+ All Categories
Home > Documents > Bacterial Biotransformations for the Stabilization of ... · Shewanella oneidensis MR1 10 mM...

Bacterial Biotransformations for the Stabilization of ... · Shewanella oneidensis MR1 10 mM...

Date post: 10-Aug-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
14
U N C L A S S I F I E D U N C L A S S I F I E D Bacterial Biotransformations for the In situ Stabilization of Plutonium Mary Neu, Hakim Boukhalfa, Gary Icopini, Larry Hersman, Joe Lack, John Priester, Scott Olson, Patricia Holden Chemistry & Biology Divisions, Los Alamos National Laboratory Bren School of Environmental Science and Management, UCSB NABIR P.I. Meeting, April, 2005
Transcript
Page 1: Bacterial Biotransformations for the Stabilization of ... · Shewanella oneidensis MR1 10 mM Lactate 5 x 108 Cells/mL Geobacter metallireducens GS15 10 mM Acetate 5 x 108 Cells/mL-0.001

U N C L A S S I F I E D

U N C L A S S I F I E D

Bacterial Biotransformations for the

In situ Stabilization of Plutonium

Mary Neu, Hakim Boukhalfa, Gary Icopini, Larry Hersman, Joe Lack,

John Priester, Scott Olson, Patricia Holden

Chemistry & Biology Divisions, Los Alamos National Laboratory

Bren School of Environmental Science and Management, UCSB

NABIR P.I. Meeting, April, 2005

Page 2: Bacterial Biotransformations for the Stabilization of ... · Shewanella oneidensis MR1 10 mM Lactate 5 x 108 Cells/mL Geobacter metallireducens GS15 10 mM Acetate 5 x 108 Cells/mL-0.001

Plutonium contamination in the environment is generally low-leveland may be present and transported in a range of forms (IV, V, VI).

Current remediation strategies are costly, financially and in termsof increased exposure risk to people and the environment.In situ bacterial biostabilization is a promising alternative.

Aqueous Speciation Related to Environmental Conditions

• Plutonium(VI) vs Uranium(VI) Hydrolysis• Plutonium(IV/III) EDTA Speciation and Stability• Siderophore Stabilization of Plutonium(IV)• New Reduction Potentials

Bacterial Biotransformations

• Siderophore-mediated Accumulation by Aerobic Bacteria• EPS and Cell Adsorption by Aerobic Bacteria• Reduction by DMRB

Overview

Page 3: Bacterial Biotransformations for the Stabilization of ... · Shewanella oneidensis MR1 10 mM Lactate 5 x 108 Cells/mL Geobacter metallireducens GS15 10 mM Acetate 5 x 108 Cells/mL-0.001

Pu (VI) Hydrolysis9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

p[H

]

3.02.01.00.0-1.0Equivalents of NaOH

[An(VI)] = 1 mM0.1 M NaNO3

Pu

H

O

Pu

O

H

OH2

O

O

O

O

H2O

H2O

H2O OH2

OH2

U

H

O

U

O

OH2

O

O

O

O

H2O

H2O OH2

U

HO OH

O

O

OH2H2O

Why biostabilization methods being developed for U, e.g. reduction by DMRB,may or may not work for Pu

~600 papers on U(VI) hydrolysis 5 papers on Pu(VI) hydrolysis 2 papers on Pu(V) hydrolysis

100

80

60

40

20

0

% o

f [U

(VI)

] Tot

al

765432pH

UO22+

UO2(OH)+

(UO2)2(OH)22+

(UO2)3(OH)42+

(UO2)3(OH)5+

(UO2)4(OH)7+

[U(VI)]tot = 0.1 mM100

80

60

40

20

0

% o

f [P

u(V

I)] T

otal

765432pH

PuO22+

PuO2(OH)+

PuO2(OH)2

(PuO2)2(OH)22+

(PuO2)2(OH)4

[Pu(VI)]tot = 0.1 mM

Reilly, Neu, Inorg. Chem., submitted.

Page 4: Bacterial Biotransformations for the Stabilization of ... · Shewanella oneidensis MR1 10 mM Lactate 5 x 108 Cells/mL Geobacter metallireducens GS15 10 mM Acetate 5 x 108 Cells/mL-0.001

E mV (Ag/AgCl)

-800-600-400-2000200400600800

i, µ

A

-150

-100

-50

0

50

100

1501:1 (Pu:EDTA)

[H+] = 0.6 M

1:1 (Pu:EDTA)pH = 2.4

1:1: (Pu:EDTA:citrate)pH = 6.2

1:2 (Pu:EDTA)pH = 6.67

Cyclic Voltammetry

Pu(IV)EDTA Aqueous SpeciationNew Species Distributions (---)

Boukhalfa, Reilly, Neu, Inorg. Chem.,2004, 43(19), 5816.

Pu:EDTA = 1:1

Pu:EDTA = 1:2

New species are identified includingPu(EDTA)2, log = 35.43

Stability of Pu(IV) is enhanced atenvironmentally relevant pH by theformation Pu(IV)-EDTA-hydroxo andPu(IV)-EDTA-L mixed complexes.

Unusual speciation due to highcharge and large coordination sphere

Page 5: Bacterial Biotransformations for the Stabilization of ... · Shewanella oneidensis MR1 10 mM Lactate 5 x 108 Cells/mL Geobacter metallireducens GS15 10 mM Acetate 5 x 108 Cells/mL-0.001

Pu Speciation Under Environmental Conditions

PuO22+ logKsp = 5.5

PuO2+ logKsp = 5.0

Pu4+ logKsp = -2.0Pu3+ logKsp = 15.8

e.g., Pu4+/PuO2(hyd) [H+]4

Ered (mV) vs NHE, pH = 7

Solubility of primary (hydr)oxide phases

Page 6: Bacterial Biotransformations for the Stabilization of ... · Shewanella oneidensis MR1 10 mM Lactate 5 x 108 Cells/mL Geobacter metallireducens GS15 10 mM Acetate 5 x 108 Cells/mL-0.001

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25

Time (hours)

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25

Time (hours)

Pu(VI) as a Terminal Electron Acceptor for DMRBP

u C

oncentr

ation (

mM

)

No Cells

No Donor added

Heat Killed

Shewanella oneidensis MR1

10 mM Lactate

5 x 108 Cells/mL

Geobacter metallireducens GS15

10 mM Acetate

5 x 108 Cells/mL

-0.001

0.001

0.003

0.005

0.007

0.009

400 500 600 700 800 900

Ab

sorb

an

ce

Wavelength

(nm)

MR-1

No cell control DMRB reduce Pu(VI) and Pu(V)

Product appears to be PuO2 (hyd)

Characterization and dissolutionstudies in progress

Page 7: Bacterial Biotransformations for the Stabilization of ... · Shewanella oneidensis MR1 10 mM Lactate 5 x 108 Cells/mL Geobacter metallireducens GS15 10 mM Acetate 5 x 108 Cells/mL-0.001

DFEN

NH

O

NO

OH

O

NH

N NH

O

OH

OOH

O

+ Pu(IV)

+ Pu(IV)

+ Fe(III) ???

Gram -P. putida

Gram +A. flavesens,

JG-9

N

OOHHN

O

C

HN

OCH

HN

O

CH

CH2

HO

CH

H3C

HO

CH

HN

O

OH

HN N

HN

O

CH

NH

O

N NHHO

HO NH

O

CH2

H2C

COR

CH2 OH

H

H2C

NH2

4

L-Lys

D-allo-Thr

L-Ser

L-c(OH)Orn

D-Ser

Pyoverdine

Can Pu be accumulatedby other bacteria

via other types of siderophores?

Siderophore-Mediated Pu AccumulationFe(III) and Pu(IV) siderophore structures

Page 8: Bacterial Biotransformations for the Stabilization of ... · Shewanella oneidensis MR1 10 mM Lactate 5 x 108 Cells/mL Geobacter metallireducens GS15 10 mM Acetate 5 x 108 Cells/mL-0.001

Time (min)

0 20 40 60 80 100 120 140 160 180 200

55

Fe a

ccum

ula

tio

0

50

100

150

200

no Fe

Fe-NTA

Fe-tiron

Fe-DFB

Fe-EDTA

Fe-pyoverdin

Fe uptake profile suggests that exogenous ligands release iron to the siderophoreeither in solution or at the membrane surface.

P. putida Metal Acquisition from Multiple Chelates

0

0.5

1

1.5

0 100 200 300 400 500

Pu-NTAPu-pyoverdinPu-pyoverdin #2

Pu

acc

um

ula

tio

n (

pm

ole

s)time (min.)

Uptake inversely proportional to Fe-L complexes stability.

Page 9: Bacterial Biotransformations for the Stabilization of ... · Shewanella oneidensis MR1 10 mM Lactate 5 x 108 Cells/mL Geobacter metallireducens GS15 10 mM Acetate 5 x 108 Cells/mL-0.001

Time in min

0 50 100 150 200

0.0

0.5

1.0

1.5

2.0

2.5

Cr

Al

Ga

Ga 2 uM

pu NTA uptake

Fe-NTA uptake

1:1 competmition

Time (min)

0 50 100 150 200 250

Pu accum

ulatio

0

50

100

150

200

Pu-pyoverdin

Pu-(pyoverdin)2

Pu-NTA

Requirements for Metal–Siderophore Uptake

Siderophore binding, membrane protein recognition, metal shuttle, intra-cellularrelease thought to require specific physico-chemical characteristics.

P. Putida cells pre-incubated with 2 µM of pyoverdincomplexes of Cr(III), Ga(III) and Al(III) unable to acquireFe from NTA, EDTA or pyoverdin complexes.

P. Putida cells take up NTA and pyoverdincomplexes, both in the presence and absence of Fe.

Characteristics required for complete translocation? specific radii, trivalent charge, specific molecular conformation, neutral molecular charge, metal reduction, ligand exchange (solution or membrane).…

Pu(IV) and Th(IV) uptake reveal combination of ligand exchange and reduction is key

Page 10: Bacterial Biotransformations for the Stabilization of ... · Shewanella oneidensis MR1 10 mM Lactate 5 x 108 Cells/mL Geobacter metallireducens GS15 10 mM Acetate 5 x 108 Cells/mL-0.001

Metal Binding of Microbial Extracellular Polymers

HN

NH

HN

NH

CO2H

O CO2H

O CO2H

O

PGA of B. licheniformis

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3 3.5

Fe(III)

U(VI)

Pu(IV)µm

ol M

etal

Bou

nd

µmol Metal Added

~800 kDa, forms soluble metal complexes,generally >10:1 glu to M

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

Fe(III) U(VI)Pu(IV)

Fe(III)U(VI)Pu(IV)

µm

ol m

etal

bou

nd

µmol metal added

PGA OnlyWhole Cells

~0.12 mmol metal bound per mg PGA (alone)

Pu(IV) remains associated with PGA duringrepeated pH cycling 2-12

Whole cells (in culture media) take up more Pu per mass than does polyglutamate

Siderophores and EPS associate Pu with cells

Page 11: Bacterial Biotransformations for the Stabilization of ... · Shewanella oneidensis MR1 10 mM Lactate 5 x 108 Cells/mL Geobacter metallireducens GS15 10 mM Acetate 5 x 108 Cells/mL-0.001

EPS, but not cell growth, affected by U.

U(VI) adsorbed onto Fe(III) minerals increasedEPS produced by P. putida

Effect of U(VI) on P. putida Biofilms

EPS, but not cell growth, affected by U.

U(VI) adsorbed onto Fe(III) minerals increasedEPS produced by P. putida

P. Putida grown on membrane discs onU-containing agar withminimal nutrients

[U] = 10-4 Mor 50 µg/g72 hr growthFractionation by cent.

Page 12: Bacterial Biotransformations for the Stabilization of ... · Shewanella oneidensis MR1 10 mM Lactate 5 x 108 Cells/mL Geobacter metallireducens GS15 10 mM Acetate 5 x 108 Cells/mL-0.001

Distribution of U(VI) within P. putida Biofilms

Less U removed from substrate by P. putida in the presence of EDTA

U preferentially associated with cell fraction

Page 13: Bacterial Biotransformations for the Stabilization of ... · Shewanella oneidensis MR1 10 mM Lactate 5 x 108 Cells/mL Geobacter metallireducens GS15 10 mM Acetate 5 x 108 Cells/mL-0.001

Pu Biogeochemistry

Advances in Pu aqueous geochemistry

Solubilization, biosorption, bioaccumulation, mineralizationbiotransformation mechanisms all affect Pu

Stability of products, rates of combined processes,…?

Page 14: Bacterial Biotransformations for the Stabilization of ... · Shewanella oneidensis MR1 10 mM Lactate 5 x 108 Cells/mL Geobacter metallireducens GS15 10 mM Acetate 5 x 108 Cells/mL-0.001

cknowledgementcknowledgement

U.S. DOE, U.S. DOE, OScOSc, OBER, ERSD, NABIR, OBER, ERSD, NABIR

Dr. Hakim Dr. Hakim BoukhalfaBoukhalfaDr. GaryDr. Gary Icopini IcopiniMrMr. Sean Reilly. Sean Reilly

Dr. LarryDr. Larry Hersman HersmanProf. Patricia HoldenProf. Patricia HoldenDr. CherylDr. Cheryl Kuske Kuske


Recommended