+ All Categories
Home > Documents > Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) -----------...

Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) -----------...

Date post: 17-Jan-2016
Category:
Upload: philippa-oconnor
View: 217 times
Download: 3 times
Share this document with a friend
Popular Tags:
31
Baden-Beden, Oct ober 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure characterization of Radiation Damage of SiC, and metals under pulse irradiation, by using Multiscale Modeling J.M. Perlado 1 , D. Lodi 1,2 , M. Salvador 1, M. J. Caturla 3 , T. Díaz de la Rubia 3, L. Colombo 4 1 Instituto de Fusión Nuclear (DENIM) / Universidad Politécnica de Madrid (UPM) 2 SCK-CEN, Boeretang 200, 2400 Mol, Belgium. 3 Lawrence Livermore National Laboratory, Livermore, CA94550, USA 4 Universitá degli Studi Cagliari, Monserrato, Cagliari, Italy
Transcript
Page 1: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Instituto Fusión Nuclear (DENIM)

-----------

Universidad Politécnica de Madrid (UPM)

Microstructure characterization of Radiation Damage of SiC,

and metals under pulse irradiation, by using Multiscale Modeling

J.M. Perlado1, D. Lodi1,2, M. Salvador1, M. J. Caturla3,

T. Díaz de la Rubia3, L. Colombo4

1Instituto de Fusión Nuclear (DENIM) / Universidad Politécnica de Madrid (UPM)

2 SCK-CEN, Boeretang 200, 2400 Mol, Belgium.3 Lawrence Livermore National Laboratory, Livermore, CA94550, USA

4 Universitá degli Studi Cagliari, Monserrato, Cagliari, Italy

Page 2: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Instituto de fusión nuclear

-----------

Universidad Politécnica de

MadridContents of the workContents of the work

• Pulsed Irradiation of Pulsed Irradiation of -Fe-Fe• Study in more realistic environment for IFE: - Pulse FrequencyFrequency 1 - 10 Hz1 - 10 Hz - Dose rateDose rate 0.1- 0.01 dpa/s0.1- 0.01 dpa/s

• Comparison between pulsed and continuous irradiation

• New Tight- Binding Molecular Dynamics model New Tight- Binding Molecular Dynamics model for assessing defect energetics in SiC.for assessing defect energetics in SiC.

Page 3: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Instituto de fusión nuclear

-----------

Universidad Politécnica de

Madrid Neutron Environment conditionsNeutron Environment conditions

• Target neutron emission: IntensityIntensity ~ 10 21 n.s-1

(<> 600 MJ – 3 Hz)

• Target neutron Energy spectraEnergy spectra <E> = 10-12 MeV

• FrequencyFrequency choice : From considerations among - Driver energy - Target energy - Requested Power

1 - 10 Hz1 - 10 Hz

Page 4: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Neutron Damage in Structural WallNeutron Damage in Structural Wall

Pellets7 m

66cm

of LiPbIron

Here we calculate thedamage dose ratesdose rates

Dose rates in the Wall

Structural Material

HT9

(assued Fe)

HT9(assumed Fe)

HT9(assumed

Fe)

HT9(assumed

Fe)

Neutron Source Spectral<10

MeV>

Spectral<10

MeV>

Spectral<10

MeV>

Monoenergetic14 MeV

Effective Thickness (Li17

Pb83)

66 cm 0 (Bare Wall)

133 cm 66 cm

Peak (dpa/s) 0.013 25 0.0014 0.018

Peak (appm He/s) 0.17 220 0.00012 0.24

Page 5: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Duration of the pulse in the wallDuration of the pulse in the wall

According to transport calculation

1 Sec

130 ns130 ns from 14 MeV unscattered neutron

170 ns170 ns from neutrons scattered in the blanket

- ASSUMING TARGET SPECTRAL ASSUMING TARGET SPECTRAL

CONDITIONSCONDITIONS

- PROTECTED (66 CM) WALLPROTECTED (66 CM) WALL

0.1 1 100.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

DP

A/s

Time from burn (sclae in 1E-6)

Page 6: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

PKA Energy SpectraPKA Energy Spectra

FOR 14 MeV NEUTRONSFOR 14 MeV NEUTRONS

45 %45 % of recoils have energies larger than 200 keV, producing 75%75% of displacements

60 %60 % of recoils have energies larger than 100 keV producing 90%90% of displacements

FOR SLOWED-DOWN NEUTRONSFOR SLOWED-DOWN NEUTRONS

Only 11%11% of recoils with energies larger than 100 keV producing 70%70% of displacements

150150 keVkeV

Page 7: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Unprotected Wall

Pellets7 m

Iron

Here we calculate the neutron flux

0.0001 0.001 0.01 0.1 1

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

0.00001

0.0001

0.001

0.01

0.1

Nº o

f Fe

PK

A (

unit

flux

)

PKA energy (MeV)

Corresponding PKA spectra

Page 8: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Why Computational SimulationWhy Computational Simulation

The Absence of an appropriate Pulsed neutron source The Absence of an appropriate Pulsed neutron source make Computational Simulation an important tool for make Computational Simulation an important tool for microscopic interpretation of macroscopic effects and microscopic interpretation of macroscopic effects and for predicting the response of materials to irradiationfor predicting the response of materials to irradiation

Some proposal appear in the last few years making use Some proposal appear in the last few years making use of laser technology (Perkins et al. Nuclear Fusion of laser technology (Perkins et al. Nuclear Fusion 40/N.1 (2000) 1-19).40/N.1 (2000) 1-19).

Page 9: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Computational tools

• SPECTER code to determine the PKA spectrum• TRIM to determine the PKA damage Energy • MDCASK (LLNL-DENIM) to study the primary

damage state (cascade), and defects energetics • BIGMAC (LLNL) to study the evolution of the

microstructure

Page 10: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Multiscale Modeling up to MicroscopicMultiscale Modeling up to Microscopic

Computational tools

Transport + Kinematic codes

Binary collision code

Molecular Dynamics code

Kinetic Montecarlo code

To determine PKA damage Energy and Collisional Cascade description

To study the primary damage state and defects energetics

To study the evolution of the micro structure

To determine PKA spectrum

Informations provided

How many PKAs and with which energy

Energy transfered to the atom and geometrical distribution of the subcascades

Nº and characteristics of defects per cascade and defects energetics

Defects type and concentration

Page 11: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Multiscale approach forMultiscale approach for Pulsed Irradiation Pulsed Irradiation

PKA spectrum Program that builds a PKA

Cascade data base

PKA

PULSE

The pulse has a deposition time which must be previously calculated

KMC box

Annealing time = Pulse rate (secPulse rate (sec) - Pulse deposition Pulse deposition timetime

Annealing New Pulse

KMC box

The Nº of PKAs forming the pulse depends on the dose dose raterate, the Pulse Pulse deposition deposition Time Time and the dimension dimension of the boxof the box

Transport codeMolecular Dynamics Code

Kinetic Montecarlo code Kinetic Montecarlo codeInput parameters of the KMC simulation are :

temperature, dose rate, dose

O.1 - 1 s

Page 12: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

KMC codeKMC code BIGMAC BIGMAC

Considered events1) Diffusion2) Clustering of defects of the

same type3) Dissociation from a cluster4) Annihilation of defects of the

opposite type5) Annihilation in sink6) Trapping7) New cascade8) 9)

Read Input

Inizialize

variables

Create events File

Choose an event

Choose a particle

Update time

Execute event

All done

Spontaneous

events

Migration energy, Binding energy. Diffusion parameters

Page 13: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Defects EnergeticDefects Energetic

Vacancies

Migration energies (Em)

V: Em= 0.90 eV

V2: Em= 0.75 eV

Pre-factor (Do)

V: Do= 5.0 x10-2

V2: Do= 2.5x10-2

Binding Energies (Eb)

V2: Eb= 0.22 eV V3: Eb= 0.33 eV

Vn: Eb(n) = 1.70-2-59 [n2/3-(n-1)2/3]

Interstitial

Migration Energies (Em)

I: Em= 0.12 eV

In: Eb= 0.10 eVIn N > 5 undergo 1D migration

Pre-factor (Do)

I: Do= 2.0 x 10-3 cm2/s

In : Do = 2.0 x10-3/ n cm2/s

Binding Energies (Eb)

I2: Eb = 0.97 eV ; I3: Eb=1.45eV

In : Eb(n) = 4.33-5.76 [n2/3- (n-1)2/3] Immobile Impurities

Defect-Impurities reactions : Ix+ S = trapped Ix with Eb= 1.0 Ev

Page 14: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Trapped InterstitialsTrapped Interstitials

0 1x10-5 2x10-5 3x10-5 4x10-5 5x10-50.00E+000

1.00E+016

2.00E+016

3.00E+016

4.00E+016

5.00E+016

6.00E+016

7.00E+016

8.00E+016 0.1dpa/s-10Hz 0.1dpa/s-1Hz 0.01dpa/s-10Hz 0.01dpa/s-1Hz

(1/c

m3̂)

Dose (dpa)

Page 15: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Vacancy ConcentrationVacancy Concentration

0 1x10-5 2x10-5 3x10-5 4x10-5 5x10-50.00E+000

5.00E+016

1.00E+017

1.50E+017

2.00E+017

0.1dpa/s-10Hz 0.1dpa/s-1Hz 0.01dpa/s-10Hz 0.01dpa/s-1Hz

(1/

cm3̂]

Dose (dpa)

Page 16: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Vacancy clusters average sizeVacancy clusters average size

0 1x10-5 2x10-5 3x10-5 4x10-5 5x10-50.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.1 dpa/s - 1hz 0.1 dpa/s - 10 Hz 0.01 dpa/s - 1 hz 0.01 dpa/s - 10 HzA

vera

ge c

lust

er s

ize

Dose (dpa)

Page 17: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Vacancy clusters ConcentrationVacancy clusters Concentrationvs. Pulse frequencyvs. Pulse frequency

0.0 0.2 0.4 0.6 0.8 1.00.00E+000

2.00E+015

4.00E+015

6.00E+015

8.00E+015

1.00E+016

1.20E+016

Vacancy Clusters Concentration Vs Time

10Hz 1Hz

Con

cent

ratio

n (1

/cm̂

3)

Time ( sec.)

Page 18: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Vacancy clusters ConcentrationVacancy clusters Concentration during 1 Hz pulse during 1 Hz pulse

PeakAfter relaxation

0.0 0.2 0.4 0.6 0.8 1.00.00E+000

2.00E+015

4.00E+015

6.00E+015

8.00E+015

1.00E+016

1.20E+016

Vacancy clusters concentration Vs Time 1Hz Pulse

Con

cent

ratio

n ( 1

/cm̂

3)

Time ( sec.)

Page 19: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

ContinuContinuousous vs Pulsed vs Pulsed

Comparison between Pulsed and Continuous irradiation leads to the Comparison between Pulsed and Continuous irradiation leads to the conclusion that damage accumulation is almost identical as regard conclusion that damage accumulation is almost identical as regard to vacancy clusters densityto vacancy clusters density

0.0 2.0x10-6 4.0x10-6 6.0x10-6 8.0x10-6 1.0x10-5

0.00E+000

2.00E+016

4.00E+016

6.00E+016

8.00E+016

A BC D

E F G H I J K L M N OP Q R S

T UV W X Y Z AABBCCDDEEFFGGHHII

0.1 dpa/s - 1hz 0.01 dpa/s - 10hz 0.01e-6 dpa/s 0.1e-6 dpa/s

(1

/cm

^3)

Dose (dpa)

Page 20: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Tight Binding Molecular Dynamics for SiCTight Binding Molecular Dynamics for SiC

We develop a semiempirical tight binding molecular dynamics scheme to study the defects energetics in SiC.

We justify the needWe justify the need of this scheme:

•The classical interatomic potentials used in large scale The classical interatomic potentials used in large scale simulations are poor in SiC due to its empirical naturesimulations are poor in SiC due to its empirical nature

•The computational cost of the Tight Binding methods The computational cost of the Tight Binding methods is less expensive in comparison with the ¨ is less expensive in comparison with the ¨ ab ab initio ¨ initio ¨ methodmethod, With TBMD we can obtain results of complex systems with a great friability and with more atoms in our simulations

Page 21: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Tight Binding Molecular Dynamics for SiCTight Binding Molecular Dynamics for SiC

•The TBMD semiempirical method consist in to solve the Schröndinger equation where some operators are substituted by experimental results. •The TB model, is a semiempiric version of the Linear The TB model, is a semiempiric version of the Linear Combination of Atomic Orbital (LCAO) method, with a Combination of Atomic Orbital (LCAO) method, with a minimum basis functions; basically, the analysis is minimum basis functions; basically, the analysis is reduced to the problem of one particle moving in an reduced to the problem of one particle moving in an average field.average field.• The total electronic energy of the system, depends on an The total electronic energy of the system, depends on an attractive and repulsive term: attractive and repulsive term: EEtottot = E = Ebsbs + + UUreprep

Where EWhere Ebsbs is the structure energy band obtained by the is the structure energy band obtained by the

Fermi-Dirac DistributionFermi-Dirac Distribution

Page 22: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Tight Binding Molecular Dynamics for SiCTight Binding Molecular Dynamics for SiC

We use a simple average for the interaction of the We use a simple average for the interaction of the Hamiltonian matrix elements.Hamiltonian matrix elements.

The on-site energies are those of Weissmann and Fu, and in The on-site energies are those of Weissmann and Fu, and in the pair interaction between Silicon and Carbon, we use a the pair interaction between Silicon and Carbon, we use a weighted average suggested by the same authors.weighted average suggested by the same authors.

In our TB scheme we can manage different atomic coordination number, chemical bonding and equilibrium distances.

We use a short-ranged repulsive term Urep, for which we We use a short-ranged repulsive term Urep, for which we adopt the functional form, suggested by Goodwin, Skinner adopt the functional form, suggested by Goodwin, Skinner and Pettifor for the scaling function and Pettifor for the scaling function s s ( ( rr ) and the pairwise ) and the pairwise potential Φ ( potential Φ ( rr ). ).

Page 23: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Tight Binding Molecular Dynamics for SiC

For computing the attractive force we implement For computing the attractive force we implement the Hellmann - Feynman theorem, using the linear the Hellmann - Feynman theorem, using the linear combination and exploiting the analytical combination and exploiting the analytical dependence of the TB hopping upon the dependence of the TB hopping upon the interatomic distancesinteratomic distances.

We use for the development of the TB model, the We use for the development of the TB model, the LAPACK library for the diagonalization of the LAPACK library for the diagonalization of the Hamiltonian Matrix.Hamiltonian Matrix.

Page 24: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Tight Binding Molecular Dynamics for SiCTight Binding Molecular Dynamics for SiC

We can reproduce efficiently the cohesive energies of different SiC crystalline structure.

Page 25: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Tight Binding Molecular Dynamics for SiCTight Binding Molecular Dynamics for SiC

Here we shown the Energy Band Structure in a SiC Molecule in dependence of its interatomic distance

Page 26: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Conclusions

• Multiscale Modeling proved by ExperimentsMultiscale Modeling proved by Experiments• Pulse Radiation DamagePulse Radiation Damage• Time between pulses is the variable that control vacancy clusters

density and size

• Frequency has no effect on Interstitials accumulation

• No significant differences between No significant differences between average average pulsed and pulsed and

continuous irradiation in the range studiedcontinuous irradiation in the range studied • New Model for Defect Energetic in SiC using Tight New Model for Defect Energetic in SiC using Tight

Binding Molecular Dynamics is starting to be Binding Molecular Dynamics is starting to be

succesfully provedsuccesfully proved

Page 27: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Programs link-up

KOYO and Starfire Fusion Reactor Chamber Walls

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01

PKA energy (MeV)

Nu

mb

er o

f Fe

PK

A/(u

nit

flux)

Average Energies

From Neutron SpectrumTo PKA spectrum

Damage Energy and CollisionalCascade description

Page 28: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Programs link-up

Damage Energyand Collisional Cascadedescription

From the Damage Energy

To the primary Damage State

To the Evolution of the Microstructure

0 2 4 6 8 10 120.1

1

10

100

1000

10000

of v

acan

cy c

lust

ers

Nº of vacancies in cluster

Page 29: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Vacancies

Lower frequency = larger average size

0.0 2.0x10-6 4.0x10-6 6.0x10-6 8.0x10-6 1.0x10-50.0

0.5

1.0

1.5

2.0

2.5

0.1 dpa/s - 1hz 0.1 dpa/s - 10 Hz 0.01 dpa/s - 1 hz 0.01 dpa/s - 10 Hz 0.1e-6 dpa/s 0.01e-6 dpa/s

Aver

age

clu

ster

siz

e

Dose (dpa)

For a given dose rate, frequency control vacancy cluster size

Page 30: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Vacancies

For a given dose rate frequency control vacancy clusters density

0.0 2.0x10-6 4.0x10-6 6.0x10-6 8.0x10-6 1.0x10-50.00E+000

2.00E+016

4.00E+016

6.00E+016

8.00E+016

0.1dpa/s-10Hz 0.1dpa/s-1Hz 0.01dpa/s-10Hz 0.01dpa/s-1Hz

(1

/cm

3̂]

Dose (dpa)

Higher frequency = more accumulation

Page 31: Baden-Beden, October 2001 IEA_WS Fusion Neutronics Instituto Fusión Nuclear (DENIM) ----------- Universidad Politécnica de Madrid (UPM) Microstructure.

Baden-Beden, October 2001

IEA_WS Fusion Neutronics

Trapped Interstitials

The migration of interstitial clusters is so fast that frequency shows no effect on cluster density

We considered 5 appm of impurities

No sessile custer accumulation has been

recorded in any of the simulations

0.0 2.0x10-6 4.0x10-6 6.0x10-6 8.0x10-6 1.0x10-50.00E+000

1.00E+016

2.00E+016

3.00E+016

4.00E+016

5.00E+016

0.1dpa/s-10Hz 0.1dpa/s-1Hz 0.01dpa/s-10Hz 0.01dpa/s-1Hz

(1/c

m3̂)

Dose (dpa)


Recommended