+ All Categories
Home > Documents > Basic Mechanism of Epilepsy n Seizures

Basic Mechanism of Epilepsy n Seizures

Date post: 07-Jul-2018
Category:
Upload: tania
View: 219 times
Download: 0 times
Share this document with a friend

of 17

Transcript
  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    1/44

    B-SlideB-Slide 11

     Basic Mechanisms Basic Mechanisms

    Underlying SeizuresUnderlying Seizuresand Epilepsyand Epilepsy

    American Epilepsy Society

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    2/44

    B-SlideB-Slide 2 2 

     Definitions Definitions

    Seizure: the clinical manifestation of an

    abnormal and excessive synchronization of

    a population of cortical neurons

    Epilepsy: a tendency toward recurrent

    seizures unprovoked by any systemic or

    acute neurologic insults

      Epileptogenesis: sequence of events thatconverts a normal neuronal network into a

    hyperexcitable network

    Revised per Ruteckie 7/06Revised per Ruteckie 7/06

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    3/44

    B-SlideB-Slide 33

     Hippocampal Anatomy Hippocampal Anatomy

    From Chang and Lowenstein, 2003From Chang and Lowenstein, 2003

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    4/44

    B-SlideB-Slide 44

     Basic Mechanisms Underlying Basic Mechanisms Underlying

     Seizures and Epilepsy Seizures and Epilepsy 

    Feedback and

    feed-forward

    inhibition illustrated

    via cartoon andschematic of

    simplified

    hippocampal circuit

    Babb TL, Brown WJ. Pathological Findings in Epilepsy. In: Engel J. Jr. Ed.Babb TL, Brown WJ. Pathological Findings in Epilepsy. In: Engel J. Jr. Ed.Surgical Treatment of the Epilepsies. New York: Raven Press 1987: 511-540.Surgical Treatment of the Epilepsies. New York: Raven Press 1987: 511-540.

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    5/44

    B-SlideB-Slide 5 5 

     Epilepsy—Basic Neurophysiology Epilepsy—Basic Neurophysiology

    !auses of "yperexcitability:

    # excitatory post synaptic potentials $E%S%s&

    # inhibitory post synaptic potentials $'%S%s&

    # changes in voltage gated ion channels

    # alteration of local ion concentrations

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    6/44

    B-SlideB-Slide 6 6 

     Epilepsy—Basic Neurophysiology Epilepsy—Basic Neurophysiology

    (a)or *eurotransmitters in the brain:

    # +lutamate

    # +,,

    #  ,cetylcholine

    # .opamine

    # Serotonin

    # "istamine

    # /ther modulators: neuropeptides hormones

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    7/44

    B-SlideB-Slide 7 7 

     Epilepsy—Glutamate Epilepsy—Glutamate

    0he brain1s ma)or excitatory neurotransmitter 

    0wo groups of glutamate receptors

    # 'onotropic2fast synaptic transmission

     3 0hree subtypes 3 ,(%, kainate *(., 3 +lutamate-gated cation channels

    # (etabotropic2slow synaptic transmission

     3 +-protein coupled regulation of second messengers

    $c,(% and phospholipase !&

     3 (odulation of synaptic activity 

      (odulation of glutamate receptors

    # +lycine polyamine sites 4inc redox site

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    8/44

    B-SlideB-Slide 8 8 

     Epilepsy—Glutamate Epilepsy—Glutamate

    Diagram of the

    various glutamatereceptorsubtypes andlocationsFrom Takumi et al, 1998

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    9/44

    B-SlideB-Slide 99

     Epilepsy—GABA Epilepsy—GABA

      (a)or inhibitory neurotransmitter in the

    !*S

      0wo types of receptors

    # +,, ,2post-synaptic specific recognition

    sites linked to !'- channel

    # +,, 2presynaptic autoreceptors that

    reduce transmitter release by decreasingcalcium influx postsynaptic coupled to +-

    proteins to increase 56 current

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    10/44

    B-SlideB-Slide 10 10 

     Epilepsy—GABA Epilepsy—GABA

    .iagram of the +,, , receptor  

    From Olsen and Sapp, 1995 

    GABA siteGABA site

    Barbiturate siteBarbiturate site

    BenzodiazepineBenzodiazepine

     sitesite

    Steroid siteSteroid site

    Picrotoxin sitePicrotoxin site

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    11/44

    B-SlideB-Slide 1111

    ellular Mechanisms ofellular Mechanisms of

     Seizure Generation Seizure Generation  Excitation $too much&

    # 'onic2inward *a6 !a66 currents

    # *eurotransmitter2glutamate aspartate

      'nhibition $too little&

    # 'onic2inward !'- outward 56 currents# *eurotransmitter2+,,

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    12/44

    B-SlideB-Slide 12 12 

     Normal NS !unction Normal NS !unction

    Excitation 'nhibition

    glutamate

    aspartate +,,

    (odified from 7hite 899

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    13/44

    B-SlideB-Slide 1313

     Hypere"cita#ility reflects #oth increased Hypere"cita#ility reflects #oth increased

    e"citation and decreased inhi#itione"citation and decreased inhi#ition

    Excitation

    'nhibition

    +,,

    glutamateaspartate

    (odified from 7hite 899

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    14/44

    B-SlideB-Slide 1414

     Neuronal $%ntrinsic& !actors Neuronal $%ntrinsic& !actors

     Modifying Neuronal E"cita#ility Modifying Neuronal E"cita#ility  'on channel type number and distribution

      %ost-translational modification of channels

    $phosphorylation etc&;

      ,ctivation of second-messenger systems that

    affect channel function $e;g; + proteins&

      (odulation of gene expression of ion channels

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    15/44

    B-SlideB-Slide 15 15 

     Epilepsy and hannelopathies Epilepsy and hannelopathies

    'nherited

    Voltage-gated ion channel mutations

    Ligand-gated ion channel (neurotransmitter receptor) mutations

    Different mutations in the same gene can result in radically different types of seizures and epilepsy

     ,cquired

    Auto-immune (anti-potassium channel antibodies)

    Changes in channel epression after seizures

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    16/44

    B-SlideB-Slide 16 16 

     %on hannel ' Neurotransmitter %on hannel ' Neurotransmitter

     (eceptors Mutated in Epilepsy ) %  (eceptors Mutated in Epilepsy ) % 

    Voltage-gated Sodium Channel !ene "utations

    # SCN1A 

    # !eneralized Epilepsy # $ebrile Seizures %lus

    (!E$S&) type '

    # Seere "yoclonic Epilepsy of nfancy (S"E)

    # SCN1B 

    # !E$S& type *

    # SCN2A1 # !E$S&

    # +enign $amilial ,eonatal-nfantile Seizures (+$,S)

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    17/44

    B-SlideB-Slide 17 17 

     %on hannel ' Neurotransmitter %on hannel ' Neurotransmitter

     (eceptors Mutated in Epilepsy ) %%  (eceptors Mutated in Epilepsy ) %% 

    Voltage-gated Chloride Channel !ene "utations

    # CLCN2A 

    # uenile Absence Epilepsy (AE)

    # uenile "yoclonic Epilepsy ("E)

    # Epilepsy .ith !rand "al upon A.a/ening (E!"A)

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    18/44

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    19/44

    B-SlideB-Slide 1919

     %on hannel ' Neurotransmitter %on hannel ' Neurotransmitter

     (eceptors Mutated in Epilepsy ) %*  (eceptors Mutated in Epilepsy ) %* 

    N eurotransmitter 1eceptor "utations

    # GABRG2  (!A+A-receptor gamma-' subunit)

    # !E$S& type 2

    # GABRA1 (!A+A-receptor alpha-* subunit)

    # "E

    # CHRNA4 (nicotinic acetylcholine receptor alpha-3 subunit)

    # Autosomal Dominant ,octurnal $rontal Lobe Epilepsy

    (AD,$LE) type *# CHRNB2  (nicotinic acetylcholine receptor beta-' subunit)

    # AD,$LE type 2

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    20/44

    B-SlideB-Slide 20 20 

     Synaptic !actors Modifying Synaptic !actors Modifying

     Neuronal E"cita#ility Neuronal E"cita#ility

     ,lterations in expression of transmitter gated

    ionotropic channels

    %ost-translational changes in neurotransmitter

    channels

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    21/44

    B-SlideB-Slide 2121

     Non)synaptic $E"trinsic& !actors Non)synaptic $E"trinsic& !actors

     Modifying Neuronal E"cita#ility Modifying Neuronal E"cita#ility

     !hanges in extracellular ion concentration

    !hanges in extracellular space

     (odulation of transmitter metabolism or

    uptake by glial cells

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    22/44

    B-SlideB-Slide 22 22 

     Mechanisms of Generating Mechanisms of Generating

     Hypere"cita#le Net+or,s Hypere"cita#le Net+or,s  Excitatory axonal =sprouting>

      ?oss of inhibitory neurons

    ?oss of excitatory neurons =driving>

    inhibitory neurons

    !hange in neuronal firing properties

    $channelopathies&

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    23/44

    B-SlideB-Slide 2323

    *ormal

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    24/44

    B-SlideB-Slide 2424

    !hang and ?owenstein 899A

     Hippocampal ircuit hanges .ith Hippocampal ircuit hanges .ith

     Hippocampal Sclerosis Hippocampal Sclerosis

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    25/44

    B-SlideB-Slide 25 25 

    !avazos and !ross 899@

     Epileptogenesis Epileptogenesis

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    26/44

    B-SlideB-Slide 26 26 

     Electroencephalogram $EEG& Electroencephalogram $EEG&

     

    +raphical depiction of cortical electrical activity usually recorded from the scalp;

     

     ,dvantage of high temporal resolution but poor spatial resolution of cortical

    disorders;

     

    EE+ is the most important neurophysiological study for the diagnosisprognosis and treatment of epilepsy;

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    27/44

    B-SlideB-Slide 27 27 

    /0120 System of EEG Electrode/0120 System of EEG Electrode

     3lacement  3lacement 

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    28/44

    B-SlideB-Slide 28 28 

     3hysiological Basis of the EEG  3hysiological Basis of the EEG 

    Extracellular dipole generated

    by excitatory post-synaptic

    potential at apical dendrite of

    pyramidal cell

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    29/44

    B-SlideB-Slide 2929

     3hysiological Basis of the EEG 3hysiological Basis of the EEG

    $cont4&$cont4&  Electrical field

    generated by similarly

    oriented pyramidal

    cells in cortex $layer

    B& and detected by

    scalp electrode

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    30/44

    B-SlideB-Slide 30 30 

     Electroencephalogram $EEG& Electroencephalogram $EEG&

      !linical applications

    # SeizuresCepilepsy

    # Sleep

    #  ,ltered consciousness

    # Focal and diffuse disturbances in

    cerebral functioning

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    31/44

    B-SlideB-Slide 3131

     EEG !re5uencies EEG !re5uencies

    +amma: A9-@9 "z

      eta: A-A9 "z

     ,lpha: D to A "z

    0heta: to under D "z

      .elta: G "z

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    32/44

    B-SlideB-Slide 32 32 

     EEG !re5uencies EEG !re5uencies

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    33/44

    B-SlideB-Slide 3333

     EEG !re5uencies EEG !re5uencies

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    34/44

    B-SlideB-Slide 3434

     EEG A#normalities EEG A#normalities

      ackground activity abnormalities# Slowing not consistent with behavioral state

     3 (ay be focal lateralized or generalized

    # Significant asymmetry  0ransient abnormalities C .ischarges

    # Spikes

    # Sharp waves

    # Spike and slow wave complexes

    # (ay be focal lateralized or generalized

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    35/44

    B-SlideB-Slide 35 35 

    !ocal seizure generation!ocal seizure generation

    # Seizure initiation

    # burst of action potentials i;e; paroxysmaldepolarizing shift

    # hypersynchronization of neighboring cells

    # %ropagation

    # activation of nearby neurons

    # loss of surrounding inhibition

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    36/44

    B-SlideB-Slide 36 36 

     Sharp .a6es Sharp .a6es

      ,n example of aleft temporal

    lobe sharp wave

    $arrow&

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    37/44

    B-SlideB-Slide 37 37 

    -he 7%nterictal Spi,e and-he 7%nterictal Spi,e and

     3aro"ysmal Depolarization Shift8  3aro"ysmal Depolarization Shift8 'ntracellular and

    extracellular events

    of the paroxysmal

    depolarizing shift

    underlying the

    interictal

    epileptiform spike

    detected by surface

    EE+

     ,yala et al; HIA

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    38/44

    B-SlideB-Slide 38 38 

    Generalized Spi,e .a6e DischargeGeneralized Spi,e .a6e Discharge

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    39/44

    B-SlideB-Slide 3939

     EEG9 A#sence Seizure EEG9 A#sence Seizure

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    40/44

    B-SlideB-Slide 40 40 

    ircuitry Underlying Generalizedircuitry Underlying Generalized

     Epilepsies Epilepsies

    (c!ormick and !ontreras 899

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    41/44

    auses of Ac5uired Epilepsyauses of Ac5uired Epilepsy

    # Seere head in4ury

    # Cerebral hemorrhage

    # +rain tumor 

    #

    C,S infection

    # 5 Early life febrile seizures

    B-SlideB-Slide 4141

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    42/44

     De6elopment of ac5uired epilepsy De6elopment of ac5uired epilepsy

    B-SlideB-Slide 42 42 

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    43/44

     De6elopment of ac5uired epilepsy De6elopment of ac5uired epilepsy

    B-SlideB-Slide 4343

  • 8/19/2019 Basic Mechanism of Epilepsy n Seizures

    44/44

    B-SlideB-Slide 4444

     3ossi#le Mechanism of 3ossi#le Mechanism of

     Delayed Epileptogenesis Delayed Epileptogenesis  5indling model: repeated subconvulsive

    stimuli resulting in electrical

    afterdischarges# Eventually lead to stimulation-induced clinical

    seizures 

    # 'n some cases lead to spontaneous seizures

    $epilepsy&

    #  ,pplicability to human epilepsy uncertain


Recommended