+ All Categories
Home > Documents > Barrier Draft2

Barrier Draft2

Date post: 05-Apr-2018
Category:
Upload: skagarwalla
View: 225 times
Download: 0 times
Share this document with a friend

of 26

Transcript
  • 7/31/2019 Barrier Draft2

    1/26

    1

    PROJECT REPORT

    ON

    Tr a nsmission Thr ough one-dimensiona l Compl ex pot ent ia l s

    BY

    Manoj K ishore Pradhan

    Sapan K umar Behera

    Subrasmita Pradhan

    Shakatimayee Jena

    Abhilash Patra

    3rdsemester

    P.G.DEPARTMENT OF APPLIED PHYSICS AND BALLISTICS

    GUIDE:

    DR. SANT OSH K UM AR AGARW ALLA P.G.DEPARTM ENT OF APPLIED PHYSICS AND BA LLI STICS,

    FAKIR MOHAN UNIVERSITY, VYASA VIHAR, BALASORE-19.

  • 7/31/2019 Barrier Draft2

    2/26

    2

    Abstract:

    We have calculated the Reflection (RC), Transmission (Tc) and Absorption (A) Co-efficient for one-

    dimensional complex potential barrier. The results are computed by using MATLAB software.

    Finally we study the variation of Tc, RC and A for various combinations of barrier height (V0),complex strength (W0) and width of the barrier (a).

    Introduction:

    Nucleus-Nucleus elastic scattering results in model with an added finite absorptive part to the

    short-ranged attractive nuclear interaction potential are better understood than results from

    models without such an absorptive term. The absorptive part of the potential is represented by a

    purely imaginary potential of the short range type or the one that rapidly converges to zero. This

    absorptive potential is supposed to represent, in a crude way, the unknown (non-elastic)

    channels, which preferably remove some flux and reduce the elastically scattered flux. The

    relevant model, called the optical model, is found to be phenomenological suitable for

    measuring the elastic scattering.

    Nucleus-Nucleus potential mainly consists of an absorptive well followed by a barrier.

    This structure is generated by nuclear potential, centrifugal potential and coulomb potential. The

    role of barrier is important in nuclear fusion. The absorptive region with barrier gives information

    about elastic scattering.

    In this report, we have taken a one-dimensional rectangular barrier with constant

    imaginary part. It gives some information about the missing flux during transmission of particle

    through the rectangular barrier. In the section-I, we have calculated transmission, reflection and

    absorption co-efficient. In section-II, we have analyzed the result with the help of MATLAB

    Programming. Section-III contains conclusion.

  • 7/31/2019 Barrier Draft2

    3/26

    3

    SECTION-I:

    Formulation:

    Consider the potential on shown in the figure V(x).

    V0

    I II III

    x=0 x=a

    -w 0

    V(x) = -i ; 0< x< a=0 ; xa

    The Particle is incident from left of the barrier, the corresponding Schrodinger equations are given

    by

    +

    =0 (for xa) (3)

    Where, and are the corresponding wavefunction in the region I, II, and III respectively;m = mass of the particle,

    E = energy of the particle and E>v

    Equation-(1) can be written as,

    + = 0 .. (4)

    Where; =

  • 7/31/2019 Barrier Draft2

    4/26

    4

    The solution of the above equation

    = +B (5)Equation-2 can be written as,

    + =0 (6)

    Where; = (E- + ) (7)The solution of the above equation is

    =C + .. (8)The equation (3) can be written as,

    + = 0 (9)

    Where= EThe solution of equation is

    = Fe+GeLet us take G= 0 because the par t i c le does not su f fer any r e f lec t ion f r om in f in i t y .

    = Fe ... (10)Now by using boundary condition at x=0 and x=a.

    i.e.

    x= 0 = x= o ..

    (11)

    x=0 =

    x=0 . (12)

    x=a = x=a (13) x=a =

    x=a (14)

    We get,

  • 7/31/2019 Barrier Draft2

    5/26

    5

    C= (1+

    ) Fe

    e ............................... (15)

    D=(1-

    ) Fe

    e ...................................... (16)

    B=

    (

    )

    [() ]

    ....................... (17)

    And

    F=() (

    )

    [() () () ]

    .. (18 )

    Reflection Co-efficient = R = =

    J=

    J= | B |

    So, R=| B | .. (19)

    Transmission co-efficient, T=

    T=

    J= | F|

    T=| F| .. (20)

    Case-I: (w = 0 , Real potential case):

    The Schrodinger equation in region-II becomes,

    +

    ( E v)=0 .. (21)

    The equation of continuity or equation for conservation of particle flux is

    . J + = 0 (22)

    I n 1 D

  • 7/31/2019 Barrier Draft2

    6/26

    6

    +

    = 0 . (23)

    Where

    J=current density

    =position probability density = || But we are analyzing the stationary state solution i.e. is independent of times, we get

    =

    || = 0 .... (24)

    Equation for continuity for 1D stationary state solution is

    = 0 .... (25)

    Or J=constant.

    This indicates the total particle flux remain conserved.

    Flux incident = flux reflected + flux transmitted.

    =

    | B |

    + | F|

    1 = R

    + T

    (26)

    CASE-II: w is finite:

    The current density is defined as

    J =

    []In 1D

    J =

    [

    ] . (27)

    Differentiating the above equation w.r.t x we get

    =

    [

    ]

  • 7/31/2019 Barrier Draft2

    7/26

    7

    By using equation (2) and its conjugate equation, we have

    =

    w ||

    We know w >0, so the right hand side quantity is less than zero. It indicates that some loss ofparticle flux during transmission through the complex barrier.

    J = w ||

    d x

    Absorption co-efficient (A ) =| || | =

    ||

    d x . (28)

    By using equation (8)

    || d x = [ | C|

    + | D|

    + DC

    + CD(

    )

    ] (29)

    Where = + i > 0 > 0

    C and D are calculated by using equation (15) and (16).

    Hence the absorption co-efficient for a complex barrier transmission is calculated by using

    equation(29).

    Now one can check analytically that

    R + T < 1

    1-R-T = A (30)

    In the section II, we have shown that the A calculated by using equation (29) and (30) are equal.

  • 7/31/2019 Barrier Draft2

    8/26

    8

    SECTION-II: (Computation with MATLAB)

    (I)M ATLAB SCRIPT FOR Rc& Tc FOR REAL BARRIER

    function energyvariation_real

    m=1;h=1;e=[0:10:200];a=1.5;v0=4;w0=0.0;k=sqrt(e);alpha=sqrt(e-v0+i*w0);q=(1-k./alpha).^2;p=(1+k./alpha).^2;b=((1-e./alpha.^2).*(1-exp(-2*i.*alpha.*a)))./(p.*exp(-2*i.*alpha.*a)-q);disp('displaying the value of b:');disp(b);f=(q-p)./((exp(i.*(k+alpha).*a).*(q))-(exp(i.*(k-alpha).*a).*(p)));disp('displaying the value of f:');disp(f);r=(abs(b)).^2;disp('displaying the value of Reflection coefficient R:');disp(r');t=(abs(f)).^2;disp('displaying the value of Transmission coefficient T:');disp(t');disp('displaying the value of R+T:');disp((r+t)');plot(e,t,'r');hold on;

    plot(e,r,'g');hold on;legend ('T','R')xlabel('E[fm^-2]');ylabel('T,R');title('R & T with varing energy for real barrier');end

    TABLE-I:

    e= [0:10:200]; a=1.5; v0=4; w0=0.0;

    Energy in fm ^{-2} Reflect ion coeff icient Rc: Transm ission coeff icient Tc: Rc+Tc:

    0.0 1.0000 0 1.0000

    10.0 0.0169 0.9831 1.0000

    20.0 0.0010 0.9990 1.0000

    30.0 0.0049 0.9951 1.0000

    40.0 0.0005 0.9995 1.0000

    50.0 0.0008 0.9992 1.0000

    60.0 0.0011 0.9989 1.0000

  • 7/31/2019 Barrier Draft2

    9/26

    9

    70.0 0.0001 0.9999 1.0000

    80.0 0.0002 0.9998 1.0000

    90.0 0.0005 0.9995 1.0000

    100.0 0.0003 0.9997 1.0000

    110.0 0.0000 1.0000 1.0000

    120.0 0.0001 0.9999 1.0000

    130.0 0.0002 0.9998 1.0000

    140.0 0.0002 0.9998 1.0000

    150.0 0.0001 0.9999 1.0000

    160.0 0.0000 1.0000 1.0000

    170.0 0.0000 1.0000 1.0000

    180.0 0.0001 0.9999 1.0000

    190.0 0.0001 0.9999 1.0000

    200.0 0.0001 0.9999 1.0000

    [Figure 1: Plot of Transmission coefficient and Reflection coefficient as a function of energy for a real

    barrier]

  • 7/31/2019 Barrier Draft2

    10/26

    10

    (II) MATLAB SCRIPT FOR RC, Tc, A FOR COMPLEX BARRIER:

    function barrierenergy_varitionm=1;h=1;%we have choosen constant parameters as 1.

    a=2;v0=2; %we can choose our required potential height.w0=1;%we can choose our required absorption strength.e=[0:0.005:10];alpha=sqrt(e-v0+i*w0);k=sqrt(e);p=(1+k./alpha).^2;q=(1-k./alpha).^2;b=((1-e./alpha.^2).*(1-exp(-2*i.*alpha.*a)))./(p.*exp(-2*i.*alpha.*a)-q);disp('displaying value of b');disp(b);disp('displaying the value of Reflection coefficient R:');r=(abs(b)).^2;

    disp(r');f=(q-p)./((exp(i.*(k+alpha).*a).*(q))-(exp(i.*(k-alpha).*a).*(p)));disp('displaying value of f');disp(f);disp('displaying the value of Transmission coefficient T:');t=(abs(f)).^2;disp(t');disp('displaying the value of R+T:');disp((r+t)');plot(e,t,'r');hold on;plot(e,r,'b');hold on;A=1-r-t;

    disp(A');plot(e,A,'g');hold on;legend('T','R','A');xlabel('E[fm^-2]');ylabel('T/,R/,A');title('Variation of R,T,A with variation of energy');end

  • 7/31/2019 Barrier Draft2

    11/26

    11

    Figure 2: Plot of T, R and A as a function of Energy (E) for fixed value of W0=0.5 and V0=0.0.

  • 7/31/2019 Barrier Draft2

    12/26

    12

    [Figure 3: Plot of T, R and A as a function of Energy (E) for fixed value of W0=1.0 and V0=0.0]

  • 7/31/2019 Barrier Draft2

    13/26

    13

    Figure 4: Plot of T, R and A as a function of Energy (E) for fixed value of W0=0.5 and V0=2.0

  • 7/31/2019 Barrier Draft2

    14/26

    14

    Figure 5: Plot of T, R and A as a function of Energy (E) for fixed value of W0=1.0 and V0=2.0

  • 7/31/2019 Barrier Draft2

    15/26

    15

    MATLAB SCRIPT FOR VARIATION OF RC, Tc, A WITH W0, E AND V0 FOR COMPLEX

    BARRIER

    (a)

    %VARIATION OF R,T ,A WITH ABSORPTION STRENGTHfunction absorptionstrength_varitionm=1;h=1;%we have choosen constant parameters as 1.a=2;v0=0;e=3.8;w0=[0:0.01:100];alpha=sqrt(e-v0+i.*w0);k=sqrt(e);p=(1+k./alpha).^2;q=(1-k./alpha).^2;b=((1-e./alpha.^2).*(1-exp(-2*i.*alpha.*a)))./(p.*exp(-2*i.*alpha.*a)-q);disp('displaying value of b');disp(b);disp('displaying the value of Reflection coefficient R:');r=(abs(b)).^2;disp(r');f=(q-p)./((exp(i.*(k+alpha).*a).*(q))-(exp(i.*(k-alpha).*a).*(p)));disp('displaying value of f');disp(f);disp('displaying the value of Transmission coefficient T:');t=(abs(f)).^2;disp(t');disp('displaying the value of R+T:');

    disp((r+t)');plot(w0,t,'r');hold on;plot(w0,r,'b');hold on;disp('displaying the value of A:');A=1-r-t;disp(A');plot(w0,A,'g');hold on;legend('T','R','A');xlabel('W0[fm^-2]');ylabel('T/,R/,A');title('R,T,A with variation of absorption strength wo');end

  • 7/31/2019 Barrier Draft2

    16/26

    16

    Figure 6: Plot of T, R and A as a function of W0 for fixed value of E=3.8 and V0=0.0

  • 7/31/2019 Barrier Draft2

    17/26

    17

    Figure 7: Plot of T, R and A as a function of W0 for fixed value of E=3.8 and V0=2.0

  • 7/31/2019 Barrier Draft2

    18/26

    18

    (b)

    %VARIATION OF R,T,A WITH ENERGY Efunction barrierenergy_varitionm=1;h=1;%we have choosen constant parameters as 1.a=2;v0=2;w0=0.5;%we can choose our required absorption strength.e=[0:0.005:10];alpha=sqrt(e-v0+i*w0);k=sqrt(e);p=(1+k./alpha).^2;q=(1-k./alpha).^2;b=((1-e./alpha.^2).*(1-exp(-2*i.*alpha.*a)))./(p.*exp(-2*i.*alpha.*a)-q);disp('displaying value of b');disp(b);disp('displaying the value of Reflection coefficient R:');r=(abs(b)).^2;disp(r');f=(q-p)./((exp(i.*(k+alpha).*a).*(q))-(exp(i.*(k-alpha).*a).*(p)));disp('displaying value of f');disp(f);disp('displaying the value of Transmission coefficient T:');t=(abs(f)).^2;disp(t');disp('displaying the value of R+T:');

    disp((r+t)');plot(e,t,'r');hold on;plot(e,r,'b');hold on;A=1-r-t;disp(A');plot(e,A,'g');hold on;legend('T','R','A');xlabel('E[fm^-2]');ylabel('T/,R/,A');title('Variation of R,T,A with variation of energy');end

    (c)%VARIATION OF R,T,A WITH POTENTIAL V0function potential_varitionm=1;h=1;%we have choosen constant parameters as 1.a=2;w0=0.05;e=3.8;v0=[0:1:100];

  • 7/31/2019 Barrier Draft2

    19/26

    19

    alpha=sqrt(e-v0+i.*w0);k=sqrt(e);p=(1+k./alpha).^2;q=(1-k./alpha).^2;b=((1-e./alpha.^2).*(1-exp(-2*i.*alpha.*a)))./(p.*exp(-2*i.*alpha.*a)-q);%disp('displaying value of b');%disp(b);disp('displaying the value of Reflection coefficient R:');r=(abs(b)).^2;disp(r');f=(q-p)./((exp(i.*(k+alpha).*a).*(q))-(exp(i.*(k-alpha).*a).*(p)));%disp('displaying value of f');%disp(f);disp('displaying the value of Transmission coefficient T:');t=(abs(f)).^2;disp(t');disp('displaying the value of R+T:');disp((r+t)');plot(v0,t,'r');hold on;

    plot(v0,r,'b');hold on;disp('displaying the value of A:');A=1-r-t;disp(A');plot(v0,A,'g');hold on;legend('T','R','A');xlabel('v0[fm^-2]');ylabel('T/,R/,A');title('R,T,A with variation of barrier potential Vo');end

    SECTION-III:

    TABLE-II:

    DATA FOR POTENTIAL VARIATION (Absorptive Barrier)

    a=2; w0=0.05; e=3.8; v0= [0:1:100]Reflect ion coeff ic ient

    Rc:

    Transmission

    coeff ic ient Tc:

    Rc + Tc Absorp t ion

    coeff ic ient(A r )Rc + T c + A r

    0.0000 0.9500 0.9500 0.0500 1.0000

    0.0009 0.9410 0.9419 0.0581 1.00000.0258 0.8964 0.9222 0.0778 1.0000

    0.3778 0.5349 0.9127 0.0873 1.0000

    0.7984 0.1461 0.9445 0.0555 1.0000

    0.9326 0.0349 0.9675 0.0325 1.0000

    0.9690 0.0096 0.9786 0.0214 1.0000

    0.9816 0.0030 0.9846 0.0154 1.0000

    0.9871 0.0011 0.9882 0.0118 1.0000

  • 7/31/2019 Barrier Draft2

    20/26

    20

    0.9901 0.0004 0.9905 0.0095 1.0000

    0.9920 0.0002 0.9922 0.0078 1.0000

    0.9933 0.0001 0.9934 0.0066 1.0000

    0.9943 0.0000 0.9943 0.0057 1.0000

    0.9951 0.0000 0.9951 0.0049 1.0000

    0.9956 0.0000 0.9956 0.0044 1.00000.9961 0.0000 0.9961 0.0039 1.0000

    0.9965 0.0000 0.9965 0.0035 1.0000

    0.9968 0.0000 0.9968 0.0032 1.0000

    0.9971 0.0000 0.9971 0.0029 1.0000

    0.9974 0.0000 0.9974 0.0026 1.0000

    0.9976 0.0000 0.9976 0.0024 1.0000

    0.9978 0.0000 0.9978 0.0022 1.0000

    0.9979 0.0000 0.9979 0.0021 1.0000

    0.9981 0.0000 0.9981 0.0019 1.0000

    0.9982 0.0000 0.9982 0.0018 1.0000

    0.9983 0.0000 0.9983 0.0017 1.00000.9984 0.0000 0.9984 0.0016 1.0000

    0.9985 0.0000 0.9985 0.0015 1.0000

    0.9986 0.0000 0.9986 0.0014 1.0000

    0.9987 0.0000 0.9987 0.0013 1.0000

    0.9987 0.0000 0.9987 0.0013 1.0000

    0.9988 0.0000 0.9988 0.0012 1.0000

    0.9989 0.0000 0.9989 0.0011 1.0000

    0.9989 0.0000 0.9989 0.0011 1.0000

    0.9990 0.0000 0.9990 0.0010 1.0000

    0.9990 0.0000 0.9990 0.0010 1.0000

    0.9990 0.0000 0.9990 0.0010 1.00000.9991 0.0000 0.9991 0.0009 1.0000

    0.9991 0.0000 0.9991 0.0009 1.0000

    0.9992 0.0000 0.9992 0.0008 1.0000

    0.9992 0.0000 0.9992 0.0008 1.0000

    0.9992 0.0000 0.9992 0.0008 1.0000

    0.9992 0.0000 0.9992 0.0008 1.0000

    0.9993 0.0000 0.9993 0.0007 1.0000

    0.9993 0.0000 0.9993 0.0007 1.0000

    0.9993 0.0000 0.9993 0.0007 1.0000

    0.9993 0.0000 0.9993 0.0007 1.0000

    0.9994 0.0000 0.9994 0.0006 1.00000.9994 0.0000 0.9994 0.0006 1.0000

    0.9994 0.0000 0.9994 0.0006 1.0000

    0.9994 0.0000 0.9994 0.0006 1.0000

    0.9994 0.0000 0.9994 0.0006 1.0000

    0.9995 0.0000 0.9995 0.0005 1.0000

    0.9995 0.0000 0.9995 0.0005 1.0000

    0.9995 0.0000 0.9995 0.0005 1.0000

  • 7/31/2019 Barrier Draft2

    21/26

    21

    0.9995 0.0000 0.9995 0.0005 1.0000

    0.9995 0.0000 0.9995 0.0005 1.0000

    0.9995 0.0000 0.9995 0.0005 1.0000

    0.9995 0.0000 0.9995 0.0005 1.0000

    0.9996 0.0000 0.9996 0.0004 1.0000

    0.9996 0.0000 0.9996 0.0004 1.00000.9996 0.0000 0.9996 0.0004 1.0000

    0.9996 0.0000 0.9996 0.0004 1.0000

    0.9996 0.0000 0.9996 0.0004 1.0000

    0.9996 0.0000 0.9996 0.0004 1.0000

    0.9996 0.0000 0.9996 0.0004 1.0000

    0.9996 0.0000 0.9996 0.0004 1.0000

    0.9996 0.0000 0.9996 0.0004 1.0000

    0.9996 0.0000 0.9996 0.0004 1.0000

    0.9997 0.0000 0.9997 0.0003 1.0000

    0.9997 0.0000 0.9997 0.0003 1.0000

    0.9997 0.0000 0.9997 0.0003 1.00000.9997 0.0000 0.9997 0.0003 1.0000

    0.9997 0.0000 0.9997 0.0003 1.0000

    0.9997 0.0000 0.9997 0.0003 1.0000

    0.9997 0.0000 0.9997 0.0003 1.0000

    0.9997 0.0000 0.9997 0.0003 1.0000

    0.9997 0.0000 0.9997 0.0003 1.0000

    0.9997 0.0000 0.9997 0.0003 1.0000

    0.9997 0.0000 0.9997 0.0003 1.0000

    0.9997 0.0000 0.9997 0.0003 1.0000

    0.9997 0.0000 0.9997 0.0003 1.0000

    0.9997 0.0000 0.9997 0.0003 1.00000.9997 0.0000 0.9997 0.0003 1.0000

    0.9997 0.0000 0.9997 0.0003 1.0000

    0.9997 0.0000 0.9997 0.0003 1.0000

    0.9998 0.0000 0.9998 0.0002 1.0000

    0.9998 0.0000 0.9998 0.0002 1.0000

    0.9998 0.0000 0.9998 0.0002 1.0000

    0.9998 0.0000 0.9998 0.0002 1.0000

    0.9998 0.0000 0.9998 0.0002 1.0000

    0.9998 0.0000 0.9998 0.0002 1.0000

    0.9998 0.0000 0.9998 0.0002 1.0000

    0.9998 0.0000 0.9998 0.0002 1.00000.9998 0.0000 0.9998 0.0002 1.0000

    0.9998 0.0000 0.9998 0.0002 1.0000

    0.9998 0.0000 0.9998 0.0002 1.0000

    0.9998 0.0000 0.9998 0.0002 1.0000

    0.9998 0.0000 0.9998 0.0002 1.0000

    0.9998 0.0000 0.9998 0.0002 1.0000

    0.9998 0.0000 0.9998 0.0002 1.0000

  • 7/31/2019 Barrier Draft2

    22/26

    22

    Figure 8: Plot of T, R and A as a function of V0 for fixed value of E=3.8 and W0=0.0

  • 7/31/2019 Barrier Draft2

    23/26

    23

    Figure 9: Plot of T, R and A as a function of V0 for fixed value of E=3.8 and W0=0.05

  • 7/31/2019 Barrier Draft2

    24/26

    24

    Figure 10: Plot of T, R and A as a function of V0 for fixed value of E=3.8 and W0=0.5

  • 7/31/2019 Barrier Draft2

    25/26

    25

    Results and discussion:

    In figure-1, the transmission co-efficient (T) and Reflection co-efficient (R) are plotted against the

    energy of the particle (E) for a real barrier with width a=1.5 fm and height V0=4 fm-2

    . The variation

    of T and R with E are as usual up to the barrier height when energy increases sharply above the

    barrier then T=1.0 and R=0.0. That means particle is free from potential influence.

    In figure-2, the transmission co-efficient (T), Reflection co-efficient (R) and Absorption co-

    efficient (A) are plotted against the energy of the particle (E) for a complex barrier with width a=2.0

    fm, height V0=0 fm-2

    and absorption strength W0=0.5 fm-2

    . At low energies the T, R and A are

    effective. Reflection is almost zero for higher energies. Absorption co-efficient is peaking at a

    particular energy for W0=0.5 fm-2

    . Then A gradually decreases for higher energies. Transmission is

    affected by W0 in the low energy region then it increases slowly from low energy to high energy.

    In figure 3, we have plotted a similar plot to figure 2 but with W 0=1.0 fm-2. Here the nature of T, R

    and A are similar to figure 2 but the Absorption is more and T and R both are less in comparison

    with the figure 2.

    Again, in figure-4, T, R and A are plotted as a function of E for a complex barrier with width a=2.0

    fm, height V0=2.0 fm-2

    and absorption strength W0=0.5 fm-2

    . In comparison with figure-2, the peak

    of A is shifted and Reflection is more in low energies. If W0 increases from0.5 fm-2

    to 1.0 fm-2

    then

    it will affect the transmission and absorption more in comparison to reflection. This is shown in

    figure-5.

    In figure-6, T,R and A are plotted as a function of W0 for a complex barrier with width a=2.0 fm,

    height V0=0.0 fm-2

    and energy of the particle E=3.8 fm-2

    . If W0 increases from zero then gradually

    the maximum absorption occurs for a specific value of W0 further increase reduces the absorption in

    a slow rate. Here, T decreases with increase in W0. In figure-7, we have plotted the same plot with

    V0=2.0 fm-2

    . T and A decrease with increase in barrier height but R increases with the same.

  • 7/31/2019 Barrier Draft2

    26/26

    In figure-8, T, R, A are plotted as a function of V0 for a complex barrier with width a=2.0 fm,

    strength W0=0.0 fm-2

    and energy of the particle E=3.8 fm-2

    . So variation is visible in the plot from

    0.0 to V0=E. After that R=1.0 and T=0.0. Absorption co-efficient A is zero. (W0=0.0). Now,

    increase the W0 from 0.0 to 0.05 and 0.5 while all other parameters are fixed. In this case T

    decreases but A increases in the low energy region. This is shown in figure-9 and figure-10.

    References:

    1. Quantum Mechanics, Joachain

    2. Quantum Mechanics, Ghatak & Lokanathan

    3. Introduction to Quantum Mechanics, D.J.Griffith

    4. Quantum Mechanics, V.Devanathan

    5. Mathematical Methods for Physicist, Arfken&Weber.


Recommended