+ All Categories
Home > Documents > Basic Laws

Basic Laws

Date post: 02-Jan-2016
Category:
Upload: candace-cantrell
View: 32 times
Download: 0 times
Share this document with a friend
Description:
Basic Laws. Instructor: Chia-Ming Tsai Electronics Engineering National Chiao Tung University Hsinchu, Taiwan, R.O.C. Contents. Ohm’s Law (resistors) Nodes, Branches, and Loops Kirchhoff’s Laws Series Resistors and Voltage Division Parallel Resistors and Current Division - PowerPoint PPT Presentation
38
Basic Laws Instructor: Chia-Ming Tsa i Electronics Engineering National Chiao Tung Unive rsity Hsinchu, Taiwan, R.O.C.
Transcript

Basic Laws

Instructor: Chia-Ming Tsai

Electronics Engineering

National Chiao Tung University

Hsinchu, Taiwan, R.O.C.

Contents

• Ohm’s Law (resistors)

• Nodes, Branches, and Loops

• Kirchhoff’s Laws

• Series Resistors and Voltage Division

• Parallel Resistors and Current Division

• Wye-Delta Transformations

• Applications

Ohm’s Law

• Resistance R is represented by

i

vR

==

Rv+

_

i

1 = 1 V/A

Cross-sectionarea A

Meterialresistivity

ohm

Resistors

0Riv == R = 0v = 0

+

_

i

R = v

+

_

i = 0

0R

vlimiR

==∞→

Variable resistor Potentiometer (pot)

Open circuitShort circuit

Nonlinear Resistors

i

v

Slope = R

v

i

Slope = R(i) or R(v)

Linear resistor Nonlinear resistor

• Examples: lightbulb, diodes

• All resistors exhibit nonlinear behavior.

Conductance and Power Dissipation

• Conductance G is represented by

v

i

R

1G == 1 S = 1 = 1 A/V

siemens mho

G

iGvivp

R

vRiivp

vGi

22

22

===

===

=

A positive R results in power absorption.

A negative R results in power generation.

Nodes, Branches, & Loops• Brach: a single element (R,

C, L, v, i)

• Node: a point of connection between braches (a, b, c)

• Loop: a closed path in a circuit (abca, bcb, etc)– A independent loop contains a

t least one branch which is not included in other indep. loops.

– Independent loops result in independent sets of equations.

+_

a

c

b

+_

c

ba

redrawn

ContinuedElements in parallelElements in series

• Elements in series– (10V, 5)

• Elements in parallel– (2, 3, 2A)

• Neither– ((5/10V), (2/3/2A))

10V

5

2 3 2A+_

Kirchhoff’s Laws

• Introduced in 1847 by German physicist G. R. Kirchhoff (1824-1887).

• Combined with Ohm’s law, we have a powerful set of tools for analyzing circuits.

• Two laws included, Kirchhoff’s current law (KCL) and Kirchhoff’s votage law (KVL)

Kirchhoff’s Current Law (KCL)

i1

i2

in

01

n

N

ni

• Assumptions– The law of conservation of charge– The algebraic sum of charges within a system

cannot change.

• Statement– The algebraic sum of currents entering a node

(or a closed boundary) is zero.

Proof of KCL

(KCL) any for 0)()(

any for 0)( Thus

)()(

)()(1

ttidt

tdq

ttq

dttitq

titi

TT

T

TT

n

N

nT

Example 1

i1

i3i2

i4

i5

leaving ,entering ,

52431

54321

0)-()-(

TT

T

ii

iiiii

iiiiii

Example 2

321

312

IIII

IIII

T

T

I1 I2 I3

ITIT

321 IIIIS

Case with A Closed Boundary

surface closed theleaving

surface closed theentering

i

i

Treat the surfaceas a node

Kirchhoff’s Voltage Law (KVL)

01

m

M

mv

• Statement– The algebraic sum of all voltages

around a closed path (or loop) is zero.

v1+ _ v2+ _ vm+ _

Example 1

41532

54321

0

vvvvv

vvvvvvRT

v4v1

v5

+_ +_

+_

v2+ _ v3+ _

Sum of voltage drops = Sum of voltage rises

Example 2

321

321 0

VVVV

VVVV

ab

ab

V3

V2

V1

Vab

+_

+_

+_

+

_

a

b

Vab+_

+

_

a

b321 VVVVS

Example 3Q: Find v1 and v2.

Sol:

V 12 ,V 8

A 4

205

03220

(2), Eq. into (1) Eq. ngSubstituti

(2) 020

gives KVL Applying

(1) 3 ,2

,law sOhm' From

21

21

21

vv

i

i

ii

vv

iviv

v1+ _

v2

+

_

20V

2

3+_ i

Example 4Q: Find currents and voltages.

Sol:

(3) 8330

03830

030

1, loop toKVL Appying

(2) 0

gives KCL , nodeAt

(1) 6 ,3 ,8

,law sOhm'By

21

21

21

321

332211

ii

ii

vv

iii

a

iviviv

V 6 V, 6 V, 24

A 1 A, 3A 2

gives (2) Eq. (5), Eq. & (3) Eq.By

(5) 236

(1), Eq.By

(4) 0

2, loop toKVL Appying

321

312

2323

2332

vvv

iii

iiii

vvvv

v1+ _

30V

8

3+_

i1

6+

_v3

i3

i2

Loop 1 Loop 2

a

+

_v2

b

Series Resistors

(5)

, Let

(4) or

(3)

(2), Eq.&(1) Eq.By

(2) 0

KVL, Applying

(1) ,

,law sOhm'By

21eq

eq

21

2121

21

2211

RRR

iRv

RR

vi

RRivvv

vvv

iRviRv

v1+ _

v

R1

+_

i

v2+ _

R2a

b

v +_

i

v+ _

Reqa

b

Voltage Division

vR

Rv

RR

RiRv

vR

Rv

RR

RiRv

eq

2

21

222

eq

1

21

111

v1+ _

v

R1

+_

i

v2+ _

R2a

b

v +_

i

v+ _

Reqa

b

Continued

vR

Rv

RRR

Rv

GGGG

RRRR

eq

n

N21

nn

N21eq

N21eq

1111

v +_

i

v+ _

Reqa

b

v1+ _

v

R1

+_

i

v2+ _

R2a

b

vN+ _

RN

Parallel Resistors

(5) or

(4) 111

(3) 11

(2), Eq.&(1) Eq.By

(2)

, nodeat KCL Applying

(1) ,or

,law sOhm'By

21

21

21eq

eq2121

21

22

11

2211

RR

RRR

RRR

R

v

RRv

R

v

R

vi

iii

a

R

vi

R

vi

RiRiv

eq

i a

b

R1+_ R2v

i1 i2

i a

b

Req or Geq +_v v

Current Division

iGG

G

RR

iR

R

vi

iGG

G

RR

iR

R

vi

RR

RiRiRv

21

2

21

1

22

21

1

21

2

11

21

21eq

i a

b

R1+_ R2v

i1 i2

i a

b

Req or Geq +_v v

Continued

iG

Gi

GGG

Gi

GGGG

RRRR

eq

n

N21

nn

N21eq

N21eq

1111

i a

b

Req or Geq +_v v

i a

b

R1+_ R2v

i1 i2

RN

iN

iG

Gi

GGG

Gi

GGGG

RRRR

eq

n

N21

nn

N21eq

N21eq

1111

vR

Rv

RRR

Rv

GGGG

RRRR

eq

n

N21

nn

N21eq

N21eq

1111

Brief Summary

i a

b

R1+_ R2v

i1 i2

RN

iNv1+ _v

R1

+_

i

v2+ _

R2a

b

vN+ _

RN

Example

Req

6 35

8

2

4 1

Req

26

8

2

4

Req 2.48

4

Req 14.4

How to solve the bridge network?

R1

+_vS

R2 R3

R4

R5R6

• Resistors are neither in series nor in parallel.

• Can be simplified by using 3-terminal equivalent networks.

Wye (Y)-Delta () Transformations

R3

R1 R2

1

2

3

4

R3

R1 R2

3

4

1

2

Rb

Rc

1

2

3

4

RaRb

Rc

1

2

3

4

Ra

Y T

to Y Conversion

cba

bac

cab

RRRRRRR

RRRRRRR

RRRRRRR

//)()Y(

//)()Y(

//)()Y(

323434

211313

311212

cba

ba

cba

ac

cba

cb

RRR

RRR

RRR

RRR

RRR

RRR

3

2

1

R3

R1 R2

3

4

1

2

Y

Rb

Rc

1

2

3

4

Ra

Y- Transformations

3

133221

2

133221

1

133221

R

RRRRRRR

R

RRRRRRR

R

RRRRRRR

c

b

a

cba

ba

cba

ac

cba

cb

RRR

RRR

RRR

RRR

RRR

RRR

3

2

1

Example

Rab

12.5

15

510

30

20

a

b

Rab

12.5

15

17.570 30

a

b

35

Rab7.292

10.521

a

b

Rab9.632

a

b

Applications: Lighting Systems

0N21 ... Vvvv N

Vvvv 0

N21 ...

Applications: DC Meters

Parameters: IFS and Rm

Continued

RR V R

RR A

R

Continued

elementmeter

elementmeter

VV

II

elementmeter

elementmeter

VV

II

Voltmeters

Single-range

Multiple-range

Ammeters

Single-range

Multiple-range


Recommended