+ All Categories
Home > Documents > Basic concepts and challenges of remote sensing · 2013. 7. 9. · IGSSE Forum Raitenhaslach, 26...

Basic concepts and challenges of remote sensing · 2013. 7. 9. · IGSSE Forum Raitenhaslach, 26...

Date post: 05-Feb-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
24
IGSSE Forum Raitenhaslach, 26 June 2013 Basic concepts and challenges of remote sensing Peter Gege DLR, Earth Observation Center, Institut für Methodik der Fernerkundung, Oberpfaffenhofen, 82234 Wessling with contributions from Richard Bamler, Michael Eineder
Transcript
  • IGSSE Forum Raitenhaslach, 26 June 2013

    Basic concepts and challenges of remote sensing

    Peter Gege

    DLR, Earth Observation Center, Institut für Methodik der Fernerkundung, Oberpfaffenhofen, 82234 Wessling

    with contributions from

    Richard Bamler, Michael Eineder

  • Definition: Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object. In modern usage, the term generally refers to the use of aerial or satellite sensor technologies to detect and classify objects on Earth (in the atmosphere, on the surface, in water).

    www.DLR.de • Chart 2 > Remote Sensing > P. Gege > 26.6.2013

    Sputnik 1

    Remote sensor

    What is Remote Sensing?

  • www.DLR.de • Chart 3

    Remote sensing of most atmospheric components makes use of their absorption properties. Remote sensing of the Earth surface from satellite is restricted to the atmospheric windows.

    Useful Wavelengths

    Paul R. Baumann (2010). http://www.oneonta.edu/faculty/baumanpr/geosat2/RS-Introduction/RS-Introduction.html

    > Remote Sensing > P. Gege > 26.6.2013

    Bands

    K X C S L P

  • www.DLR.de • Chart 4

    Paul R. Baumann (2010). http://www.oneonta.edu/faculty/baumanpr/geosat2/RS-Introduction/RS-Introduction.html

    1418 1419 1420 1421 1422

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Tran

    smitt

    ance

    Wavenumber/cm-1

    Column density/cm-2

    #22 1.93x1017

    #23 1.09x1018

    #24 4.62x1018

    #25 1.03x1019

    #26 3.89x1019

    #27 1.28x1020

    #28 2.56x1020

    FT spectrometer at DLR

    Useful Wavelengths H20

    Atmospheric components Remote sensing requires detailed knowledge of optical properties

    > Remote Sensing > P. Gege > 26.6.2013

  • www.DLR.de • Chart 5

    Example: Microwave Humidity Sounder (MHS) on MetOp-A

    Derives a 3D picture of atmospheric humidity (5 channels ↔ 5 altitudes)

    Data acquired over one complete satellite orbit Channel 1 (89 GHz = 3 mm)

    Water vapour concentration

    > Remote Sensing > P. Gege > 26.6.2013

  • O3 tot.

    NO2 tot.

    NO2 trop.

    SO2

    HCHO

    BrO

    H2O

    Clouds

    2007

    -

    201

    2

    Products 24/7

    2h NRT

    Example: Global Ozone Monitoring Experiment-2 (GOME-2) on MetOp-A

    Long-term monitoring of atmospheric trace gas constituents

    www.DLR.de • Chart 6 > Remote Sensing > P. Gege > 26.6.2013

  • 7

    1970-1979 1980-1989 1990-1999 2000-2009 2040-2049

    Mod

    el

    Sate

    llite

    Example: Monitoring and Prediction of the Ozone Layer

    www.DLR.de • Chart 7 > Remote Sensing > P. Gege > 26.6.2013

  • www.DLR.de • Chart 8

    Useful Wavelengths

    Paul R. Baumann (2010). http://www.oneonta.edu/faculty/baumanpr/geosat2/RS-Introduction/RS-Introduction.html

    Bands

    K X C S L P

    Earth surface Remote sensing can utilize the atmospheric windows Information is derived from geometry, surface structure, spectral properties, penetration depth

    > Remote Sensing > P. Gege > 26.6.2013

  • Example: Digital Elevation Model from Stereo Images

    3D model of London derived from 5 viewing angles

    > Remote Sensing > P. Gege > 26.6.2013 www.DLR.de • Chart 9

  • Example: Bathymetry from Ocean Wave Patterns

    Water depth near coastline, used e.g. to predict tsunami propagation

    www.DLR.de • Chart 10 > Remote Sensing > P. Gege > 26.6.2013

    http://en.wikipedia.org/wiki/File:TerraSARX_Logo.png

  • Example: Biological Parameters from Spectral Properties

    Temporal development of plant productivity

    www.DLR.de • Chart 11 > Remote Sensing > P. Gege > 26.6.2013

  • www.DLR.de • Chart 12

    Useful Wavelengths

    Paul R. Baumann (2010). http://www.oneonta.edu/faculty/baumanpr/geosat2/RS-Introduction/RS-Introduction.html

    > Remote Sensing > P. Gege > 26.6.2013

    Water constituents Water is transparent only in the visible and near UV

  • Example: Chlorophyll and Suspended Matter

    Results of an airborne campaign in Lake Constance (Bodensee)

    > Remote Sensing > P. Gege > 26.6.2013 www.DLR.de • Chart 13

    Chlorophyll (µg/l) Suspended matter (mg/l)

    T. Heege (2000): Flugzeuggestützte Fernerkundung von Wasserinhaltsstoffen am Bodensee. Dissertation. DLR-Forschungsbericht 2000-40, 141 Seiten

    T. Heege, J. Fischer (2004): Mapping of water constituents in Lake Constance using multispectral airborne scanner data. Can. J. Remote Sensing, Vol. 30, No. 1, pp. 77–86

    Uncertainty: ± 20 % Uncertainty: ± 17 %

  • > Remote Sensing > P. Gege > 26.6.2013 www.DLR.de • Chart 14

    C. Häse, T. Heege (2003): A remote sensing algorithm for primary production in Lake Constance with special emphasis on the integration level. ENVOC Final Report, March 2003. T. Heege et al. (2003): Airborne multi-spectral sensing in Shallow and Deep waters. Backscatter Vol. 14, No.1, 17-19.

    Result based upon • P-I-curves from 15 years • Chlorophyll • Attenuation (from Chl, Y, SPM) • PAR

    mgC m-2 h-1 60 80 100 120 140

    Example: Primary productivity

    Results of an airborne campaign at Lake Constance (Bodensee)

  • Passive Sensors Passive sensors detect natural radiation that is emitted or reflected by the object or surrounding areas. Examples: CCD cameras, infrared sensors, imaging spectrometers.

    www.DLR.de • Chart 15

    Active Sensors The sensor emits radiation which is directed toward the target to be investigated. The radiation reflected from that target is detected and measured by the sensor. Examples: RADAR, LIDAR.

    Sensor Types

    > Remote Sensing > P. Gege > 26.6.2013

  • Example for passive sensors: Hyperspectral Sensors

    Imaging spectrometers allow spectroscopy by remote sensing

    Whiskbroom Scanner Simultaneously recorded: N channels = 1 spectrum

    Pushbroom Scanner Simultaneously recorded: N channels x M pixels = M spectra of 1 image line

    Airborne sensor ROSIS

    Airborne sensor HySpex

    www.DLR.de • Chart 16 > Remote Sensing > P. Gege > 26.6.2013

  • Atmosphere corrected with ATCOR-4 Inverse modeling with WASI-2D

    Water depth (m) CDOM concentration Absorption at 440 nm(1/m)

    Sunglint (1/sr)

    Typical spectrum of a single pixel

    CDOM type Spectral slope (1/nm)

    Example for Hyperspectral Applications

    Remote sensing of shallow water areas

    www.DLR.de • Chart 17 > Remote Sensing > P. Gege > 26.6.2013

  • Example for active sensors: TerraSAR-X and Tandem-L www.DLR.de • Chart 18 > Remote Sensing > P. Gege > 26.6.2013

  • Digital elevation model (Alaska)

  • Ice Thickness Changes from 2000 to 2011 South Patagonia Ice Field DEM difference: TanDEM-X (2011) – SRTM (2000)

    N

    +100

    -100

    0

    elevation change [m]

    www.DLR.de • Chart 20 > Remote Sensing > P. Gege > 26.6.2013

  • Subsidence in Venice www.DLR.de • Chart 21 > Remote Sensing > P. Gege > 26.6.2013

  • www.DLR.de • Chart 22

    Sensor development Sensor launch Sensor calibration Georeferencing Atmosphere correction Determination of optical properties Model development Inversion Validation ...

    Challenges of Remote Sensing ... all this must be done properly to get the shown nice results

    > Remote Sensing > P. Gege > 26.6.2013

    Modern Sysiphus by Dluho. toonpool.com

  • Develop sensors to answer specific questions Exploit information content of data sets

    Models “It is the theory that decides what can be observed.” (A. Einstein)

    www.DLR.de • Chart 23

    Concept of Remote Sensing

    > Remote Sensing > P. Gege > 26.6.2013

    Applications

    Technology

  • Models

    www.DLR.de • Chart 24

    Concept of Remote Sensing ... and of much more, maybe also of Shaping interdisciplinary processes?

    > Remote Sensing > P. Gege > 26.6.2013

    Applications

    Technology Thank you for your attention!

    M. C. Escher: Ascending and Descending

    Foliennummer 1Foliennummer 2Foliennummer 3Foliennummer 4Foliennummer 5Foliennummer 6Foliennummer 7Foliennummer 8Foliennummer 9Foliennummer 10Foliennummer 11Foliennummer 12Foliennummer 13Foliennummer 14Foliennummer 15Foliennummer 16Foliennummer 17Foliennummer 18Foliennummer 19Ice Thickness Changes from 2000 to 2011�South Patagonia Ice Field�DEM difference: TanDEM-X (2011) – SRTM (2000)��Foliennummer 21Foliennummer 22Foliennummer 23Foliennummer 24


Recommended