resolution Detection unit1 m 0.5 m 0.1 m 0.05 m 1m 1/1 1/21 / 10 1 / 200.5m- 1/11/51 / 100.1m- -1/1 1/2NOTEThe maximum rotation speed allowable with servosoftware depends on the detection unit. (SeeAppendix E, "VELOCITY LIMIT VALUES IN SERVOSOFTWARE".) Select a detection unit that enables arequested maximum rotation speed to be realized.When a speed of up to 6000 revolutions is used as alive tool in the direct motor connection mode, inparticular, use a detection unit of 2/1000 deg (IS-Bsetting, CMR=1/2, flexible feed gear=18/100).(7) Motor rotation direction setting Set the direction in which the motor is to turn when a positive value is specified as a move command. For linear motors, set the parameter according to the description in Section 4.14, "LINEAR MOTOR PARAMETER SETTING". For synchronous built-in servo motors, set the parameter according to the description in Section 4.15, "SYNCHRONOUS BUILT-IN SERVO MOTOR PARAMETER SETTING". 111 Clockwise as viewed from the Pulsecoder 111Counterclockwise as viewed from the PulsecoderCounterclockwise asFANUCClockwise as viewed fromviewed from the the PulsecoderPulsecoderSet 111.Set -111.- 23 - 33. 2. SETTING iS/iF/iS SERIES SERVO PARAMETERSB-65270EN/07(8) Specify the number of velocity pulses and the number of position pulses.Set the number of velocity pulses and the number of position pulsesaccording to the connected detector. For linear motors, set theseparameters according to the description in Section 4.14, "LINEARMOTOR PARAMETER SETTING". For synchronous built-in servomotors, set these parameters according to the description in Section4.15,"SYNCHRONOUS BUILT-IN SERVOMOTORPARAMETER SETTING".(a) Number of velocity pulsesSet the number of velocity pulses to 8192.iS/iF/iS motor 8192(b) Number of position pulses (b)-1 Number of position pulses for semi-closed feedback loopSet the number of position pulses to 12500.Number of position pulses 12500(iS/iF/iS motor, semi-closed feedback loop) (b)-2 Number of position pulses for full-closed feedback loop (See Subsections 2.1.4 and 2.1.5)Set the number of position pulses to the number of pulses fed backfrom the separate detector when the motor makes one turn. (Theflexible feed gear has nothing to do with the calculation of the numberof position pulses).Number of position pulses Number of pulses fed back from the separate(full-closed feedback loop) detector when the motor makes one turnWhen using a serial rotary scale with a resolution of 1,000,000 pulsesper revolution, set a value assuming that 12500 is equivalent to1,000,000 pulses.Number of position pulses(full-closed feedback loop) 12,500 (motor-table gear reduction ratio)(*) 1,000,000 pulses / revExample 1:Parallel type, serial linear scaleIf the ball screw used in direct coupling has a lead of 10 mm andthe separate detector used has a resolution of 0.5 m per pulseNumber of position pulses = 10 / 0.0005 = 20,000Example 2:Serial rotary scaleIf the motor-table gear reduction ratio is 10:1,Number of position pulses = 12,500 (1/10) = 1250 - 24 - 34. B-65270EN/072. SETTING iS/iF/iS SERIES SERVO PARAMETERS(b)-3 If the setting for the number of position pulses is larger than 32767If the number of position pulses exceeds 32767, set the followingparameter: 2628 (FS15i) Conversion coefficient for the number of position feedback pulses 2185 (FS30i,16i)Series 90E0, Series 90D0, Series 90B0, Series 90B5, Series 90B6,Series 90B1 : Set the number of position pulses with a product of two parameters, using the conversion coefficient for the number of position feedback pulses.Number of pulses from separate Position pulse setting = detector per motor revolution Position pulse conversion coefficient* The number of velocity pulses need not be changed.Series 9096 : No conversion coefficient for the number of position feedback pulses can be used. As usual, set the initialization bit 0 to 1, and set the number of velocity pulses and the number of position pulses to 1/10 the respective values stated earlier.Number of pulses from separatePosition pulse setting = detector per motor revolution10Number of velocity pulses to be set Velocity pulse setting = originally10=819 (In the case of iS/iF/iS motor) See Supplementary 3 of Subsection 2.1.8.- 25 - 35. 2. SETTING iS/iF/iS SERIES SERVO PARAMETERS B-65270EN/07NOTEBy setting initialization bit 0 (of No. 2000 (FS30i, 16i,etc.)/No. 1804 (FS15i)) to 1, the number of velocity pulsesand the number of position pulses can be internallyincreased by a factor of 10. Usually, however, set bit 0 ofNo. 2000 to 0. If the number of position pulses is beyondthe setting range, use a position pulse conversioncoefficient. Only in the situations indicated below, set bit 0of No. 2000 to 1, set the number of velocity pulses toone-tenth of the value to be originally set, and also set thenumber of position pulses to one-tenth of the value to beoriginally set.- When the number of velocity pulses exceeds 32767 because a high-resolution detector is used with a linear motor or synchronous built-in servo motor- When the parameter for specifying a position pulse conversion coefficient is unusable because servo software Series 9096 is used - 26 - 36. B-65270EN/07 2. SETTING iS/iF/iS SERIES SERVO PARAMETERS(9) Reference counter setting Specify the reference counter. The reference counter is used in making a return to the reference position by a grid method. (a) Semi-closed loop (Linear axis)Number of position pulses corresponding to a Count on the reference= single motor revolution or the same number counterdivided by an integer value (Rotary axis) Number of position pulses corresponding to a Count on the reference = single motor revolution/M, or the same counter number divided by an integer value* When the motor-table gear reduction ratio is M/N (M and N are integers,and M/N is a fraction that is reduced to lowest terms.)NOTE1 If the calculation above results in a fraction, asetting can be made with a fraction.See (a)-1.2 If the rotation ratio between the motor and table onthe rotary axis is not an integer, the referencecounter capacity needs to be set so that the point(grid point) where the reference counter equals 0appears at the same position relative to the table.So, with the rotary axis, the number of positionpulses per motor revolution needs to be multipliedby 1/M.Example of setting i Pulsecoder and semi-closed loop (1-m detection)Necessary number ofBall screw lead ReferenceGrid widthposition pulses(mm/revolution)counter (mm) (pulse/revolution)1010000 10000 102020000 20000 203030000 30000 30 When the number of position pulses corresponding to a single motor revolution does not agree with the reference counter setting, the position of the zero point depends on the start point. In such a case, set the reference counter capacity with a fraction to change the detection unit and eliminate the error in the reference counter. (Except Series 9096)Example of setting System using a detection unit of 1 m, a ball screw lead of 20 mm/revolution, and a gear reduction ratio of 1/17 To eliminate the error of the reference counter, two methods of setting are available: - 27 - 37. 2. SETTING iS/iF/iS SERIES SERVO PARAMETERS B-65270EN/07 (a)-1 Method that sets a reference counter capacity with a fraction (a)-2 Method that changes the detection unit An example of each setting method is explained below. (a)-1 Method of specifying the reference counter capacity with a fraction (except Series 9096) The number of position pulses necessary for the motor to make one turn is: 20000/17 Set the following parameter as stated below.1896 (FS15i) Reference counter capacity (numerator)1821 (FS30i, 16i)[Valid data range] 0 to 99999999 Set the numerator of a fraction for the reference counter capacity.2622 (FS15i)Reference counter capacity (denominator)2179 (FS30i, 16i)[Valid data range] 0 to 100 A value up to around 100 is assumed to be set as the denominator of the reference counter capacity. Note that if a larger value is set, the grid width becomes too small, which makes it difficult to perform reference position return by grid method. The denominator parameter is not indicated in the servo setting screen, so it must be set in the parameter screen. In this example, set the numerator and denominator, respectively, to 20000 and 17. NOTE Even if a setting is made with a fraction, set the number of position pulses per motor revolution/M for a semi-closed loop rotary axis when the reduction ratio is M/N. Reference counter = Number of position pulses per motor revolution/M, or The same number divided by an integer- 28 - 38. B-65270EN/072. SETTING iS/iF/iS SERIES SERVO PARAMETERS(a)-2 Method of changing the detection unitThe number of position pulses necessary for the motor to make oneturn is: 20000/17In this case, increase all the following parameter values by a factor of17, and set the detection unit to 1/17 m. Series 30i,15i,16i,0i, Power Mate i,Parameter modificationand so onFFGServo screenCMRServo screenReference counterServo screenEffective area Nos. 1826, 1827Position error limit in travelingNo. 1828Position error limit in the stop state No. 1829Backlash Nos. 1851, 1852Changing the detection unit from 1 m to 1/17 m requiresmultiplying each of the parameter settings made for the detection unitby 17. CAUTIONIn addition to the above parameters, there aresome parameters that are to be set in detectionunits. For details, see Appendix B.Making these modifications eliminates the difference between thenumber of position pulses corresponding to a single motor revolutionand the reference counter setting.Number of position pulses corresponding to a single motor revolution= 20000Reference counter setting = 20000 (b) Full-closed loop (See Subsections 2.1.4 and 2.1.5) Z-phase (reference-position) interval divided by theReference = detection unit, or this value sub-divided by an integercounter setting valueNOTEIf the separate detector-table rotation ratio for therotary axis is not an integer, it is necessary to setthe reference counter capacity in such a way thatpoints where reference counter = 0 (grid points)appear always at the same position for the table. Example of settingExample 1) When the Z-phase interval is 50 mm and the detection unit is 1 m: Reference counter setting = 50,000/1 = 50,000Example 2) When a rotary axis is used and the detection unit is 0.001 degrees: Reference counter setting = 360/0.001 = 360,000Example 3) When a linear scale is used and a single Z phase exists: Set the reference counter to 10000, 50000, or another round number. - 29 - 39. 2. SETTING iS/iF/iS SERIES SERVO PARAMETERSB-65270EN/07 If the calculated value of the reference counter capacity is not an integer, the reference counter capacity can be set as a fraction as in the case of a semi-closed loop. For details of parameters, see (a)-1. NOTE The following value can be set as a reference counter capacity: (For linear axis) Number of position pulses corresponding to the Z-phase interval of a separate detector (or the same number divided by an integer) (For rotary axis) Number of position pulses per revolution of a separate detector/M (or the same number divided by an integer) (*) When the rotation ratio between the table andseparate detector is M/N (M and N areintegers, and M/N is a fraction that is reducedto lowest terms.)(10) Full-closed system setting (go to (11) if a semi-closed system is in use) For a full-closed system, it is necessary to set the following function bit. (a) Setting required with all CNC Series#7 #6#5 #4 #3 #2#1#01815 (FS15i)OPTX1815 (FS30i, 16i, etc) To be specified forevery NC.OPTX(#1) The separate position detector is: 0: Not to be used 1: To be used (b) Setting required with only the Series 15i When the Series 15i is used, the following function bit (PFSE) needs to be set to 1 in addition to OPTX. #7#6#5 #4 #3#2 #1#01807 (FS15i)PFSE To be specified only for the Series 15i PFSE(#3)The separate position detector is: 0: Not to be used 1: To be used- 30 - 40. B-65270EN/07 2. SETTING iS/iF/iS SERIES SERVO PARAMETERS(11) Servo loop gain setting Set a value other than 0 as a servo loop gain. Usually, set an initial value of 3000. (This initial value is adjusted later as needed.) Servo loop gain3000 (guideline) NOTE 1 When a servo loop gain of 0 is set, an illegal servo parameter setting alarm is issued. 2 If there is a problem such as vibration occurring at the time of motor rotation after the NC is started, perform servo tuning according to Chapter 3.(12) NC restart Switch the NC off and on again. This completes servo parameter initialization. If an illegal servo parameter setting alarm occurs, go to Subsec. 2.1.8. If a servo alarm related to Pulsecoders occurs for an axis for which a servo motor or amplifier is not connected, specify the following parameter. #7 #6 #5#4#3#2#1#0 1953 (FS15i) DMY 2009 (FS30i, 16i) DMY (#0)The serial feedback dummy function is: (See Section 4.9, SERIAL FEEDBACK DUMMY FUNCTIONS for function detail) 0 : Not used 1 : Used - 31 - 41. 2. SETTING iS/iF/iS SERIES SERVO PARAMETERS B-65270EN/07(13) Absolute position detector settingWhen you are going to use an i/i Pulsecoder as an absolutePulsecoder, use the following procedure.Procedure1. Specify the following parameter, then switch the NC off. #7 #6 #5#4#3 #2 #1#01815 (FS15i)APCx1815 (FS30i, 16i)APCx (#5) The absolute position detector is:0: Not used1: Used2.After making sure that the battery for the Pulsecoder is connected,turn off the CNC.3.A request to return to the reference position is These stepsdisplayed. were added4.Cause the servo motor to make one turn by jogging. for the i/i5.Turn off and on the CNC. Pulsecoder.6.A request to return to the reference position isdisplayed.7.Do the reference position return. - 32 - 42. B-65270EN/07 2. SETTING iS/iF/iS SERIES SERVO PARAMETERS2.1.4Setting Servo Parameters when a Separate Detector for the Serial Interface is Used(1) Overview This subsection describes the setting of servo parameters for using a separate detector of serial output type. Perform parameter setting as described below according to the classification (model and configuration) of the serial detector used.(2) Series and editions of applicable servo software (Series 30i,31i,32i)Series 90D0/A(01) and subsequent editionsSeries 90E0/A(01) and subsequent editions (Series 15i-B,16i-B,18i-B,21i-B,0i-B,0i Mate-B,Power Mate i)Series 90B0/A(01) and subsequent editionsSeries 90B1/A(01) and subsequent editionsSeries 90B6/A(01) and subsequent editions (Series 0i-C,0i Mate-C,20i-B)Series 90B5/A(01) and subsequent editionsSeries 90B8/A(01) and subsequent editions(3) Classification of serial detectors and usable detector examples Usable separate detectors for the serial interface are classified into four major types as shown below. Note that parameter settings vary with these types. (a) Serial output type linear encoder Minimum resolutionModelBackup Mitutoyo Co., Ltd. 0.05AT353, AT553Not required 0.05/0.1 LC191FNot required HEIDENHAIN 0.05/0.1 LC491FNot required (b) Analog output type linear encoder + FANUC high-resolution serial output circuit Signal pitchModelBackup Mitutoyo Co., Ltd. 20 AT402 Required HEIDENHAIN 20LS486, LS186 Required Sony Precision Technology Inc. 20 SH12Required (c) Serial output type rotary encoderMinimum resolution (Note 1)ModelBackup FANUC 220 pulse/revA1000SRequired- 33 - 43. 2. SETTING iS/iF/iS SERIES SERVO PARAMETERSB-65270EN/07(d) RCN220, RCN223, RCN723, and RCN727 manufactured by HEIDENHAIN Minimum resolution (Note 1) Model Backup 20 HEIDENHAIN 2 pulse/rev RCN220 Not required223 pulse/rev RCN223, 723Not required227 pulse/rev RCN727 Not requiredNOTE1 The minimum resolution of a rotary encoder is the resolution of theencoder itself. For the FANUC systems, however, please setparameters with regarding the number of pulses/rev as follows:One million pulses/rev for a minimum resolution of 220 pulses/revEight million pulses/rev for a minimum resolution of 223 pulses/revEight million pulses/rev for a minimum resolution of 227 pulses/rev(4) Setting parameters Set the following parameters according to the type of the detector (described in the previous item).(a) Parameter setting for a linear encoder of a serial output type(Parameter setting method) In addition to the conventional settings for a separate detector (bit 1 of parameter No. 1815 (Series30i,15i,16i,18i,21i,20i,0i, and Power Mate i), bit 3 of parameter No. 1807 (Series 15i), and if needed, FSSB), note the following parameters: [Flexible feed gear] Parameter Nos. 1977 and 1978 (Series 15i) or Nos. 2084 and 2085 (Series 30i, 16i and so on) Flexible feed gear (N/M) =Minimum resolution of detector [m] / controller detection unit [m] [Number of position pulses] Parameter No. 1891 (Series 15i) or No. 2024 (Series 30i, 16i and so on) Number of position pulses =Amount of movement per motor revolution [mm] /detection unit of the sensor [mm] *If the result of the above calculation does not fall in the settingrange (0 to 32767) for the number of position pulses, useposition feedback pulse conversion coefficient to specify thenumber of position pulses according to the following procedure.Number of position pulses to be set = A BSelect B so that A is within 32767. Then, set the following:A: Position pulses parameter (32767 or less) No.1891 (Series15i), No.2024 (Series 30i, 16i and so on)B: Position pulses conversion coefficient parameter No.2628 (Series15i), No.2185 (Series 30i, 16i and so on) - 34 - 44. B-65270EN/072. SETTING iS/iF/iS SERIES SERVO PARAMETERS(Example of parameter setting) [System configuration] The Series 16i is used. A linear scale with a minimum resolution of 0.1 m is used. The least input increment of the controller is 1 m. The amount of movement per motor revolution is 16 mm. [Parameter setting] To enable a separate detector, set bit 1 of parameter No. 1815 to 1. Calculate the parameters for the flexible feed gear. Because flexible feed gear (N/M) = 0.1 m/1 m = 1/10: No. 2084 = 1 and No. 2085 = 10 Calculate the number of position pulses. Number of position pulses = 16 mm/0.0001mm = 160000 Because this result does not fall in the setting range (0 to 32767), set A and B, respectively, with the "number of position pulses" and "position pulses conversion coefficient" by assuming: 160,000 = 10,000 16 A = 10,000 and B = 16 No.2024 = 10,000, No.2185 = 16 (b) Parameter setting for analog output type linear encoder + FANUC high-resolution serial output circuit(Parameter setting method) In addition to the conventional separate detector settings (bit 1 of parameter No. 1815 (Series15i,30i,16i,18i,21i,20i,0i, and Power Mate i), bit 3 of parameter No. 1807 (Series 15i), and, if necessary, FSSB setting), pay attention to the following parameter settings. First check the type of the FANUC high-resolution output circuit to be coupled to the linear encoder, and then determine the settings of the following function bits. [Function bit]Interpolation CircuitSpecificationmagnification High-resolution serial output circuit A860-0333-T501 512 High-resolution serial output circuit H A860-0333-T701 2048 High-resolution serial output circuit C A860-0333-T801 2048 - 35 - 45. 2. SETTING iS/iF/iS SERIES SERVO PARAMETERS B-65270EN/07 #7#6#5 #4 #3#2#1#0 2687 (FS15i) HP2048 2274 (FS30i, 16i) HP2048(#0)The 2048-magnification interpolation circuit (high-resolution serial output circuit H or C) is: 0: Not to be used 1: To be used NOTE 1 When high-resolution serial output circuit H is used, set the setting pin SW3 inside the circuit to "Setting B" usually. 2 This function bit can be used with the following series and editions: (Series 30i, 31i, 32i) Series 90D0/A(01) and subsequent editions Series 90E0/A(01) and subsequent editions (Series 15i-B, 16i-B, 18i-B, 21i-B, 0i-B, 0i Mate-B, Power Mate i) Series 90B0/Q(17) and subsequent editions Series 90B1/A(01) and subsequent editions Series 90B6/A(01) and subsequent editions (Series 0i-C, 0i Mate-C, 20i-B) Series 90B5/A(01) and subsequent editions Series 90B8/A(01) and subsequent editions If this bit is specified, the minimum resolution setting of the detector is assumed to be: Encoder signal pitch/512 [m] If the minimum resolution (signal pitch/2048 [m]) is necessary as the detection unit, specify: Flexible feed gear = 4/1 3 When high-resolution serial output circuit H is used, and the input frequency 750 kHz needs to be supported, set the following: - Set the setting pin SW3 to "Setting A". - Set HP2048=1. - Set the minimum resolution of the detector as: Encoder signal pitch/128 [m] (Related report: TMS03/16E)- 36 - 46. B-65270EN/072. SETTING iS/iF/iS SERIES SERVO PARAMETERS [Minimum resolution of the detector] In the following calculation of a flexible feed gear and the number of position pulses, the minimum detector resolution to be used is: (Linear encoder signal pitch/512 [m]) (Specifying the above function bit appropriately makes it unnecessary to take the difference in the interpolation magnification among the high-resolution serial output circuits into account. So always use 512 for calculations.) [Flexible feed gear] Parameters Nos. 1977 and 1978 (Series 15i) or Nos. 2084 and 2085 (Series 30i, 16i, and so on) Flexible feed gear (N/M) = minimum resolution of the detector [m] /detection unit of controller [m] [Number of position pulses] Parameter No. 1891 (Series 15i) or No. 2024 (Series 30i, 16i, and so on) Number of position pulses = Amount of movement per motor revolution [mm] /minimum resolution of the detector [mm] *If the result of the above calculation does not fall in the settingrange (0 to 32767) for the number of position pulses, useposition feedback pulse conversion coefficient to specify thenumber of position pulses according to the following procedure.Number of position pulses to be set = A BSelect B so that A is within 32767. Then, set the following:A: Position pulses parameter (32767 or less) No.1891 (Series15i), No.2024 (Series 30i, 16i, and so on)B: Position pulses conversion coefficient parameter No.2628 (Series15i), No.2185 (Series 30i, 16i, and so on)(Example of parameter setting) [System configuration] The Series 16i is used. A linear encoder with a signal pitch of 20 m is used. The linear encoder is coupled with high-resolution serial outputcircuit H. The least input increment of the controller is 1 m. The amount of movement per motor revolution is 16 mm. [Parameter setting] To enable a separate detector, set bit 1 of parameter No. 1815 to 1. To use high-resolution serial output circuit H, set bit 0 of parameter No. 2274 to 1. Minimum resolution of the detector = 20 m/512 = 0.0390625 m- 37 - 47. 2. SETTING iS/iF/iS SERIES SERVO PARAMETERSB-65270EN/07 Calculate the parameters for the flexible feed gear.Because flexible feed gear (N/M)=(20/512m)/1m=5/128No.2084=5, No.2085=128 Calculate the number of position pulses.Number of position pulses = 16 mm/(20/512m) = 409,600Because this result does not fall in the setting range (0 to 32767),set A and B, respectively, with the "number of position pulses"and "position pulses conversion coefficient" by assuming:409,600 = 25,600 16 A = 25,600, B = 16No.2024 = 25,600, No.2185 = 16(c) Parameter setting for the serial output type rotary encoder *For explanations about the rotary encoders RCN220, RCN223,RCN723, and RCN727 made by HEIDENHAIN, see "Parametersetting for the rotary encoders RCN220, RCN223, RCN723, andRCN727 made by HEIDENHAIN."(Parameter setting method) In addition to the conventional settings for a separate detector (bit 1 of parameter No. 1815 (Series15i, 30i, 16i, 18i, 21i, 20i, 0i, and Power Mate i), bit 3 of parameter No. 1807 (Series 15i), and if needed, FSSB), note the following parameters: [Flexible feed gear] Parameters Nos. 1977 and 1978 (Series 15i) or Nos. 2084 and 2085 (Series 30i, 16i and so on) Flexible feed gear (N/M) =(Amount of table movement [deg] per detector revolution) /(detection unit [deg]) / 1,000,000 [Number of position pulses] Parameter No. 1891 (Series 15i) or No. 2024 (Series 30i, 16i and so on) Number of position pulses = 12500(motor-to-table reduction ratio) *If the result of the above calculation does not fall in the settingrange (0 to 32767) for the number of position pulses, useposition feedback pulse conversion coefficient to specify thenumber of position pulses according to the following procedure.Number of position pulses to be set = A BSelect B so that A is within 32767. Then, set the following:A: Position pulses parameter (32767 or less) No.1891 (Series15i), No.2024 (Series 30i, 16i and so on)B: Position pulses conversion coefficient parameter No.2628 (Series15i), No.2185 (Series 30i, 16i and so on) - 38 - 48. B-65270EN/072. SETTING iS/iF/iS SERIES SERVO PARAMETERS(Example of parameter setting) [System configuration] The Series 16i is used. The least input increment of the controller is 1/1000 degrees. The amount of movement per motor revolution is 180 degrees(reduction ratio: 1/2) Table-to-separate-encoder reduction ratio = 1/1 [Parameter setting] To enable a separate detector, set bit 1 of parameter No. 1815 to 1. Calculate the parameters for the flexible feed gear. Because flexible feed gear (N/M) =360 degrees /0.001 degrees /1,000,000 =36/100 No.2084=36, No.2085=100 Calculate the number of position pulses. Because number of position pulses = 12500 (1/2)=6250 No.2024=6250- 39 - 49. 2. SETTING iS/iF/iS SERIES SERVO PARAMETERSB-65270EN/07(d) Parameter setting for the rotary encoders RCN220, RCN223, RCN723, andRCN727 made by HEIDENHAIN(Series and editions of applicable servo software)To use the high-resolution rotary encoders RCN220, RCN223,RCN723, and RCN727 manufactured by HEIDENHAIN as separatedetectors, the following servo software is required:[RCN220,223,723](Series 30i,31i,32i) Series 90D0/A(01) and subsequent editions Series 90E0/A(01) and subsequent editions(Series 15i-B,16i-B,18i-B,21i-B,0i-B,0i Mate-B,Power Mate i) Series 90B0/T(19) and subsequent editions Series 90B1/A(01) and subsequent editions Series 90B6/A(01) and subsequent editions(Series 0i-C,0i Mate-C,20i-B) Series 90B5/A(01) and subsequent editions Series 90B8/A(01) and subsequent editions[RCN727](Series 30i,31i,32i) Series 90D0/J(10) and subsequent editions Series 90E0/J(10) and subsequent editions(Series 15i-B,16i-B,18i-B,21i-B,0i-B,0i Mate-B,Power Mate i) Series 90B1/B(02) and subsequent editions(Series 0i-C,0i Mate-C,20i-B) Series 90B8/B(02) and subsequent editions(Parameter setting method)To specify parameters for the high-resolution rotary encodersRCN220, RCN223, RCN723, and RCN727 (supporting FANUC serialinterface) made by HEIDENHAIN, use the following procedure.In addition to the conventional separate detector settings (bit 1 ofparameter No. 1815 (Series 30i, 15i, 16i, 18i, 21i, 0i, and Power Matei), bit 3 of parameter No. 1807 (Series 15i), and, if necessary, FSSBsetting), pay attention to the following parameter settings.[Function bit]To use the RCN220, RCN223, RCN723, or RCN727, set thefollowing function bit to 1.#7 #6 #5 #4 #3#2#1#02688 (FS15i) RCNCLR 800PLS2275 (FS30i, 16i) 800PLS (#0)A rotary encoder with eight million pulses per revolution is:0: Not to be used. (To use the RCN220, leave this bit set to 0.)1: To be used. (To use the RCN223, RCN723, or RCN727, set the bit to 1.)- 40 - 50. B-65270EN/07 2. SETTING iS/iF/iS SERIES SERVO PARAMETERSRCNCLR (#1)The number of revolution is: 0: Not to be cleared. 1: To be cleared. (To use the RCN220, RCN223, RCN723, orRCN727, set the bit to 1.) This function bit is to be set in combination with the number of data mask digits, described below. 2807 (FS15i) Number of data mask digits 2394 (FS30i, 16i)[Settings] 8. (To use the RCN223, RCN723, or RCN727) 5. (To use the RCN220) The value to be set in this parameter depends on the detector. At present, only the above detectors require clearing the speed data. This parameter is to be set in combination with RCNCLR, described above. NOTE The speed data of the RCN220, RCN223, RCN723, or RCN727 is maintained while the power to the separate detector interface unit is on. The data, however, is cleared when the unit is turned off. Since the speed data becomes undetermined depending on where the power is turned off, it is necessary to make a setting to clear the speed data. In addition, for this reason, the RCN220, RCN223, RCN723, and RCN727 cannot be used with a linear axis. When using the RCN220, set the parameters for the flexible feed gear and the number of position pulses according to the setting method described in the previous item, "Parameter setting for the serial output type rotary encoder". The following explains how to calculate the parameter values when the RCN223, RCN723, or RCN727 is used. [Flexible feed gear] Parameters Nos. 1977 and 1978 (Series 15i) or Nos. 2084 and 2085 (Series 30i, 16i, and so on) Flexible feed gear (N/M) =(Amount of table movement [deg] per detector revolution) /(detection unit [deg]) / 8,000,000 For the RCN223, RCN723, and RCN727, the number of pulses per detector turn is assumed to be eight million for calculation. For the RCN727, when the detection unit is set to 1/8,000,000 revolution or less, the flexible feed gear may be set to up to 8/1. (If the flexible feed gear is set to 8/1, the detection unit is 64,000,000 pulses per revolution.) - 41 - 51. 2. SETTING iS/iF/iS SERIES SERVO PARAMETERSB-65270EN/07 [Number of position pulses] Parameter No. 1891 (Series 15i) or No. 2024 (Series 30i, 16i, and so on) Number of position pulses = 100,000(motor-to-table reduction ratio) *If the result of the above calculation does not fall in the settingrange (0 to 32767) for the number of position pulses, useposition feedback pulse conversion coefficient to specify thenumber of position pulses according to the following procedure.Number of position pulses to be set = A BSelect B so that A is within 32767. Then, set the following:A: Position pulses parameter (32767 or less) No.1891 (Series15i), No.2024 (Series 30i, 16i, and so on)B: Position pulses conversion coefficient parameter No.2628 (Series15i), No.2185 (Series 30i, 16i, and so on) [Reference counter capacity] Parameter No. 1896 (Series 15i) or No. 1821 (Series 30i, 16i, and so on) Specify the number of feedback pulses per table turn (detection unit). *If bit 0 of parameter No. 2688 (Series 15i) or parameter No. 2275(Series 30i, 16i, and so on) is 0, specify the number of pulses pertable turn divided by 8 as the reference counter capacity. In thiscase, eight grid points occur per table turn.(Example of parameter setting) [System configuration] The Series 16i is used. The rotary encoder RCN223 made by HEIDENHAIN is used. The least input increment of the controller is 1/10,000 degrees. The amount of movement per motor revolution is 180 degrees(reduction ratio: 1/2) Table-to-separate-encoder reduction ratio = 1/1 [Parameter setting] To enable a separate detector, set bit 1 of parameter No. 1815 to 1. To use the detector RCN223, set bit 0 of parameter No. 2275 to 1, bit 1 of this parameter to 1, and parameter No. 2394 to 8. Calculate the parameters for the flexible feed gear. Because flexible feed gear (N/M) = (360 degrees /0.0001 degrees)/8,000,000=9/20 No.2084=9, No.2085=20 Calculate the number of position pulses. Number of position pulses = 100,000 (1/2) = 50,000 Because this result does not fall in the setting range (0 to 32767), set A and B, respectively, with the "number of position pulses" and "position pulses conversion coefficient" by assuming: 50,000 = 12,500 4 A = 12,500, B = 4 No.2024 = 12,500, No.2185 = 4- 42 - 52. B-65270EN/07 2. SETTING iS/iF/iS SERIES SERVO PARAMETERS Calculate the reference counter capacity.Reference counter capacity = 360 degrees/0.0001 degrees =3,600,000(About speed limit) When the RCN223, RCN723, or RCN727 is used as a separate detector, the maximum permissible speed that can be controlled may be 937 min-1. (*) (See Item (2) in the Appendix E.) (*) The above maximum speed does not include hardware limitations. For the maximum permissible speed of the detector itself, refer to the specifications of the detector.Setting the signal direction of the separate detector When connecting the separate detector signal in the reverse direction, use the following parameter: #7#6 #5 #4 #3 #2 #1 #0 1960 (FS15i) RVRSE 2018 (FS30i, 16i)RVRSE (#0) The signal direction of the separate detector is: 0: Not reversed. 1: Reversed.(5) Reference position return when a serial type separate detector is used asan absolute-position detector When a serial type separate detector is used as an absolute-position detector, the phase-Z position must be passed once before a reference position return is performed. Then, turn the CNC off then back on to allow reference position return. (This description does not apply if a detector that does not require battery backup is in use.) When reference position return is performed, adjust the deceleration dog so that the grid-shifted reference position is not too near the deceleration dog.Encoder positionPosition data fromthe encoder Direction of referenceReference position not grid-shiftedposition return Grid-shifted reference Start position of reference position position returnReference counter Reference position data of the detector = 0Reference counter capacity Grid shift amount Machine positionDeceleration dogTo be adjusted so that the grid-shifted referenceposition is not too near the deceleration dog - 43 - 53. 2. SETTING iS/iF/iS SERIES SERVO PARAMETERSB-65270EN/072.1.5Setting Servo Parameters when an Analog Input Separate Detector Interface Unit is Used(1) Overview An analog input separate detector interface unit (analog SDU) can be connected directly to an encoder having an analog output signal of 1 Vp-p. This subsection explains parameter settings to be made when this unit is connected to a separate detector. After performing the initialization procedure (full-closed loop) described in Subsection 2.1.3, change the setting described below according to the signal pitch of the detector. Configuration where analog SDU is usedSeparate detector X 000.000 Y 000.000 Z 000.000FSSB1Vp-p Analog SDU(2) Series and editions of applicable servo software (Series 30i,31i,32i)Series 90D0/J(10) and subsequent editionsSeries 90E0/J(10) and subsequent editions (Series 15i-B,16i-B,18i-B,21i-B,0i-B,0i Mate-B,Power Mate i)Series 90B1/C(03) and subsequent editions (Series 0i-C,0i Mate-C)Series 90B8/C(03) and subsequent editions(3) Setting parameters After performing the initialization (full-closed loop) described in Subsection 2.1.3, change the following setting according to the signal pitch of the detector: [Setting the flexible feed gear] 1977 (FS15i) Numerator of flexible feed gear 2084 (FS30i,16i) 1978 (FS15i) Denominator of flexible feed gear 2085 (FS30i,16i) Set the flexible feed gear according to the following equation. (Equation for parameter calculation)Detector signal pitch [m]/512 Flexible feed gear (N/M) =Detection unit of controller [m] - 44 - 54. B-65270EN/07 2. SETTING iS/iF/iS SERIES SERVO PARAMETERS [Setting the number of position pulses] 1891 (FS15i)Number of position pulses (PPLS) 2024 (FS30i,16i) Set the number of position pulses according to the following equation: (Equation for parameter calculation) Amount of movement per motor revolution [mm] Number of position pulses =Detector signal pitch [mm]/512 If the calculation result is greater than 32767, use the following position pulse conversion coefficient (PSMPYL) to obtain the parameter setting (PPLS). 2628 (FS15i)Position pulse conversion coefficient (PSMPYL) 2185 (FS30i,16ii) This parameter is used when the calculation result of the number of position pulses is greater than 32767. (Equation for parameter calculation) Set this parameter so that the following equation is satisfied: Number of position pulses = PPLS PSMPYL ( See Supplementary 3 in Subsection 2.1.8.)(Example of parameter setting) [System configuration] The Series 30i is used. A linear scale with a signal pitch of 20 m is used. The least input increment of the controller is 1 m. The amount of movement per motor revolution is 16 mm. [Parameter setting] To enable a separate detector, set bit 1 of parameter No. 1815 to 1. Calculate the parameters for the flexible feed gear. Because flexible feed gear (N/M)=(20/512m)/1m=5/128 No.2084=5, No.2085=128 Calculate the number of position pulses. Number of position pulses = 16 mm/(0.02 mm/512)= 409,600 Because this result does not fall in the setting range (0 to 32767), set A and B, respectively, with the "number of position pulses" and "position pulses conversion coefficient" by assuming: 409,600 = 25,600 16 A = 25,600, B = 16 No.2024 = 25,600, No.2185 = 16- 45 - 55. 2. SETTING iS/iF/iS SERIES SERVO PARAMETERS B-65270EN/072.1.6 Setting Parameters when an iCZ Sensor is Used(1) OverviewThe iCZ sensors are classified into two major groups according totheir application as follows: Used as a built-in detector for a synchronous built-in servo motor(iCZ ***A) Used as a separate detector (iCZ ***AS)When the differences in resolution are considered, six types of sensorsare available as indicated below.For built-in For separateSignalNumber of pulses at detectordetector intervalsetting (A860-2162-Txxx)(A860-2164-Txxx)iCZ 512AiCZ 512AS 512/rev500,000pulse/reviCZ 768AiCZ 768AS 768/rev750,000pulse/rev iCZ 1024AiCZ 1024AS1024/rev1,000,000pulse/revNOTEWhen iCZ 768A/AS is used as a built-in detectorwith a synchronous built-in servo motor, the sensorcan be used only for the purpose of finite rotation(within 1 revolution).(2) Series and editions of applicable servo software When the iCZ sensor is used as a built-in detector with asynchronous built-in servo motor ((3)-(a)), the servo softwareindicated bellow is needed.iCZ 512A, iCZ 1024A ((3)-(a) For use as a detector built into a DiS motor) (Series 30i,31i,32i)Series 90D0/A(01) and subsequent editionsSeries 90E0/A(01) and subsequent editions(Series 15i-B,16i-B,18i-B,21i-B,0i-B,0i Mate-B,Power Mate i) Series 90B1/A(01) and subsequent editions(Series 0i-C,0i Mate-C,20i-B) Series 90B8/A(01) and subsequent editions iCZ 768A ((3)-(a) For use as a detector built into a DiS motor)(Series 30i,31i,32i) Series 90D0/J(10) and subsequent editions Series 90E0/J(10) and subsequent editions(Series 15i-B,16i-B,18i-B,21i-B,0i-B,0i Mate-B,Power Mate i) Series 90B1/C(01) and subsequent editions(Series 0i-C,0i Mate-C,20i-B) Series 90B8/C(01) and subsequent editions- 46 - 56. B-65270EN/072. SETTING iS/iF/iS SERIES SERVO PARAMETERSiCZ 512AS, iCZ 768AS, iCZ 1024AS ((3)-(b) For use as a separate detector) (Series 30i,31i,32i)Series 90D0/A(01) and subsequent editionsSeries 90E0/A(01) and subsequent editions (Series 15i-B,16i-B,18i-B,21i-B,0i-B,0i Mate-B,Power Mate i)Series 90B0/A(01) and subsequent editionsSeries 90B1/A(01) and subsequent editionsSeries 90B6/A(01) and subsequent editions (Series 0i-C,0i Mate-C,20i-B)Series 90B5/A(01) and subsequent editionsSeries 90B8/A(01) and subsequent editions(3) Setting parameters (a) Used as the detector for a synchronous built-in servo motor)[Setting AMR]#7 #6#5 #4 #3#2 #1 #0 1806 (FS15i) 0 AMR6AMR5AMR4AMR3 AMR2 AMR1AMR0 2001 (FS30i,16i)Set the value listed below according to the detector.DetectorAMR Set the number of poles of the synchronous built-in servoiCZ 512A motor in binary.iCZ 768ASet 0. Set a value obtained by dividing the number of poles of theiCZ 1024A synchronous built-in servo motor by 2 in binary.Setting example: When an 88-pole synchronous built-in servo motor and the iCZ 1024A are used: Number of poles/2 = 88/2 = 44 The binary representation of the above value is 00101100.This value is set in AMR.#7 #6#5 #4 #3#2 #1 #0 2608 (FS15i) DECAMR 2220 (FS30i,16i)Set one of the following values according to the detector.Detector DECAMRiCZ 512ASet 0.iCZ 768ASet 1.iCZ 1024A Set 0. - 47 - 57. 2. SETTING iS/iF/iS SERIES SERVO PARAMETERSB-65270EN/07 1705 (FS15i) AMR conversion coefficient 1 2112 (FS30i,16i) 1761 (FS15i) AMR conversion coefficient 2 2138 (FS30i,16i)Set one of the following values according to the detector. AMR conversion Detector AMR conversion coefficient 2coefficient 1iCZ 512ASet 0.Set 0.iCZ 768ASet 768.Set half the number of poles. iCZ 1024ASet 0.Set 0.[Setting flexible feed gear] 1977 (FS15i) Flexible feed gear (numerator) 2084 (FS30i,16i) 1978 (FS15i)Flexible feed gear (denominator) 2085 (FS30i,16i)Set the flexible feed gear according to the equation below.The number of pulses per detector rotation is as follows: Detector Flexible feed gearAmount of movement per motor revolution [deg]/iCZ 512Adetection unit [deg]500,000Amount of movement per motor revolution [deg]/iCZ 768Adetection unit [deg]750,000Amount of movement per motor revolution [deg]/ iCZ 1024Adetection unit [deg] 1,000,000(Equation for parameter calculation)Amount of movement per motor revolution [deg]/Flexible feed gear (N/M) = detection unit [deg] Number of pulses per detector rotation[Setting number of velocity pulses] 1876 (FS15i)Number of velocity pulses (PULCO) 2023 (FS30i,16i)Set a value listed in the following table according to the detector used.Detector Number of velocity pulses iCZ 512A4096 iCZ 768A6144iCZ 1024A8192 - 48 - 58. B-65270EN/072. SETTING iS/iF/iS SERIES SERVO PARAMETERS[Setting number of position pulses] 1891 (FS15i) Number of position pulses (PPLS) 2024 (FS30i,16i)Set a value listed in the following table according to the detector used.DetectorNumber of position pulses iCZ 512A 6250 iCZ 768A 9375iCZ 1024A 12500[Setting reference counter capacity] 1896 (FS15i) Reference counter capacity 1821 (FS30i,16i)Set one of the following values according to the detector.Detector Reference counter capacity Set the number of pulses per motor revolution (detection iCZ 512A unit) or a value obtained by dividing that number by an integer. Set the number of pulses per 120-degree motor revolution iCZ 768A (one-third revolution) (detection unit) or a value obtained by dividing that number by an integer. Set the number of pulses per motor revolution (detectioniCZ 1024A unit) or a value obtained by dividing that number by an integer.(Example of parameter setting)[System configuration]The Series 30i is used.An 88-pole/rev, synchronous built-in servo motor is used.The detector used is the iCZ512A.The least input increment of the controller is 1/1000 deg.Gear ratio 1:1[Parameter setting]AMR=01011000 (88 in decimal representation)Flexible feed gear (N/M) = 360,000/500,000


Recommended