+ All Categories
Home > Documents > Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective:...

Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective:...

Date post: 23-May-2020
Category:
Upload: others
View: 15 times
Download: 0 times
Share this document with a friend
27
ECSE413B: COMMUNICATIONS SYSTEMS II Tho Le-Ngoc, Winter 2008 Basic Digital Modulation Techniques: Basic Digital Modulation Techniques: Basic Digital Modulation Techniques: Basic Digital Modulation Techniques: Digital Transmission in AWGN Optimum Receiver Probability of Error Digital Modulation Techniques: ASK PSK QAM FSK Digital Modulation Techniques: ASK, PSK, QAM, FSK
Transcript
Page 1: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

ECSE413B: COMMUNICATIONS SYSTEMS II

Tho Le-Ngoc, Winter 2008

Basic Digital Modulation Techniques:Basic Digital Modulation Techniques:Basic Digital Modulation Techniques:Basic Digital Modulation Techniques:

Digital Transmission in AWGN •Optimum Receiver • Probability of Error •Digital Modulation Techniques: ASK PSK QAM FSKDigital Modulation Techniques: ASK, PSK, QAM, FSK •

Page 2: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

Elements of a digital communications link

CODING CHANNEL

Elements of a digital communications link

MODEM CHANNEL

INPUT TRANSDUCER

SOURCEENCODER

CHANNELENCODER

MODULATOR with CHANNEL

CONDITIONER

Tx AFE

INPUT

SIGNAL

X

CHANNEL

Input X = {bn, bn∈{+1, -1}}Output X’ = {bn’, bn’∈{+1, -1} }Objective: minimize Pr{ bn’≠ bn}resources: POWER & BANDWIDTHChannels: AWGN, ISI, MULTIPATH

OUTPUT TRANSDUCER

SOURCEDECODER

CHANNELDECODER

DEMODULATOR with CHANNEL

EQUALIZER

Rx AFE

OUTPUT

SIGNAL

X’

DIGITAL TRANSMISSION

PAGE 2Basic Digital Modulation Techniques Tho Le-Ngoc

Page 3: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

TIME-LIMITED SIGNALLING SCHEMES IN AN AWGN ENVIRONMENTENVIRONMENT

}ja{ˆBINARY SEQ. {bi}

BIT-TO-SYMBOL

CONVERTER

{aj} Tx r(t)s(t) COHERENT RECEIVER

SYMBOL-TO-BIT

CONVERTER

}b{ iˆ

I bi {b } i d i | iT | T /2 T bi i l

⎩⎨⎧

====

=1/20}Pr{bwith01/21}Pr{bwith1

bi

ii WGN w(t)

Input binary sequence: {bi}, transmitted in |t-iTb|≤Tb/2, Tb: bit intervalEvery m bits: grouped to form 1 symbol M=2m possible symbols,Symbol sequence: {ai}, aj=Ak, k=1,2,3,…, 2m with Pr{aj=Ak}=1/M.j j

aj is transmitted in the interval |t-jTs|≤Ts/2, Ts=mTb: symbol interval.TRANSMITTER: generates s(t) = gk(t-jTs) for |t-jTs|≤Ts/2 if aj = Ak

i e ONE-TO-ONE MAPPINGi.e., ONE TO ONE MAPPING AWGN CHANNEL: r(t)= s(t)+w(t) where w(t): white Gaussian noise, zero-mean, variance No/2.

PAGE 3Basic Digital Modulation Techniques Tho Le-Ngoc

Page 4: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

VECTOR REPRESENTATION OF TIME LIMITED SIGNALSVECTOR REPRESENTATION OF TIME-LIMITED SIGNALSs(t) = gk(t-jTs) for |t-jTs|≤Ts/2 if aj = Ak: one-to-one correspondence

gk(t): signaling element gk(t)=0 for |t|>TS/2: time-limited and ∫+

−+∞<=

/2T

/2T k2

ks

sEdt|(t)g|

∑NWe want to find N (N ≤ M) orthonormal functions Φi(t), i=1,2,…, N so that ∑ == N1i ikik (t)Φg(t)g

signal element: waveform gk(t) can be represented by N-dimensional vector gk=( gk1, …, gkN) ORTHONORMAL FUNCTIONS: Φi(t)=0 for |t|>TS/2 and ∫

∞+

∞− ⎩⎨⎧

≠=

=jif0jiif1

(t)dt(t)ΦΦ *ji

Φj*(t)=Φj(t) if Φi(t): REAL, {Φi(t), i=1,2,…,N} forms an ORTHONORMAL BASIS of N dimensions. j ( ) j( ) i( ) , { i( ), , , , }

waveform gk(t) can be represented by N-dimensional vector gk=( gk1, …, gkN): ∑ == N

1i ikik (t)Φg(t)g where ∫+

−=

2T

2T

*ikki

S

S

(t)dt(t).Φgg

gk1 gk1 ∫

+ /2T

/2T

Sdt

Φ1(t)

Φ2(t)

WAVEFORMgk(t)

Φ*1(t)

Σ

Φ*2(t)

∫+

/2T

/2T

S

S

dt gk2

∫− /2TS

∫+ /2TS

dt

gk2

gkN

ΦN(t)

IN TRANSMITTER

∑ == N1i ikik (t)Φg(t)g

IN RECEIVER

kg =(gk1, gk2,… gkN ),

∫+ 2T *S

Φ*N(t)

gkN ∫− /2TS

dt

PAGE 4Basic Digital Modulation Techniques Tho Le-Ngoc

∫+

−=

2T

2T

*ikki

S

S

(t)dt(t).Φgg

Page 5: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

VECTOR CHANNELVECTOR CHANNEL

gj1

Φ1(t) s(t) Φ*

1(t) ∫+

2/

2/

S

S

T

Tdt gj1+w1

∫+ 2/STg

w(t)

r(t)g +w

Φ2(t)

gjN

Σ

Φ*2(t)

∫+

2/

2/

S

S

T

Tdt

∫+ 2/

2/

ST

Tdt

gj2 gj2+w2

gjN+wN

w(t): White Gaussian Noise, zero mean and variance σ2W=N0/2,

noise components w ’s k 1 2 N are Gaussian with zero mean and variance of N /2

WAVEFORM CHANNEL ΦN(t) Φ*N(t)

∫− 2/ST

}{j

g

}{j

g

}{ wgj+

noise components wk’s, k=1,2,…,N are Gaussian with zero mean and variance of N0/2.They are also statistically independent.

w

⎤⎡ N2 ⎤⎡ 2

VECTOR CHANNEL

s ρ=s+w OPTIMUM RECEIVER

jg

PAGE 5Basic Digital Modulation Techniques Tho Le-Ngoc

), ∏=

=⎥⎥

⎢⎢

⎡−=

N

1kkww

0

2k

1/20

kw (xp)x(pN

xexp

)N(

1)(xp

kk π ⎥⎥⎦

⎢⎢⎣

⎡−=

0

2

N/20 N

xexp

)N(1

π, ∑ =

=N

1k2k

2 xx

Page 6: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

OPTIMUM RECEIVEROPTIMUM RECEIVER

Minimize Pr{ ja = Al | aj = Ak, k≠l}= minimize Pr{ s = sl | s =k

g , k≠l}, or maximize Pr{ ja = Ak | aj = Ak} = maximize Pr{ s =

kg | s =

kg } = maximize Pr{ s = sk | ρ=

kg +w}

optimum maximum a posteriori probability (MAP) receiver: Max Pr{ s = sk | ρ=

kg +w}:

Using the Bayes rule: Pr{A|B}.p(B)=p(B|A).Pr{A} for A: discrete, B: continuous ( ) b b l d f ( df) f

Procedure: For a receiver vector ρ, calculate all Pr{ ig | ρ} i=1,2,…,M

Select the index k corresponding to the MAXIMUM value Pr{ kg | ρ} and declare kgs =ˆ

p(B): probability density function (pdf) of B

⎡ ⎤⇒ = ⇒ ≡ ⎣ ⎦i i

i ii i i i

p{ρ|g }.Pr{g }Pr{ g | ρ} Max Pr{ g | ρ} Max p{ρ|g }.Pr{g }

p{ρ} wrtg wrtg

⎡ ⎤M P { | } M { | }

If Pr{ ig }=1/M, i=1,2,…,M ⎡ ⎤⇒ ≡ ⎣ ⎦i i

i iMax Pr{ g | ρ} Max p{ρ|g }wrtg wrtg

optimum receiver = maximum likelihood (ML) receiver For ig , i=1,2,…,M, calculate all p{ρ | ig }. Select k corresponding to the largest p{ρ | kg }

l h l k l l d

PAGE 6Basic Digital Modulation Techniques Tho Le-Ngoc

ML receiver selects kg , the most likely signaling vector in producing ρ

Page 7: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

MAP d ML i AWGN h lMAP and ML in AWGN channelTransmitter: sends si=gk with a priori probability of Pr{gk}.

Receiver: From the received sample ri =si +w where w: Gaussian (0, No/2), guess si

[ ]

[ ] [ ]

2

2

1+ =1 or 0, ( | ) exp

l ( | ) 0 5 l

AWGN(0, / 2)CHANNEL: i kk k k N

oo

i k

o if sent k pNN

N N

⎛ ⎞⎜ ⎟→ = = −⎜ ⎟⎝ ⎠

r - gg ρ g w ρ g

r - g[ ] [ ]ln ( | ) 0.5 ln

Choose corresponding to max Pr{ | } max ( | ) Pr{ }Maximum A Posteriori (MA ):P

i kk o

o

k k k k

p N NN

p

π→ = − −

gρ g

g g ρ ρ g g

max ln→ [ ] [ ] [ ]( )2

( | ) Pr{ } max ln ( | ) ln Pr{ } min 0.5 ln ln Pr{ }i kk k k k o k

o

p p N NN

π⎡ ⎤

= + = + −⎢ ⎥⎢ ⎥⎣ ⎦

r - gρ g g ρ g g g

[ ] 2Choose ln Pr{ }corresponding to max ( | ) max ln ( | ) min

. ., For general M, Se

Maximum Likelihood (ML

le

):

ct cor

k k k i kp p

i e k

= ≡

g ρ g ρ g r - g2 2responding to the minimum Euclidean distance among alli k i mr - g r - g

PAGE 7Basic Digital Modulation Techniques Tho Le-Ngoc

2(MAP): when Pr{ } 1/ maxln Pr ({ | } min ML)k k i kM→ = ⇒ ≡g g ρ r - g

Page 8: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

MAP d ML l f bi (M 2)MAP and ML: example of binary case (M=2)Transmitter: From binary sequence {bi}, bi =1 or 0 with a priori probability Pr{bi =1} and Pr{bi =0}, respectively, sends si=g1 if bi =1 or si=g0 if bi =0.Receiver: From the received sample ri =si +w where w: Gaussian (0, No/2), guess bi

Choose =1 if Pr{ 1| } Pr{ 0 | }, otherwise choose 0

1 if ( ) 0P { 1| }

Maximum A Posteriori (MAP): i ii i i ib b r b r b

rb

= > = =

Λ >⎡ ⎤ ⎧

$ $

1, if ( ) 0Pr{ 1| }ln =0, if ( ) 0Pr{ 0 | }

From Bayes rule, )

)

(

( ln

MAMAP ii i

iMAP ii i

MAP

i

i

P rrb r brb r

pr

ΛΛ >⎡ ⎤ ⎧=

≡ → ⎨⎢ ⎥ Λ <= ⎩⎣ ⎦

Λ ≡

$

( | 1) Pr{ 1}/ ( ) ( | 1) Pr{ 1}ln ln( | 0) P { 0}/ ( ) ( | 0) P { 0}

i i i i i i ir b b p r p r b bb b b b

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = == +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦( | 0) Pr{ 0}/ ( ) ( | 0) Pr{ 0}

( ) ( | 1) Pr{ 1}( ) ( ), ln , ( ) ln( | 0) Pr{ }

( )0

i i i i i i i

i i iMAP i P i P i

i ii

iML iML r

p r b b p r p r b b

p r b br b bp r b b

r

⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎡ ⎤ ⎡ ⎤= =

→ Λ = +Λ ≡Λ Λ ≡⎢ ⎥ ⎢ ⎥= =⎣ ⎦ ⎣ ⎦Λ

$ $Choose =1 if ( | 1) ( | 0), otherwise choose 01, if ( ) 0

=0, if ( ) 0

Maximum Likelihood (ML): i ii i i i

ML ii

ML i

b p r b p r b br

br

= > = =

Λ >⎧→ ⎨ Λ <⎩

$ $

$

PAGE 8Basic Digital Modulation Techniques Tho Le-Ngoc

when Pr{ 1} Pr{ 0} ( ) 0 ( ) ( )i i P i MAP i ML ib b b r r= = = ⇒ Λ = ⇒ Λ = Λ

Page 9: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

MAP d ML l f bi (M 2) i AWGNMAP and ML: example of binary case (M=2) in AWGN2(AWGN(0, / 2): )1 =1 or 0, ( | ) expo

i ki i

r gk p r b kNN

N⎛ ⎞−

= = −⎜ ⎟⎝ ⎠

[ ] [ ]2

2 2

( )ln ( | ) 0.5ln

o i ioo

i ki i o

o

NN

r gp r b k NN

π

π

⎜ ⎟⎝ ⎠

−→ = = − −

⎡ ⎤ 2 20 1

20( )

( | 1) ( ) ( )ln ,( | 0)

Pr{ 1

(

| } ( )ln

)ML i

MA

i i i i

i i o

i i iP i

p r b r g r gp r b N

b r r g

r

r

⎡ ⎤= − − −→ ≡ =⎢ ⎥=⎣ ⎦

⎡ ⎤= −≡ =⎢ ⎥

Λ

Λ2

1( ) Pr{ 1}( ), ( ) lni iP i P i

r g bb b⎡ ⎤− − =

+ Λ Λ ≡ ⎢ ⎥( ) ln0 | }Pr{MAP i

i ib rr ⎢ ⎥=⎣ ⎦

Λ

Maximum Likelihood

( ), ( ) lnPr{ 0}

Choose =1 if ( | 1) ( | 0), otherwise choose 0(ML) :

P i P io i

i ii i i i

b bN b

b p r b p r b b

+ Λ Λ ⎢ ⎥=⎣ ⎦

= > = =$ $

2 20 1

2 20 1

1, if ( ) ( )=

0, if ( ) ( )

For gene ar

i ii

i i

r g r gb

r g r g⎧ − > −

→ ⎨− < −⎩

$

2 2l M, Select corresponding to the minimum Euclidean distance among alli k i mk r - g r - g

PAGE 9Basic Digital Modulation Techniques Tho Le-Ngoc

g , p g gi k i mg g

Page 10: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

PROBABILITY OF ERRORPROBABILITY OF ERROR

For kg sent, the ML receiver makes an error if it decides kl,gsl≠=ˆ . This event occurs if and only if

2 i i i i 222

kgρ − is not minimum i.e. knsomefor gρgρ

2

n

2

k≠−>−

In the N-dimensional observation space Z, the optimum receiver establishes M disjoint zones Zi as follows

jiforOZZZZM

≠/IU minimum}isgρ:ρ{Z2

jifor OZZZZ ji1i

i ≠/===

IU minimum}isgρ:ρ{Z ii −=

For an observation vector ρ if ρ ∈ Zk then the ML receiver declares that kAa =ˆ was sent.

Therefore the average probability of error is ∑ =∉=

M

k kkke AAZP1

}Pr{}|Pr{ρg p y ∑ =k 1

= = == = ∉ = − ∈ = − ∈

=

∑ ∑ ∑14444244443

M M Mk e k k k k k kk 1 k 1 k 1

c

1 1 1 1for Pr{A } ,P Pr{ρ Z |A } [1 Pr{ρ Z |A }] 1 Pr{ρ Z |A }

M M M MP Pr{correct decision}

− −

⎛ ⎞−⎜ ⎟∈ = − = −⎜ ⎟πΝ ⎜ ⎟⎝ ⎠

∫2

kk k w N/2k

2 20 0ρ g ρ gk kis minimum is m

ρ g1where Pr{ρ Z |A } p (ρ g )dρ exp dρ

( ) N∫inimum

PAGE 10Basic Digital Modulation Techniques Tho Le-Ngoc

Page 11: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

VECTOR REPRESENTATION FOR A GENERAL BINARY TIME LIMITED SIGNALING SCHEMETIME-LIMITED SIGNALING SCHEME

In the interval |t-nTb| ≤ Tb/2,

1( ) 1, with a priori probability of 1/2( )

( ) 0 with a priori probability of 1/2b ng t nT if a

s tg t nT if a

− =⎧= ⎨⎩ 2 ( ) 0, with a priori probability of 1/2b ng t nT if a− =⎩

For a general binary signaling scheme with time-limited, finite-energy elements, g1(t) and g2(t), for a simple 1-D receiver design, we can select the orthonormal basis with

(t)dt(t).ggdt|(t)g|dt|(t)g|dt|(t)g-(t)g|E,E

(t)g-(t)g(t)Φ

T

21

T 22

T 21

T 221

211

bbbb

∫∫∫∫ −+=== ΔΔ

00002

valued-real:(t)g(t),g(t)dt(t).ggE ,EEEE 21

T

21b for∫=−+=Δ

Δ

0121221 2

11))(g&)((gggbetweentcoefficienncorrelatio:

bitper energy average:)(21E where0)1(22

12

21b1212212

≤≤−=

+=≥−=−+=

γγ

γ

andttE

EEEEEEd b

11))(g&)((gg,gbetween t coefficienn correlatio : 12212112 ≤≤−= γγ andtt

Eb

Then, ∫ −+−=−+−

= bT 221

212 dt|(t))gE(E(t))gE(E|E,

E(t))gE(E(t))gE(E

(t)Φ0 121122

121122a

a

g (t)= g φ (t)+ g φ (t) and g (t)= g φ (t)+ g φ (t)2)

/2 φ2(t)

g1(t)= g11φ1(t)+ g12φ2(t) and g2(t)= g21φ1(t)+ g22φ2(t),g11=(E1-E12)/d , g21=-(E2-E12)/d g12= g22=(E1E2-E12

2)/Ea1/2

d2=EΔ=E1+E2-2E12=||g1- g2||2

BOU

ND

ARY:

b=(g

21+

g 22

g1 g2

PAGE 11Basic Digital Modulation Techniques Tho Le-Ngoc

B

g11 g21 φ1(t)b

Page 12: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

PROBABILITY OF ERROR OF BINARY TRANSMISSION IN AN AWGN ENVIRONMENTIN AN AWGN ENVIRONMENT

For antipodal signaling: g1(t)=- g2(t), -E12=E1=E2, d2=4E1

φ1(t)= g1(t)/E11/2 φ2(t)=0 : one dimension, g11=- g21=E1

1/2

∫T *

For orthogonal signaling: 00

=∫bT *

21 (t)dt(t).gg E12=0, d2=E1+E2

g11=E1/[E1+E2]1/2 g21=-E2/[E1+E2]

1/2 g12= g22=[E1E2/(E1+E2)]1/2

For gk transmitted (k=1 or 2) receive r= gk+n where AWGN n=(w1 w2)For gk transmitted (k 1 or 2), receive r gk+n, where AWGN n (w1,w2)w1,w2: independent Gaussian with zero mean and variance: No/2. For g1 transmitted, error if w1<-d/2. For g2 transmitted, error if w1>d/2. w2 and hence r2 are irrelevant. The Rx considers only r1 in detection. ⇒ }Pr{}|Pr{}Pr{}|Pr{ sentgsentgerrorsentgsentgerrorP +=⇒ }Pr{}|Pr{}Pr{}|Pr{

2211sentgsentgerrorsentgsentgerrorPe +=

⎥⎥⎦

⎢⎢⎣

⎡=

⎥⎥⎦

⎢⎢⎣

⎡=

0

2

0e N

d21

erfc21

N2d

erfc21

P ⇒ ⎥⎥⎦

⎢⎢⎣

⎡−= )1(

221

120

γNEerfcP b

e

{ }2 2/ 2 / 2

11 / 20 00 0

2

1 1Pr{ | } Pr 2 ( ) exp exp

1 1 1 1exp( ) for 2

d d

w d

d

x xerror g sent w d p x dx dx dxN NN N

d xv erfdv v dv dx x d v x vc

π π

− − ∞

−∞ −∞

+∞

⎛ ⎞ ⎛ ⎞= ≤ − = = − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎡ ⎤= − = = = → ⇒ → →+∞⇒ →+∞⎢ ⎥

∫ ∫ ∫

PAGE 12Basic Digital Modulation Techniques Tho Le-Ngoc

02 0 0 0 0

exp( ) for , , 2 ,2 2 2

dN

v erfdv v dv dx x d v x vN N

cN Nπ

= = = = → ⇒ → →+∞⇒ →+∞⎢ ⎥⎢ ⎥⎣ ⎦

Page 13: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

ERROR FUNCTIONSERROR FUNCTIONS2

21X is called normalized zero-meanGaussian (Random) variable X: ( )2

x

Xf x eπ

−=

2

22

2

22

1Q-function: ( ) Pr{ } ,2

2 2complimentary error function: ( ) 2 ( 2 ), / 2

x

y

xv

u u

Q y X y e dx

erfc u e dv e dx Q u v x

π+∞ −

+∞ +∞ −−

→ ≡ > =

≡ = = =

∫ ∫ 2

lower

u uπ π∫ ∫2

2

22

/ 2

1 1 bounds: 0, 1 ( )2

x

x

x e Q xxx

e

π−

⎛ ⎞≥ − <⎜ ⎟⎝ ⎠

2

2

upper bounds: 0, ( ) ,2

1or tighter: ( )2

x

ex Q x

Q x exπ

≥ <

<

PAGE 13Basic Digital Modulation Techniques Tho Le-Ngoc

Page 14: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

SELECTION OF g (t) g (t)SELECTION OF g1(t), g2(t)

erfc is monotone-decreasing, erfc(0)=1 to reduce Pe we have to maximize )1(2 12

0

γ−NEb

A F th “ bit t i d it E /N i i i P bA. For the same “average energy per bit to noise power density Eb/N0, we can minimize Pe by minimize γ12

BESTth1P

SIGNALLING ANTIPODAL:)()(g when 1min ,1 211212

Ef

tgt

b

−=−=−≥ γγ

BEST the: 2

P0

e Nerfc b=

Example: NRZ antipodal ⇒ 02/||

)( send 1 1 elsewhereTiTtforA

tgb bbi

⎩⎨⎧ ≤−

==

)()(send0 12 tgtgbi −==

B. WORST CASE: γ12=1 when g1(t)= g2(t), i.e. send the same signal for both cases. Pe=1/2, 50%

t 50%correct, 50% wrong

C. Orthogonal signal: 0)()(,02/

2/ 2112 == ∫−b

b

T

Tdttgtgγ

i lliti d lth1 EfP b

PAGE 14Basic Digital Modulation Techniques Tho Le-Ngoc

signallingantipodalthan worse22 0

, NerfcP b

orthogonale =

Page 15: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

M-ARY SIGNALLING SCHEME: Union Bound on the Probability of ErrorUnion Bound on the Probability of Error

1

1, 1,2,..., with Pr{ sent} 1/M Pr{ | sent}M

ei i ii

g i M g P error gM =

= = → = ∑

For the optimum receiverFor the optimum receiver, { } { } { }sentgggsentgggsentgerror

iikiiki| than toleast at closer to is Pr |Pr|Pr

22ρρρ =−<−=

εik denotes the event that ρ is closer to k

g than to ig : { }

1,1,

Pr | Pr Pr{ }M M

ik ikik k ik k i

error g sent ε ε= ≠= ≠

⎧ ⎫= ≤⎨ ⎬

⎩ ⎭∑U

(Note that: { } Pr{ } Pr{ } Pr{ }P A B C A B C∪ ∪ ≤ + + ) Consider any pair of

ig ,

kg as the binary transmission case previously analyzed. We have obtained

−=⎥⎥⎦

⎢⎢⎣

⎡=

kiikkiikik

ik ggdggdN

derfc 2 ,between distanceEuclidean :,22

1}Pr{ε

∑ ∑∑= ≠=≠=

⎟⎟⎠

⎞⎜⎜⎝

⎛≤→⎟

⎟⎠

⎞⎜⎜⎝

⎛≤→

⎥⎦⎢⎣M

i

M

ikk

ike

ikk

iki N

derfcM

PN

derfcgerror

N

1 ,1 0

M

,1 0

0

221

221}sent |Pr{

22

The above inequality shows that Pe is dominated by the term having the smallest distance dik,min. In designing the set of M signaling elements, to minimize Pe we should aim for the largest minimum Euclidean distance.

min min1i ( 1)ikd d dd d f f i k P M f⎡ ⎤ ⎡ ⎤ ⎡ ⎤

∀⎢ ⎥ ⎢ ⎥ ⎢ ⎥

PAGE 15Basic Digital Modulation Techniques Tho Le-Ngoc

min minmin ,

0 0 0

min , ( 1)22 2 2

ikik ei k

i k

d dd d erfc erfc i k P M erfcN N N

= → ≤ ∀ ≠ → ≤ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Page 16: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

Digital Modulation: GeneralDigital Modulation: GeneralModulation: Process by which some characteristic of a carrier, c(t), is varied in accordance with a modulating wave. (IEEE Standard Dic. of E&E terms)

I h kth b l i l | kT | T /2 d f M ibl i li i d i liIn the kth symbol interval, |t-kTS|≤TS/2, send one of M possible time-limited signaling elements gi(t- kTS) with a priori probability of 1/M1 symbol = m bits , gi(t): modulated signal, i=1,2,…,M=2m, with finite energy Ei

Average energy per symbol: E Average energy per bit: E E mEAverage energy per symbol: ES, Average energy per bit: Eb , ES = mEb

∫+

−===

2

2

2 1)(,cos2)( S

S

T

TccS

dttcEtT

tc ω ∫+

−=

2

2

2)(S

S

T

T ii dttgE ∑=

=M

iiS E

ME

1

1

ASK (Amplitude Shift Keying), PSK (Phase SK), FSK (Frequency SK), APK, QAMObjectives in designing a modulation scheme:Bandwidth efficiency: max data rate (fb) in a minimum channel bandwidth (BW)Power efficiency: minimum prob. of error for minimum transmitted power (or in terms of ES/N0, Eb/N0), maximum resistance to interfering signals.Easy implementation: min circuit complexitySome of these goals pose conflicting requirements:

PAGE 16Basic Digital Modulation Techniques Tho Le-Ngoc

Some of these goals pose conflicting requirements:compromising the design for a certain application.

Page 17: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

ASK (Amplitude Modulation)ASK (Amplitude Modulation)

[ ] 2c c

2 cos | | 2( ) ( ), 2 ( 1) / 2, ( ) , for 1

0

c Si i i i i SS

t t Tg t a t a i M d t Energy E a or T kT

l h

ωω ω π

⎧≤⎪= Φ = − + Φ = = >> =⎨

⎪⎩

2 2 2 2/ 2 / 22 2

1 1 1

0

1 2 ( 1)(2 1) (2 1)2 2 12

M M M

S ii i i

elsewhere

d d d ME a i iM M M= = =

⎪⎩

−⎡ ⎤⇒ = = − = − =⎢ ⎥⎣ ⎦∑ ∑ ∑

Example of ASK signal with M=4when ω =0 we have baseband PAM

2( ) ( ) cos CS

t c t tT

ωΦ = =

Signal constellation for M=2,4,8

when ωc=0, we have baseband PAM

Baseband ASK (PAM), {ai }( ) i

PAGE 17Basic Digital Modulation Techniques Tho Le-Ngoc

passband ASK

Page 18: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

ASK: PerformanceASK: Performance

ASK

AWN with σ2=N0/2

MODULATORρ=ai+n, n: Gaussian noise with 2 N /2

{ai}rASK

select k if r∈ Ik

MODULATOR

tT c

S

ωcos2

∫dt

tT c

S

ωcos2

n: Gaussian noise with σ2=N0/2if ai sent, correct decision if ρ∈Ii

correct decision, if –d/2≤n≤d/2 , for i≠1,Mif n≤d/2, for i=1if n≥-d/2, for i = M

DEMODULATOR

Φ(t)I1 I2 I3                                       .  .  .                       IM‐1                IM• • • • •

if n≥ d/2, for i MPr{correct}=

(1/M)[Pr{n≤d/2}+Pr{n≥-d/2}+(M-2)Pr{–d/2≤n≤d/2}]

a1 a2 a3 aM-1 aM

d

1 3 12Ed⎡ ⎤2 2

00

1 3 12Union bound: ( 1) (1/ 2)( 1) ,2 1 ( 1)2

1 3 3Exact Analysis: 1 for M 1

Se S

s s

EdP M erfc M erfc d EM N MN

E EP erfc erfc

⎡ ⎤≤ − = − =⎢ ⎥

− −⎢ ⎥⎣ ⎦⎡ ⎤ ⎡ ⎤⎡ ⎤= − ≈ >>⎢ ⎥ ⎢ ⎥⎢ ⎥

PAGE 18Basic Digital Modulation Techniques Tho Le-Ngoc

2 20 0

Exact Analysis: 1 for M 11eP erfc erfc

M M N M N= − ≈ >>⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Page 19: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

ASK: Performance AnalysisASK: Performance Analysis

1Pr{n / 2} 1 Pr{ / 2} 1 dd n d erfc⎡ ⎤

≤ = − ≥ = − ⎢ ⎥0

0

Pr{n / 2} 1 Pr{ / 2} 12 2

1Pr{n / 2} 1 Pr{ / 2} 1 12 2

d n d erfcN

dd n d erfc pN

≤ ≥ ⎢ ⎥⎢ ⎥⎣ ⎦

⎡ ⎤≥ − = − ≤ − = − = −⎢ ⎥

⎢ ⎥⎣ ⎦

[ ]

0

0

2 2

1Pr{ / 2 / 2} 1 Pr{ / 2} Pr{ / 2} 1 2 where p2 2

N

dd n d n d n d p erfcN

⎢ ⎥⎣ ⎦⎡ ⎤

− ≤ ≤ = − ≤ − + ≥ = − = ⎢ ⎥⎢ ⎥⎣ ⎦

[ ]1 1Pr{ } 2(1 ) ( 2)(1 2 ) 1 2Mcorrect p M p pM M

−= − + − − = −

( 1)2 11 Pr{ } M p M dP correct erfc⎡ ⎤− −⎢ ⎥

0

2 2

1 Pr{ }2

1 3 31 for M 11

e

s se

P correct erfcM M N

E EP erfc erfc

M N NM M

= − = = ⎢ ⎥⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤⎡ ⎤= − ≈ >>⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

PAGE 19Basic Digital Modulation Techniques Tho Le-Ngoc

0 01M N NM M −⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Page 20: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

Binary Phase Shift Keying (BPSK)Binary Phase Shift Keying (BPSK)

Can be viewed as BPSK or APSK: Each bit is encoded in the phase of the carrier with frequency f : 0o for a “1” and 180o for a “0”frequency fc: 0 for a 1 and 180 for a 0

In the kth symbol interval, |t-kTb|≤Tb/2, send one of 2 possible time-limited signaling elements gi(t- kTb) with a priori probability of 1/2

( )2 2 22( ) cos ( ) cos ( ) cos cosb b bE E Ec t t g t t g t t tω ω ω ω π= → = = = +− ( )1 0( ) cos ( ) cos , ( ) cos cosc c c cb b b b

c t t g t t g t t tT T T T

ω ω ω ω π= → = = = +−

Signal constellation of BPSK

1 1 0 1 “1”

2( ) cos cb

c t tT

ω=0Tb 2Tb 3Tb 5Tb

“1”“0”

1 1Pr{bit error}: 2bEdP erfc erfc d E⎡ ⎤

= = =⎢ ⎥

PAGE 20Basic Digital Modulation Techniques Tho Le-Ngoc

00

Pr{bit error}: , 22 22b bP erfc erfc d E

NN= = =⎢ ⎥

⎢ ⎥⎣ ⎦

Page 21: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

Phase Shift Keying (PSK)Phase Shift Keying (PSK)General MPSK:

1 22 cos[2 ] ( ) ( ), | | 2

( )s

c i i i SE f t I t Q t t T

Tπ θ ϕ ϕ

⎧+ = + ≤⎪

⎨ bi

Acos(θi)

1 2

1 2

[ ] ( ) ( ), | |( )

0

2 2orthonormal basis function ( ) cos 2 & ( ) sin 2

c i i i Si S

c cS S

f Qg t T

elsewhere

t f t t f tT T

ϕ ϕ

ϕ π ϕ π

⎪= ⎨⎪⎩

= =-Asin(θi)

binary data binary-to-

symbol {θi} MPSK tT c

S

ωcos2

QPSK: M=4, can be viewed as a linear combination of an in-phase and

cos , sin , , (2 1) , 1, 2,...,i i i i s iI A Q A A E i i MMπθ θ θ= = − = = − = t

T cS

ωsin2

i=2 “10”

i=1 “11”

phase and 1 2 3 4

/ 2 "1" / 2 "0" / 2 "0" / 2 "1"

/ 2 "1" / 2 "1" / 2 "0" / 2 "0"i s s s s

i s s s s

i

I E E E E

Q E E E E

=

= + = − = − = + =

= + = + = − = − =

i=3 “00”

i=4 “10”

2s bE E=

can be viewed as a sum of 2 BASK (or BPSK) modulated signals with in-phase and

PAGE 21Basic Digital Modulation Techniques Tho Le-Ngoc

Signal constellation of QPSK

signals with in phase and quadrature carriers.

Page 22: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

MPSK PerformanceMPSK Performance

binary bi t

Acos(θi)

MPSK l

X

∈I k

binary∫dt

MPSK

Asin(θi)

ydata binary-to-

symbol {θi}signal

WGN

symbol-to-binary

Y

ρ=X+

jY

Sele

ct k

if ρ

binary datat

T cS

ωcos2t

T cS

ωcos2

2

∫dt

tT c

S

ωsin2t

T cS

ωsin2

2S iAverage energy/symbol: E 2 sin sinSA d A EM M

π π= ⇒ = =S min

e0

Average energy/symbol: E 2 sin .sin

1Union Bound for M-ary PSK: P sin2

S

S

A d A EM MEM erfc

M Nπ

⎡ ⎤−≤ ⎢ ⎥

⎢ ⎥⎣ ⎦

0

1BPSK,M 2, ,2

bb e S b

EP P erfc E EN

⎡ ⎤= = = =⎢ ⎥

⎢ ⎥⎣ ⎦

PAGE 22Basic Digital Modulation Techniques Tho Le-Ngoc

Page 23: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

MPSK Performance: Exact analysisMPSK Performance: Exact analysis

n⎛ ⎞

{ }

1 21 2 o

1

n

, ( , ): iid Gaussian (0, N /2), tan

Pr{correct } Pr =Pr - , for all i 1,2,...,M

niS

i

ng n n n nn E

g I

ρ θ

π πρ θ

−⎛ ⎞

= + = = ⎜ ⎟⎜ ⎟+⎝ ⎠⎧ ⎫→ = ∈ ≤ ≤ =⎨ ⎬⎩ ⎭

{ } n

2

0 0 0 0

{ } , , , ,M M

1( ) exp cos exp sin 1 cos2

ii

S S S S

g

E E E Ep x x x erfc xN N N Nθ

ρ

π

⎨ ⎬⎩ ⎭

⎡ ⎛ ⎞⎡ ⎤ ⎛ ⎞= − + − −⎢ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣

⎤⎥

⎢ ⎥⎦0 0 0 0⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣

20S 0

0 S 0

N 1for high E / and |x| /2, cos exp cosE cos

S SE EN erfc x xN x N

ππ

⎢ ⎥⎦⎛ ⎞ ⎛ ⎞

< ≈ −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞2

0 0

/

( ) cos .exp sin

P { } ( ) 1 P { } i

S S

Ms

E Ep x x xN N

Et d P t f

θ

π

π

π

⎛ ⎞= −⎜ ⎟

⎝ ⎠⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟∫

PAGE 23Basic Digital Modulation Techniques Tho Le-Ngoc

/

Pr{ } ( ) , 1 Pr{ } sin se

oM

correct p x dx P correct erfcM Nθ

π−

⎛ ⎞→ = → = − ≈ ⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

Page 24: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

Square Quadrature Amplitude Modulation QAMSquare Quadrature Amplitude Modulation QAMOne case of AP(S)K: Quadrature ASK

0

2/sin2 cos2)(i

elsewhere

TtfortT

btT

atg ScS

icS

i

⎪⎩

⎪⎨⎧

≤+= ωω

2)1(

,...,2,1i,i where,,2LMinteger :m/2 2L ,integer :M Choose

0

0

210201

2m/2

dLa

LadibadiaL

elsewhere

ii

m

+=

=−=−===→==

a and b are independent

tT c

S

ωcos2

{ai} ai and bi are independent ai , bi can take any ONE of L possible values

M

iS

Md

diM

E

6)1(

2)12(22

2

2/

1

2

⎥⎥⎦

⎢⎢⎣

⎡⎥⎦⎤

⎢⎣⎡ −= ∑

=

ASK

{bi}

tT c

S

ωsin2

SEM

dMd1

6,6

)1(−

=−

=

Receiver: Treat it as 2 independent

ib

tT c

S

ωcos2

tT c

S

ωcos2

M-ary QAM

∫ dt

∫ dt

kI∈ia ifk choose

kI∈ib if l choose

2

WGN

ia

2 independent inphase & quadrature ASK.

Each ASK has [ ]20

112

)11( eASKaryQAMeMeASK PPN

derfcM

P −−=⇒⎟⎟⎠

⎞⎜⎜⎝

⎛−= −

For large ES/N0, PeASK<<1 ⎞⎛⎞⎛⎞⎛⎞⎛ 311 Ed

tT c

S

ωsin2

PAGE 24Basic Digital Modulation Techniques Tho Le-Ngoc

⎟⎟⎠

⎞⎜⎜⎝

−⎟⎠⎞

⎜⎝⎛ −≈⎟

⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ −=≈−

00, )1(2

31122

1122NE

Merfc

MNderfc

MPP S

eASKaryQAMMe

Notes: For M=4, L=2, 4QAM is 4PSK

Page 25: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

Probability of bit error (Pb) vs Probability of symbol error and Gray Codingerror and Gray Coding

Examples of Gray coding:

PAM QAM

PSK

When a symbol error occurs, it is likely that the receiver takes the adjacentsymbol (the symbol closest to the right one). Therefore, it is desirable to code the m-bit symbol in such a way that 2 adjacent symbols differ by only one bit. In this way, the average probability of bit error Pb is P1

PAGE 25Basic Digital Modulation Techniques Tho Le-Ngoc

this way, the average probability of bit error Pb is M

PPm

P eb2

2

log1

=≈

Page 26: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

PROBABILITY OF SYMBOL ERROR

M-QAM, M-PSK: BW-efficient but not power-efficientFor M>8 M QAM outperforms M PSKSYMBOL ERROR For M>8, M-QAM outperforms M-PSK

MPSKMQAM

PAGE 26Basic Digital Modulation Techniques Tho Le-Ngoc

Eb/No Eb/No

Page 27: Basic Digital Modulation Techniques:Basic Digital ...info413/lecture note/C1 Basic... · Objective: minimize Pr{ b n’≠b n} resources: POWER & BANDWIDTH Channels: AWGN, ISI, MULTIPATH

Frequency Shift Keying (FSK)

M-ary orthogonal FSK signaling schemes are power efficient but not bandwidth efficient(FSK)

2 cos 0 2( ) i SA t t T

g t Tω

⎧≤ ≤⎪= ⎨

power-efficient but not bandwidth-efficient.

2S

( ) ,0

1,2,..., 2 , E

i S

mi

g t Telsewhere

i M E A

= ⎨⎪⎩

= = = =

0

ORTHONORMAL M-ary FSK:

( ). ( ) 0 for i j

( ) ( ) / 2 k i

ST

i jg t g t dt

T k f f T k

= ≠∫Note: Gray coding cannot

be used for orthogonal FSK

2S

( ) or ( ) / 2, k: integer

2 2 2E : constant

i j S i j S

ij i j

T k f f T k

d g g A A

ω ω π→ − = − =

→ = − = = =

1 ( 1)2eP M erf→ ≤ −

( )

02

1 ( 1) l

S

b

EcN

EP M f M≤

PAGE 27Basic Digital Modulation Techniques Tho Le-Ngoc

( )20

( 1) log2 2

beP M erfc M

N→ ≤ −

Eb/No


Recommended