+ All Categories

Bab2

Date post: 03-Mar-2016
Category:
Upload: tengku-imam-bucharie
View: 19 times
Download: 0 times
Share this document with a friend
Description:
Perpindahan Kalor
18
Ky ou ng Ho on Kim 1 - 1 CHAPTER 2 Heat Conduction Equation
Transcript
Page 1: Bab2

7/18/2019 Bab2

http://slidepdf.com/reader/full/bab2563db7ef550346aa9a8f4d00 1/18

Kyoung Hoon Kim 1 - 1

CHAPTER 2

Heat Conduction Equation

Page 2: Bab2

7/18/2019 Bab2

http://slidepdf.com/reader/full/bab2563db7ef550346aa9a8f4d00 2/18

Kyoung Hoon Kim 1 - 2

2.1 Introduction

temperature and heat transfer

§ temperature: scalar (magnitude)

heat transfer = vector

(magnitude and direction)

§driving force of heat

transfer: temperaturedifference§ temperature: function of

position and time

Page 3: Bab2

7/18/2019 Bab2

http://slidepdf.com/reader/full/bab2563db7ef550346aa9a8f4d00 3/18

Kyoung Hoon Kim 1 - 3

2.1 Introduction

Steady vs transient heat

transfer 

1) steady: time independent

transient (unsteady): time

dependent

2) lumped systems: variationwith time, but not with

position

Steady and transient heatconduction in a plane wall

Page 4: Bab2

7/18/2019 Bab2

http://slidepdf.com/reader/full/bab2563db7ef550346aa9a8f4d00 4/18

Kyoung Hoon Kim 1 - 4

2.1 Introduction

Multidimensional heat transfer 

1) three, two, one dimensional2) Fourier's law of heat conduction:

n

T  -kaQ

dxdT  -kAQ

¶=

=

 :general

 :ldimensionaone

Page 5: Bab2

7/18/2019 Bab2

http://slidepdf.com/reader/full/bab2563db7ef550346aa9a8f4d00 5/18

Kyoung Hoon Kim 1 - 5

2.1 Introduction

Heat generation

G = gV

G = heat generation rate, Wg = heat generation rate per 

unit volume, W/m3

Heat is generatedin the heating coils

of an electric range.

The absorption of solar

radiation by water can be

treated as heat generation.

Page 6: Bab2

7/18/2019 Bab2

http://slidepdf.com/reader/full/bab2563db7ef550346aa9a8f4d00 6/18

Kyoung Hoon Kim 1 - 6

2.2 One dimensional heat conduction equation

energy balance

(rate of heat conduction

at x)

-(rate of heat conduction

- at x+Dx)+ ( rate of heat generation

inside the element)

= (rate of change of 

energy content of 

the element)

[ ] [ ] [ ]   ( )[ ]

[ ] [ ]

 p

n

n

 p

 p

 p x x x

 p x x x

ck/ 

 g 

 x

T r 

 xr r 

 g 

 x

T r 

 xr r r 

 g 

 x

t T 

k  g 

 xT r 

 xr 

c

 g 

 x

T  A

 x A x

T k q

T c g 

 x

 Aq

 A x

t T c g 

 xqAqA

 A x A

T c x At 

 x gAqAqA

 r a 

a p 

a p 

 r 

 r 

 r 

 r 

 ydiffusivitthermalwhere

11:)2n4Aspherical(

11:)1n2l(Acylindrica

1:0)nzyAcartesian(

11:formgeneral

1:

)(1:0

1:1

2

2

2

2

2

==

¶¶=+÷

 ø öç

è æ 

¶¶

¶¶=®=

¶=+÷

 ø

 öçè 

æ ¶

¶=®D=

¶=+

¶=®DD=

¶¶=+÷

 ø öç

è æ 

¶¶

¶¶

¶=+÷

 ø

 öçè 

æ ¶

¶-=

¶=+

¶-®D

¶¶=+D --D´

¶=D+-

D+

D+

Page 7: Bab2

7/18/2019 Bab2

http://slidepdf.com/reader/full/bab2563db7ef550346aa9a8f4d00 7/18

Kyoung Hoon Kim 1 - 7

2.3 General heat conduction equation

rectangular coordinates

 g 

T  ¶

=+Ñ a 

12

spherical coordinates

cylindrical coordinates

Page 8: Bab2

7/18/2019 Bab2

http://slidepdf.com/reader/full/bab2563db7ef550346aa9a8f4d00 8/18

Kyoung Hoon Kim 1 - 8

Specified temperature BC 1

st

kind)

2.4 Boundary and initial conditions

Page 9: Bab2

7/18/2019 Bab2

http://slidepdf.com/reader/full/bab2563db7ef550346aa9a8f4d00 9/18

Kyoung Hoon Kim 1 - 9

Specified heat flux BC 2

nd

kind)

2.4 Boundary and initial conditions

specified

heat fluxinsulation symmetric

Page 10: Bab2

7/18/2019 Bab2

http://slidepdf.com/reader/full/bab2563db7ef550346aa9a8f4d00 10/18

Kyoung Hoon Kim 1 - 10

Convection BC 3

rd

kind)

2.4 Boundary and initial conditions

convection boundary conditions on

the two surfaces of a plane wall

the assumed direction of heattransfer at a boundary has no

effect on the boundary

condition expression

Page 11: Bab2

7/18/2019 Bab2

http://slidepdf.com/reader/full/bab2563db7ef550346aa9a8f4d00 11/18

Kyoung Hoon Kim 1 - 11

Radiation BC

2.4 Boundary and initial conditions

radiation boundary conditions onboth surfaces of a plane wall

Page 12: Bab2

7/18/2019 Bab2

http://slidepdf.com/reader/full/bab2563db7ef550346aa9a8f4d00 12/18

Kyoung Hoon Kim 1 - 12

Interface BC

2.4 Boundary and initial conditions

boundary conditions at the

interface of two bodies inperfect contact

Page 13: Bab2

7/18/2019 Bab2

http://slidepdf.com/reader/full/bab2563db7ef550346aa9a8f4d00 13/18

Kyoung Hoon Kim 1 - 13

<Ex 2-11> Heating conduction in a plane wall

Consider a large plane wall of

thickness L, thermal

conductivity k, and surface area

 A. The two sides of the wall are

maintained at constant

temperatures T1 and T2,

respectively. Determine a) the

variation of temperature within

the wall and the value of

temperature at x0 and b) the

rate of heat conduction throughthe wall under steady conditions.

Input ata

thickness of the plateL 20 cm×:= left surface temperature   T1 120 C×:=surface area   A 15 m

2×:= right surface temperature   T2 50 C×:=

thermal conductivity  k 1.20W

m K ××:= a position   x0 10 cm×:=

Solution

1C dxdT  =   21   C  xC T    +=

governing eq:   02

2

=dx

T d 

1)0(   T T    =

221)(   T C  LC  LT    =+=

BC’s:

 L

T T kAQ   21 -

=

&2)(   T  LT    =

12)0(   T C T    == &

or  L

 x

T T 

T T =

-

-

12

1 x L

T T T T    12

1

-+=

T0 T1  T2 T1-

Lx0×+:=   T0 85C=

Q k A×  T1 T2-

L×:=   Q 6.3kW=

Page 14: Bab2

7/18/2019 Bab2

http://slidepdf.com/reader/full/bab2563db7ef550346aa9a8f4d00 14/18

Kyoung Hoon Kim 1 - 14

<Ex 2-12> A wall with various sets of boundary conditions

Consider steady one-dimensional heat conduction in a large plane wall of thickness L and

constant thermal conductivity k with no heat generation. Obtain expressions for the variation of

temperature within the wall for the following pairs of boundary conditions.

Page 15: Bab2

7/18/2019 Bab2

http://slidepdf.com/reader/full/bab2563db7ef550346aa9a8f4d00 15/18

Kyoung Hoon Kim 1 - 15

<Ex 2-13> Heat conduction in the base plate of an iron

Consider the base plate of a Q0 household iron that has a thickness of L, base area A, andthermal conductivity of k. The inner surface of the base plate is subjected to uniform heat fluxgenerated by the resistance heaters inside, and the outer surface loses heat to the

surroundings at Ta by convection. Taking the convection heat transfer coefficient to be h anddisregarding heat loss by radiation, obtain for the variation of temperature in the base plate, andevaluate the temperatures at the inner and the outer surfaces.

 A, k

h, Ta

L

heat

flux cond conv

Input ata

thickness of the plate   L 0.50cm×:= heat transfer coefficienth 80 W×   m  2-

×   K   1-

×:=

surface area   A   300cm2

×:= temperature of air    Ta 20 C×:=

thermal conductivity   k    15 W×   m  1-

×   K   1-

×:= electric power of iron   Q   1200W×:=

Solution

1C dx

dT =   21   C  xC T    +=

01

)0(qkC 

dx

dT k    =-=-

governing eq:   02

2=

dxT d 

0

)0(q

dx

dT k    =-   [ ]aT  LT h

dx

 LdT k    -=-   )(

)(

[ ]a

T C  LC hqdx

 LdT k    -+==-   )(

)(210

BC’s:

aT hk 

 x Lq xT    +÷

 ø

 öçè 

æ  +-

=  1

)( 0

heat flux   q0   Q

A:=   q0 40 kW

m2

=

T0 q0  L

1

h+æ 

è  ö ø

×   Ta+:=   T0 533.333C=

TL q0  1

h

æ è 

 ö ø

×   Ta+:=   TL 520C=

Page 16: Bab2

7/18/2019 Bab2

http://slidepdf.com/reader/full/bab2563db7ef550346aa9a8f4d00 16/18

Kyoung Hoon Kim 1 - 16

<Ex 2-14> Heat conduction in a solar heated wall

Consider a large plane wall of thickness L and thermal conductivity k in space. The wall iscovered with white porcelain tiles that has an emissivity of e and a solar absorptivity of a. Theinner surface of the wall is maintained at T1 at all times, while the outer surface is exposed to

solar radiation that is incident at a rate of qsolar. The outer surface is also losing heat byradiation to deep space at Tspace. Determine the temperature of the outer surface of the walland the rate of heat transfer through the wall when steady operating conditions are reached.

What would you response be if no solar radiation was incident on the surface?

e

k

Tspace

T1

L

acond

solar 

radiation

Input ata

thickness of the plate   L   6 cm×:=

thermal conductivity   k 1.20  W

m K ××:=

emissivity   e   0.85:=

absorptivity   a   0.26:=

solar heat flux   qsolar 800W

m2

×:=

inner surface temperatureT1 300 K ×:=

deep spacetemperature   T2 0 K  ×:=

1C dx

dT =   21   C  xC T    +=

12)0(   T C T    ==

governing eq:   02

2

=dx

T d 

1)0(   T T    =

[ ]   solar  space   qT  LT dx LdT k    a es    --=-   44)()(

 solar  space   qT T  LC kC    a es    --+=-   44

111   )(

BC’s:

: nonlinear eq for C1

11)(   T  LC  LT T  L   +==

1kC dx

dT k q   -=-=

Solution

solution for C1   C1 0:=

C1 root   e s×   C1 L×   T1+( )4

T24

-× a qsolar ×-   k C1×+   C1,:=   C1 121.497-  K 

m=

TL C1 L×   T1+:=   TL 292.71K =

q k -   C1×:=   q 145.796W m  2-

×=

Page 17: Bab2

7/18/2019 Bab2

http://slidepdf.com/reader/full/bab2563db7ef550346aa9a8f4d00 17/18

Kyoung Hoon Kim 1 - 17

<Ex 2-15> Heat loss through a steam pipe

Consider a steam pipe of length L, inner radius r1, outer radius r2, and thermal conductivity k.The inner and outer surfaces of the pipe are maintained at average temperatures T1 and T2,respectively. Obtain a general relation for the temperature distribution inside the pipe under

steady conditions, and determine the rate of heat loss from the steam through the pipe.

r 1

k

T2

r 2

T1

L

Input ata

inner radius   r1 6 cm×:=

outer radius   r2 8 cm×:=

length of the pipe   L   20 m×:=

thermal conductance of the pipek 20 W×   m  1-

×   K   1-

×:=

inner surface temperature   T1 150 C×:=

outer surface temperature   T2 60 K  ×:=

Solution

1C 

dr 

dT r    =   21

ln   C r C T    +=

12111   ln)(   T C r C r T    =+=   22212   ln)(   T C r C r T    =+=

&01

=÷ ø

 öçè 

æ dr 

dT r 

dr 

r    11 )(   T r T    =   22 )(   T r T    =

)/ln(

)/ln(

12

1

12

1

r r 

r r 

T T 

T T =

-

-

)/ln(2)2(

12

21

r r 

T T kL

dr 

dT rLk Q

  -=-=   p p 

&

Q 2 p×   k L×  T1 T2-

lnr2

r1

æ è 

 ö ø

×:=

Q 786.266kW=

Page 18: Bab2

7/18/2019 Bab2

http://slidepdf.com/reader/full/bab2563db7ef550346aa9a8f4d00 18/18

Kyoung Hoon Kim 1 - 18

<Ex 2-16> Heat conduction through a spherical shell

Consider a spherical container of inner radius r1, outer radius r2, and thermal conductivity k.

The inner and outer surfaces of the container are maintained at constant temperatures of

T1 and T2, respectively, as a result of some chemical reactions occurring inside. Obtain a

general relation for the temperature distribution inside the shell under steady conditions,and determine the rate of heat loss from the container.

r 1

kT2

r 2

T1

Input ata

inner radius   r1 8 cm×:=

outer radius   r2   10 cm×:=

thermal conductance of the shell   k 45  W

m K ××:=

inner surface temperature   T1   200C×:=

outer surface temperature   T2 80 K  ×:=

Solution

&01   2

2  =÷

 ø

 öçè 

æ dr 

dT r 

dr 

r   11 )(   T r T    =   22 )(   T r T    =

1

2 C dr 

dT r    =   2

1 C r 

C T    +-=

12

1

11)(   T C 

C r T    =+-=   22

2

12)(   T C 

C r T    =+-=

21

1

12

1

11

11

r r 

r r 

T T 

T T 

-

-=--

12

2121

2 4)4(r r 

T T r kr 

dr 

dT r k Q

-

-=-=   p p 

&Q 4 p×   k r1×   r2×

  T 1 T2-

r2 r1-×:=

Q 27.143kW=


Recommended