+ All Categories
Home > Documents > Basic Coordinate Systems Grid Systems

Basic Coordinate Systems Grid Systems

Date post: 13-Jan-2016
Category:
Upload: feivel
View: 50 times
Download: 4 times
Share this document with a friend
Description:
Basic Coordinate Systems Grid Systems. RG 620 May 09, 2013 Institute of Space Technology, Karachi. After projection it is necessary to set up a coordinate system on the map that will allow a point to be described in X-Y space (or northing and easting) - PowerPoint PPT Presentation
Popular Tags:
28
Basic Coordinate Systems Basic Coordinate Systems Grid Systems Grid Systems RG 620 May 09, 2013 Institute of Space Technology, Karachi
Transcript
Page 1: Basic Coordinate Systems Grid Systems

Basic Coordinate SystemsBasic Coordinate Systems

Grid SystemsGrid Systems

RG 620 May 09, 2013

Institute of Space Technology, Karachi

RG 620 May 09, 2013

Institute of Space Technology, Karachi

Page 2: Basic Coordinate Systems Grid Systems

Coordinate SystemsCoordinate Systems

• After projection it is necessary to set up a coordinate system on the map that will allow a point to be described in X-Y space (or northing and easting)

• To describe a location in a universally understandable manner a grid system is necessary

• For a useful grid it is necessary for it to define an origin and a uniform grid spacing

• There are several types of Coordinate System to represent the Earth’s surface

Page 3: Basic Coordinate Systems Grid Systems

Coordinate SystemsCoordinate Systems

• Some commonly used Coordinate Systems are:– Geographic

• Latitude and Longitudes are used– UTM

• Shape is preserved and precise measurements in meter– State Plane

• Local surveying (with minimum distortion)

Page 4: Basic Coordinate Systems Grid Systems

Geographic Coordinate System (WGS84 datum)

Page 5: Basic Coordinate Systems Grid Systems

Universal Transverse Mercator Universal Transverse Mercator Coordinate SystemCoordinate System

• Global coordinate system• Globe is divided into narrow longitude zones• Best used for north-south oriented areas (little

distortion in this direction)• Successive swaths of relatively undistorted regions

created by changing the orientation of the cylinder slightly

• These swaths are called UTM zones• Each zone is six degrees of longitude wide• Total 60 zones

Page 6: Basic Coordinate Systems Grid Systems

Universal Transverse Mercator Universal Transverse Mercator Coordinate SystemCoordinate System

• These zones are numbered from west to east• Zone 1 begins at the International Date Line

(1800 W), Zone 2 at 174°W and extends to 168°W

• Each Zone is further divided into Eastern and Western halves by drawing a center line called Central Meridian

• Zones are further split north and south of the equator

Page 7: Basic Coordinate Systems Grid Systems

Universal Transverse Mercator Universal Transverse Mercator Coordinate SystemCoordinate System

• At equator a zone is about 40,000/60 = 667 Km wide• Any point can be described by ‘Easting’ and ‘Northing’ values• Northing is the distance to the equator, while easting is the

distance to the "false easting", which is uniquely defined in each UTM zone

• The equator is used as the northing origin for all north zones (northing value of zero)

• South zones have a false northing value added to ensure all coordinates within a zone are positive

• For UTM south zones, the northing values at the equator are set to equal 10,000,000 meters

Page 8: Basic Coordinate Systems Grid Systems

UTM – Easting and NorthingUTM – Easting and Northing

Page 9: Basic Coordinate Systems Grid Systems
Page 10: Basic Coordinate Systems Grid Systems

Universal Transverse Mercator Universal Transverse Mercator Coordinate SystemCoordinate System

• Important thing to rememberCoordinate values are discontinuous acrossUTM zone boundaries, therefore, analyses aredifficult across zonal boundaries

Page 11: Basic Coordinate Systems Grid Systems

Horizontal ZoningHorizontal Zoning

• Latitudes are divided into zones lettered from A at the South Pole to Z at the North Pole

• Spacing is not regular throughout • A and B zones are within the south circle of 80 degrees• Zones Y and Z cover the north polar region north of 84 • Rest of the zones extend from 80 degrees south latitude to 84

degrees north latitude degrees• Zone X is 12 degrees wide (from 72 to 84 degrees North)• I and O not used• Rest of the zones are 8 degree wide• Zone M and N are just South and North of Equator

respectively

Page 12: Basic Coordinate Systems Grid Systems

UTM ZonesUTM Zones

Page 13: Basic Coordinate Systems Grid Systems

UTM ZonesUTM Zones

Page 14: Basic Coordinate Systems Grid Systems

UTM Zones - PakistanUTM Zones - Pakistan

Page 15: Basic Coordinate Systems Grid Systems

UTM – Finding Grid ZoneUTM – Finding Grid Zone

Finding Grid Zone for any Latitude• In calculation take west longitude as (-) negative and

east longitude as (+) positive• Add 180 and divide by 6• Round off the resultant value to the next higher

number• Example: Greenwich Prime Meridian is at ……..

Longitude?

Page 16: Basic Coordinate Systems Grid Systems

Measuring Distance DistortionMeasuring Distance Distortion

• Comparing map distance with the Great Circle Distance

• Remember the Example from Text Book where the Great Circle Distance between two point A and B was = 412.906 KM

• Identify coordinates of the equivalent points on UTM grid

• Calculate the distance between these points• Negative scale distortion when features are

compresses or reduced in size• Positive scale distortion when features are expanded

Page 17: Basic Coordinate Systems Grid Systems

Grid DistanceGrid Distance

Page 18: Basic Coordinate Systems Grid Systems

State Plane Coordinate State Plane Coordinate (SPC) Systems(SPC) Systems

• Standard set of projections for the United States developed in 1930’s

• Specifies positions in Cartesian coordinate systems for each state

• Used for local surveying and engineering applications• Points are projected from their geodetic latitudes

and longitudes to x and y coordinates in the State Plane systems

• Conformal mapping system for US with a maximum scale distortion of one part in 10,000

Page 19: Basic Coordinate Systems Grid Systems

State Plane Coordinate State Plane Coordinate SystemsSystems

• Large states are divided into zones to limit distortion error and maintain said accuracy

• One or more zones in each state with slightly different projection in each zone

• Boundaries of zones follow state and county lines• The number of zones in each state is determined by

the area the state covers • The number of zones ranges from 1 to 10 (in Alaska)• Each zone has a unique central meridian

Page 20: Basic Coordinate Systems Grid Systems

State Plane Coordinate SystemsState Plane Coordinate Systems

• Zones have different projections– Lambert Conformal Conic: for states that are longer east–

west, such as Tennessee, Kentucky, North Carolina, Virginia, etc.

– Transverse Mercator projection: for states that are longer north–south, such as Illinois, Arizona, New Hampshire, etc.

– The Oblique Mercator projection: for the panhandle of Alaska (AK zone 1) because it lays at an angle

Page 21: Basic Coordinate Systems Grid Systems

State Plane 1927 vs. 1983State Plane 1927 vs. 1983

• Originally based on the North American Datum of 1927 and the measurement unit was feet

• Now being converted to North American Datum of 1983 (NAD83) (will use meters as unit of measure)

• Due to datum change some zones are redefined

Page 22: Basic Coordinate Systems Grid Systems

State Plane Zone Boundaries State Plane Zone Boundaries

NAD83

Page 23: Basic Coordinate Systems Grid Systems

Alaska State Plane ZonesAlaska State Plane Zones

Page 24: Basic Coordinate Systems Grid Systems

Variation between Datums

Reference: David Corner

Page 25: Basic Coordinate Systems Grid Systems

Reference: David Conner National Geodetic Survey, 2003

Page 26: Basic Coordinate Systems Grid Systems
Page 27: Basic Coordinate Systems Grid Systems

Conversion Among Coordinate SystemsConversion Among Coordinate Systems

Page 28: Basic Coordinate Systems Grid Systems

ReferencesReferences

– http://www.ncgia.ucsb.edu/giscc/units/u013/u013_f.html– http://geography.about.com/od/locateplacesworldwide/a/latitude.htm– http://webhelp.esri.com/arcgisdesktop/9.2/– http://www.uwgb.edu/DutchS/FieldMethods/UTMSystem.htm

– Images: • Peter H. Dana, Department of Geography, The University of Texas at Austin• http://upload.wikimedia.org/wikipedia/commons/a/ab/WorldMapLongLat-eq-

circles-tropics-non.png• http://www.ncgia.ucsb.edu/education/curricula/giscc/units/u013/figures/

figure10.gif • http://www.ncgia.ucsb.edu/giscc/units/u013/u013_f.html • http://www.worldatlas.com/aatlas/imageg.htm• http://www-istp.gsfc.nasa.gov/stargaze/Slatlong.htm• http://www.esri.com/news/arcuser/0703/geoid1of3.html


Recommended