+ All Categories
Home > Documents > Basic Detection Techniques

Basic Detection Techniques

Date post: 03-Jan-2016
Category:
Upload: rahim-sampson
View: 41 times
Download: 0 times
Share this document with a friend
Description:
Basic Detection Techniques. Detector. More than ‘sensing device’ Measuring ‘Meten is weten’ Meta information Counting vs analog. Poisson. Gaussian. Accuracy. Distribution: stochastic measurement process only ==Precision Accuracy -> no systematic Hubble Target shooting. Statistics. - PowerPoint PPT Presentation
66
wnb060905 BDT-I 1 Basic Detection Techniques
Transcript
Page 1: Basic Detection Techniques

wnb060905 BDT-I 1

Basic DetectionTechniques

Page 2: Basic Detection Techniques

wnb060905 BDT-I 2

Detector

• More than ‘sensing device’

• Measuring– ‘Meten is weten’

• Meta information• Counting vs analog

Nrms

Page 3: Basic Detection Techniques

wnb060905 BDT-I 3

Poisson

Page 4: Basic Detection Techniques

wnb060905 BDT-I 4

Gaussian

Page 5: Basic Detection Techniques

wnb060905 BDT-I 5

Accuracy

• Distribution: stochastic measurement process only

• ==Precision

• Accuracy -> no systematic– Hubble– Target shooting

Page 6: Basic Detection Techniques

wnb060905 BDT-I 6

Statistics

• Mean• Variance• Chi-squared• Median

n i

n i

n i

xsquaredchi

xxn

var

xn

xmean

22

22 var)(sample 1

1

Page 7: Basic Detection Techniques

wnb060905 BDT-I 7

Moments

Central moments

?0

0

1

3

22

1

0

dxxfxxk

k

• skewness

Page 8: Basic Detection Techniques

wnb060905 BDT-I 8

Systematic errors

• Instrument environment widest sense– Coal – Parallax– Gaia

• Gal rotation• Pressure

• Model -> none

• Outliers

Page 9: Basic Detection Techniques

wnb060905 BDT-I 9

Modelling

• Solve

• L2 (least-squares)

• L1 (outliers)

Page 10: Basic Detection Techniques

wnb060905 BDT-I 10

(In)direct

• Direct– Raindrops– Planet directly

• Indirect– Crop size– ‘systematic’ movement of Centre of G.

• ‘Test particle’

Page 11: Basic Detection Techniques

wnb060905 BDT-I 11

Measurables

• EM waves

• Neutrinos

• Matter (nuclei -> meteorites & space craft)

• Gravitational waves (<=c)

Page 12: Basic Detection Techniques

wnb060905 BDT-I 12

Neutrinos

e

e

enp

epn

Weak interaction: electron

neutrinos

Strong interactionTau & muon

neutrinos

Page 13: Basic Detection Techniques

wnb060905 BDT-I 13

Neutrinos 2

• Long pathlength -> memory

• 1931: Pauli – 1959: e – 1962: new muon

• Indirect

• Icecube

• Ocean

• Moon

Page 14: Basic Detection Techniques

wnb060905 BDT-I 14

Neutrino 3

• Solar problem

• 1987 SN -> 19 neutrinos (water, proton decay)

• 50000 tons; 11000 PMT (50cm)

• Mass < 2.2eV

                                                                          

                                       

Page 15: Basic Detection Techniques

wnb060905 BDT-I 15

Cherenkov

Page 16: Basic Detection Techniques

wnb060905 BDT-I 16

GW

• 10-38 weaker than EM force

• Transparant universe• Tensor (cf vector and

potential)• Helicity +-2 (+-1)

Page 17: Basic Detection Techniques

wnb060905 BDT-I 17

GW 2• Direct resonant

– Block > 1 ton Al; eigen freq. 1.5Hz– Coincident

• Direct non-resident– Michelson between 2 blocks (multiple reflections)

• Interferometer• LISA, in 2015 5Gm long 3.• Indirect: (but questioned again)

– dP/dt decay in binary pulsar.– Calculated: -2.403(0.002) 10-12 ss-1

– Observed -2.4 (0.09) 10-12 ss-1

Page 18: Basic Detection Techniques

wnb060905 BDT-I 18

Matter

• Cosmic Rays (later lecture)– Pierre Auger (AR) + Northern– LOFAR

• Meteorites -> history

• Returning spacecraft

Page 19: Basic Detection Techniques

wnb060905 BDT-I 19

EM radiation

• Energy == wavelength == frequency• Flux• Time variation • Spatial dependence• Polarisation:

– Only ‘directional’ measurement (magnetic field)

• Resolution in all:– Uncertainty – ‘aperture’

Page 20: Basic Detection Techniques

wnb060905 BDT-I 20

EM radiation

),,,,( mltf

V

U

Q

I

•Not all simultaneous -- choose

Page 21: Basic Detection Techniques

wnb060905 BDT-I 21

Spectrum

Page 22: Basic Detection Techniques

wnb060905 BDT-I 22

• 21 cm = 1420 MHz [Hyperfine line, HI]• 1 cm = 30 GHz• 1 mm = 300 GHz = 1000μm• 1 μm = 1000 nm• 550 nm = 5.5 × 1014 Hz [V band centre]• 1 eV = 1.60 × 10−12 erg = 1240 nm• 13.6 eV = 91.2 nm [Lyman limit = IP of HI]• 1 keV = 1.24 nm = 2.4 × 1017 Hz• 1 PHz = 1015 Hz (petahertz)• mec2 = 511 keV

Page 23: Basic Detection Techniques

wnb060905 BDT-I 23

Sensitivity

Faintest UVOIR point source detected:

• Naked eye: 5-6 mag

• Galileo telescope (1610): 8-9 mag

• Palomar 5-m (1948): 21-22 mag (pg),

• 25-26 mag (CCD)

• Keck 10-m (1992): 27-28 mag

• HST (2.4-m in space, 1990): 29-30 mag

Page 24: Basic Detection Techniques

wnb060905 BDT-I 24

MeasureFlux is the energy incident per unit time per unit areawithin a defined EM band:f ≡ Ein band/A t(or power per unit area)Usually quoted at top of Earth’s atmosphere

o “Bolometric”: all frequencieso Finite bands (typically 1-20%) defined by, e.g., filters suchas U,B,V,Ko “Monochromatic”: infinitesimal band, ν → ν + dνAlso called “spectral flux density”Denoted: fν or fλ

Note conversion: since fνdν = fλdλ and ν = c/λ,→ νfν = λfλ

Page 25: Basic Detection Techniques

wnb060905 BDT-I 25

Flux 21 Jy = 10−26 W m−2 Hz−1

[= 10−23 erg s−1 cm−2 Hz−1] non SI

Monochromatic Apparent Magnitudeso mλ ≡ −2.5 log10 fλ − 21.1,where fλ is in units of erg s−1 cm−2 A−1

o Normalization is chosen to coincide with the zero point of the widely-used “visual” or standard “broad-band” V magnitude system:i.e. mλ(5500 ˚A) = Vo Zero Point: fluxes at 5500 ˚A corresponding to mλ(5500˚A) = 0, are (Bessell 1998)f0

ν = 3630 Jy (janskys) or 3.63 × 10−20 erg s−1 cm−2 Hz−1

λ/hν = 1005 photons cm−2 s−1 A−1 is the corresponding photon rate per unit wavelength

Page 26: Basic Detection Techniques

wnb060905 BDT-I 26

Flux 3

• Absolute Magnitudes o M ≡ m− 5 log10(D/10), where D is the distance to the source in parsec o M is the apparent magnitude the source would have if it were placed at a distance of 10 pc. o M is an intrinsic property of a source o For the Sun, MV = 4.83

Page 27: Basic Detection Techniques

wnb060905 BDT-I 27

Flux 4

• Luminosity L (W)– Power (energy/s) radiated by source into

4π sterad

• Flux (W m-2)– f = L/4πD2 if source isotropic, no

absorption

• Brightness I (W m-2 sr-1)– f ~ IΔΩ

Page 28: Basic Detection Techniques

wnb060905 BDT-I 28

Planck

1

12,

/2

3

kThec

hTB

Page 29: Basic Detection Techniques

wnb060905 BDT-I 29

Planck 2

• Limiting forms:

• hν/kT << 1 → Bν(T) = 2kT /λ2 (“Rayleigh-Jeans”)

• hν/kT >> 1 → Bν(T) = 2hν3 e−hν/kT /c2 (“Wien”)

• Non-thermal– T > 1020

B

Page 30: Basic Detection Techniques

wnb060905 BDT-I 30

Stars

Page 31: Basic Detection Techniques

wnb060905 BDT-I 31

IR windows

μm

Page 32: Basic Detection Techniques

wnb060905 BDT-I 32

Atmosphere transmission

Page 33: Basic Detection Techniques

wnb060905 BDT-I 33

QEEye 10-20%

Photographic 2-10%

CCD 70-90%

PMT 20-30%

IR (HgCdTe) 30-50%

CMOS 60-80%

Page 34: Basic Detection Techniques

wnb060905 BDT-I 34

QE(2)

Page 35: Basic Detection Techniques

wnb060905 BDT-I 35

Spectrum

Page 36: Basic Detection Techniques

wnb060905 BDT-I 36

DetectorsBolometers

• Most basic detector type: a simple absorber

• Temperature responds to total EM energy deposited by all mechanisms during thermal time-scale

• Electrical properties change with temperature

• Broad-band (unselective); slow response

• Primarily far infrared, sub-millimetre (but also high energy thermal pulse detectors)

Page 37: Basic Detection Techniques

wnb060905 BDT-I 37

Bolometer

Page 38: Basic Detection Techniques

wnb060905 BDT-I 38

Detectors 2Coherent Detectors

Multiparticle detection of electric field amplitude of incidentEM wave• Phase information preserved• Frequency band generally narrow but tuneable• Heterodyne technique mixes incident wave with localoscillator• Response proportional to instantaneous power collected inband• Primarily radio, millimetre wave, but some IR systems withlaser LOs

Page 39: Basic Detection Techniques

wnb060905 BDT-I 39

Detectors 3

Photon Detectors• Respond to individual photon interaction with

electron(s)• Phase not preserved• Broad-band above threshold frequency• Instantaneous response proportional to

collected photon rate (not energy deposition)• Many devices are integrating (store

photoelectrons prior to readout stage)•

Page 40: Basic Detection Techniques

wnb060905 BDT-I 40

Detector 4

UVOIR, X-ray, Gamma-rayo Photo excitation devices: photon absorption changesdistribution of electrons over states. E.g.: CCDs,photographyo Photoemission devices: photon absorption causesejection of photoelectron. E.g.: photocathodes anddynodes in photomultiplier tubes.o High energy cascade devices: X- or gamma-rayionization, Compton scattering, pair-production

produces multiparticle pulse. E.g. gas proportional counters, scintillators

Page 41: Basic Detection Techniques

wnb060905 BDT-I 41

Detector 5

• Chemical detectors

• Eye

• Photographic plate

Page 42: Basic Detection Techniques

wnb060905 BDT-I 42

Eye

• Rods (10-20%)

• Cones (1-2%) – 3 varieties

• 1ps response; 1/20s integration; 15min to revitalise

• Flashes

Page 43: Basic Detection Techniques

wnb060905 BDT-I 43

Photographic

• - non-linear

• - low dynamic range

• + # pixels

• Photon excites e AgCl -> +Ag- into Ag.(defect)

• Developing == amplification

• Slow (but stroboscopic)

Page 44: Basic Detection Techniques

wnb060905 BDT-I 44

PMT

Page 45: Basic Detection Techniques

wnb060905 BDT-I 45

PMT-a

Page 46: Basic Detection Techniques

wnb060905 BDT-I 46

PMT2

• QE 5-10%

• UV/B poor in R/IR

Page 47: Basic Detection Techniques

wnb060905 BDT-I 47

MCP

Page 48: Basic Detection Techniques

wnb060905 BDT-I 48

MCP2

• QE 20%

• Can be staggered (chevron)

• Up to million amplification

• 1-1000nm

Page 49: Basic Detection Techniques

wnb060905 BDT-I 49

IPCS

• TV: photo electron (from Si) stored in micro-capacitors

• Scanned/recharged 25Hz -> discharge current

• High readout noise (snow)

• 1st intensifier 3 stage million gain

• Read out == photon counting digital

Page 50: Basic Detection Techniques

wnb060905 BDT-I 50

Image intensifier

Page 51: Basic Detection Techniques

wnb060905 BDT-I 51

CCD

• Charge Coupled Device

Page 52: Basic Detection Techniques

wnb060905 BDT-I 52

CCD layout

Page 53: Basic Detection Techniques

wnb060905 BDT-I 53

CCD transfer

Page 54: Basic Detection Techniques

wnb060905 BDT-I 54

CCD readout

Page 55: Basic Detection Techniques

wnb060905 BDT-I 55

CCD

• Workhorse up to 1.1 um -> bandgap• Dynamic range: bits; 30000:1• Linearity: same• Read-out noise 2-3 e-

• Dark current (thermal) -> cool• Shot noise: random photons• Non-uniformity -> flat fielding• Charge transfer efficiency (>.99999 has to be)• Cosmic rays: pixel error

Page 56: Basic Detection Techniques

wnb060905 BDT-I 56

CCD2

• Large: 10.5 * 10.5 kpixel

• 4 stitched -> 500 million pixels

• Thinned back-illuminated: no reflection

• Thinned very expensive: fragile, but efficient

Page 57: Basic Detection Techniques

wnb060905 BDT-I 57

CCD perfect?

CosmicraysHot Spots(high darkcurrent,butsometimesLEDs!)BrightColumn(charge traps)

DarkColumns

(chargetraps)

QEvariations

Page 58: Basic Detection Techniques

wnb060905 BDT-I 58

CMOS

• Complementary Metal Oxide Silicon

• Direct readout

• But: 15-30 photomasks; rather than 10 for CCD

Page 59: Basic Detection Techniques

wnb060905 BDT-I 59

CMOS 2

Page 60: Basic Detection Techniques

wnb060905 BDT-I 60

NIR (hybrid)

Page 61: Basic Detection Techniques

wnb060905 BDT-I 61

NIR

• Similar to CCD

• Non-Si layer to generate photo electrons: HgCdTe and InSb for between 0.9 and 25 um

• Hybrid Si system: well developed

• Cooled to 30-60K

• Si part: CCD or MOS capacitors: direct read-out

•Pixel cost 10* CCD (0.10-0.30 USD)

Page 62: Basic Detection Techniques

wnb060905 BDT-I 62

SIS – BIB - SSPM

• Superconductor-Insulator-Superconductor tunnel junctions

• Blocked-Impurity-Band detectors

• Solid-State-PhotoMultipliers

• Josephson junctions

Page 63: Basic Detection Techniques

wnb060905 BDT-I 63

Energy resolving STJ/TES

Page 64: Basic Detection Techniques

wnb060905 BDT-I 64

STJ

• Fast

• Spectral resolution 1000

• UV->IR

• Cooled < 1K

• Magnetic field + Electric field

• 1 meV electron pair split (1eV for CCD!)

• More depending on energy

Page 65: Basic Detection Techniques

wnb060905 BDT-I 65

Tip-tilt CCD wavefront

Page 66: Basic Detection Techniques

wnb060905 BDT-I 66

Info

• C.R. Kitchin, Astrophysical Techniques

(0 7503 0946 6)• http://www.ctio.noao.edu/mailman/listinfo/ccd

-world

• Real life CCD: http://imaging.e2vtechnologies.com

• Experimental Astronomy 2006


Recommended