+ All Categories
Home > Documents > Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Date post: 30-Mar-2015
Category:
Upload: jackeline-marion
View: 241 times
Download: 4 times
Share this document with a friend
Popular Tags:
60
Basic MOS Device Physics Lecture 16 MSE 515
Transcript
Page 1: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Basic MOS Device Physics

Lecture 16MSE 515

Page 2: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Topics

• MOS Structure• MOS IV Characteristics• CCD

Page 3: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Revolution and Evolution in Electronics

Source: IntelSource: Intel

1,000,0001,000,000

100,000100,000

10,00010,000

1,0001,000

1010

100100

11

1 Billion 1 Billion TransistorsTransistors

80868086

8028680286i386i386

i486i486PentiumPentium®®

KK

PentiumPentium®® IIII

’’7575 ’’8080 ’’8585 ’’9090 ’’9595 ’’0000 ’’0505 ’’1010

PentiumPentium®® IIIIIIPentiumPentium®® 44

’’1515

Source: IntelSource: Intel

1,000,0001,000,000

100,000100,000

10,00010,000

1,0001,000

1010

100100

11

1 Billion 1 Billion TransistorsTransistors

80868086

8028680286i386i386

i486i486PentiumPentium®®

KK

PentiumPentium®® IIII

’’7575 ’’8080 ’’8585 ’’9090 ’’9595 ’’0000 ’’0505 ’’1010

PentiumPentium®® IIIIIIPentiumPentium®® 44

’’1515

Page 4: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

NMOS Structure

LD is caused by side diffusion

Source: the terminal that provides charge carriers. (electrons in NMOS)Drain: the terminal that collects charge carriers.

Substrate contact--to reverse bias the pn junctionConnect to most negative supply voltagein most circuits.

Page 5: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

• Although no current should ideally conduct before threshold, a small percentage of electrons with energy greater than or equal to a few kT have sufficient energy to surmount the potential barriers!

Subthreshold Characteristics

Short-Channel MOSFETs

• As a result, there is a slight amount of current conduction below VT

Page 6: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Potential contours in a long channel MOSFET.

In a long channel MOSFET, the potential is uniform and parallel to the gate.

Short-Channel MOSFETs

Page 7: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Narrow Width Effect

• If the Polysilicon gate is atop the region of a LOCOS isolation where the oxide is increasing in thickness.

• It is possible to form a channel under LOCOS away from the thin gate oxide! This is quite important for devices with L < 1 mm.

Short-Channel MOSFETs

Page 8: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

CMOS Structure

PMOSNMOS

Reverse bias the pn junction

Reverse bias the pn junction

Connect to most positive supply voltage in most

circuits.

Page 9: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

MOS IV Characteristics

• Threshold Voltage• Derivation of I/V Characteristics

– I-V curve– Transconductance– Resistance in the linear region

• Second Order Effect– Body Effect– Channel Length Modulation– Subthreshold conduction

Page 10: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Threshold Voltage

1. Holes are expelled from the gate area2. Depletion region (negative ions) is

created underneath the gate.3. No current flows because no

charge carriers are available.

Page 11: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

MOSFET as a variable resistor

The conductive channel between S and D can be viewedas resistor, which is voltage dependent.

Page 12: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Threshold Voltage (3)When the surface potential increases to a critical value, inversion occurs.1. No further change in the width of the

depletion region is observed.2. A thin layer of electrons in the depletion

region appear underneath the oxide.3. A continuous n-type (hence the name

inversion) region is formed between the source and the drain. Electrons can no be sourced from S and be collected at the drain terminal. (Current, however, flows from drain to source)

4. Further increase in VG will fruther incrase the charge density.

The voltage VG required to provide an inversion layer is called the threshold voltage.

Page 13: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Implantation of p+ dopants to alter the threshold

Threshold voltage can be adjusted by implantingDopants into the channel area during fabrication.E.g. Implant p+ material to increase threshold voltage.

Page 14: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Formation of Inversion Layer in a PFET

The VGS must be sufficient negative to produce an inversion layer underneath the gate.

Page 15: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

I-V Characteristics

Page 16: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Channel Charge

A channel is formed when VG is increased to the pointthat the voltage difference between the gate and the channel exceeds VTH.

Page 17: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Application of VDS

What happens when you introduce a voltage at the drain terminal?

Page 18: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Channel Potential Variation

VX the voltage along the channel

VX increases as you move from S to D.

VG-VX is reduced as you move from S to D.

E.g. VS=0, VG=0.6, VD=0.6At x=0, VG-VX=0.6 (more than VTH)At x=L, VG-VX=0 (less than VTH)

Page 19: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Pinch Off

Small VDS

Large VDS

No channelElectrons reaches the Dvia the electric field in the depletion region

Saturation Region

Linear Region

Page 20: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

MOSFET as a controlled linear resistor

1. Take derivative of ID with respect to VDS

2. For small VDS, the drain resistance is

Page 21: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Transistor in Saturation Region

• I-V characteristics• Transconductance• Output resistance• Body transconductance

Page 22: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Saturation of Drain Current

Page 23: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Transconductance

Analog applications:How does Ids respond to changes in VGS?

Page 24: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

IDS vs VGS

0.13 um NMOSVDS=0.6 VW/L=12um/0.12 umVB=VS=0Y axis: Ids

X axis: Vgs

Page 25: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Different Expressions of Transconductance

Page 26: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Channel Length Modulation

As VDS increases, L1 will move towards the source, sincea larger VDS will increase VX .

L is really L1

ID will increase as VDS increases.The modulation of L due to VDS is called channel length modulation.

Page 27: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Controlling channel modulation

For a longer channel length, the relative change in L andHence ID for a given change in VDS is smaller.

Therefore, to minimize channel length modulation, minimumlength transistors should be avoided.

Page 28: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Output resistance due to gds

Page 29: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

MOS Device Layout

Page 30: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

MOS Capacitances

Page 31: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Detector zoologyX-ray Visible NIR MIR

l [mm]

Silicon CCD & CMOS

0.3 1.1

0.9 2.5 5 20

HgCdTe

InSb

STJ

0.1

Si:As

In this course, we concentrate on 2-D focal plane arrays. • Optical – silicon-based (CCD, CMOS)• Infrared – IR material plus silicon CMOS multiplexer

Will not address: APD (avalanche photodiodes)STJs (superconducting tunneling junctions)

Page 32: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Step 2: Charge Generation

Silicon CCD

Similar physics for IR materials

Page 33: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

33

CCD Introduction

• A CCD is a two-dimensional array of metal-oxide-semiconductor (MOS) capacitors.

• The charges are stored in the depletion region of the MOS capacitors.

• Charges are moved in the CCD circuit by manipulating the voltages on the gates of the capacitors so as to allow the charge to spill from one capacitor to the next (thus the name “charge-coupled” device).

• An amplifier provides an output voltage that can be processed.

• The CCD is a serial device where charge packets are read one at a time.

Page 34: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

34

Potential in MOS Capacitor

Page 35: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

35

CCD Phased Clocking: Summary

Page 36: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

36

123

CCD Phased Clocking: Step 3

+5V

0V

-5V

+5V

0V

-5V

+5V

0V

-5V

1

2

3

Page 37: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

37

CCD output circuit

Page 38: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

38

Charge Transfer Efficiency

• When the wells are nearly empty, charge can be trapped by impurities in the silicon. So faint images can have tails in the vertical direction.

• Modern CCDs can have a charge transfer efficiency (CTE) per transfer of 0.9999995, so after 2000 transfers only 0.1% of the charge is lost.

good CTE bad CTE

Page 39: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

39

Page 40: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Threshold Voltage

• VG=0.6 V• VD=1.2 V• CMOS: 0.13 um• W/L=12um/0.12

um• NFET

Page 41: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

I-V characteristic Equation for PMOS transistor

Page 42: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

More on Body Effect

• Example• Analysis• gmbs

Page 43: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Variable S-B Voltage

constant

Page 44: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

gm as function of region

saturation

0.13 um NMOSVGS=0.6 VW/L=12um/0.12 umVB=VS=0Y axis: gmX axis: vds

linear

Page 45: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

gds

saturation

0.13 um NMOSVGS=0.6 VW/L=12um/0.12 umVB=VS=0Y axis: gmX axis: vds

linear

Slope due to channel length modulation

Page 46: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Body Effect

The n-type inversion layer connects the source to the drain.The source terminal is connected to channel. Therefore, A nonzero VSB introduces charges to the Cdep. The math is shown in the next slide.

A nonzero VSB for NFET or VBS for PFET has the net effectOf increasing the |VTH|

Page 47: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Experimental Data of Body Effect

Page 48: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

W/L=12 um/0.12umCMOS: 0.13 um processVDS=50 mVSimulator: 433 mVAlternative method: 376 mV

Page 49: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Subthreshold current

Subtresholdregion

As VG increases, the surface potential will increase.

There is very little majority carriers underneath the gate.

There are two pn junctions. (B-S and B-D)The density of the minority carrierdepends on the difference in the voltage across the two pn junction diode.A diffusion current will result the electron densities at D and S are not identical.

Page 50: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Conceptual Visualization of Saturation and Triode(Linear) Region

NMOS

PMOS

Page 51: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

I-V Characteristic Equations for NMOS transistor

(Triode Region:VDS<VGS-VTH)

Saturation: VDS>VGS-VTH

To produce a channel (VGS>VTH)

Page 52: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

VTH as a function of VSB

(VTH0: with out body effect)

Body effect coefficient

VSB dependent

Page 53: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Sensitivity of IDS to VSB

(chain rule)

gm

η=1/3 to 1/4, bias dependent

Page 54: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Bias dependent CGS and CGD

Page 55: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Complete NMOS Small Signal Model

Page 56: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Complete PMOS Small Signal Model

Page 57: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Transconductance in the triode region

(Triode region)

For amplifier applications, MOSFETs are biased in saturation

Page 58: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Small signal model of an NMOS

Page 59: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.
Page 60: Basic MOS Device Physics Lecture 16 MSE 515. Topics MOS Structure MOS IV Characteristics CCD.

Small Signal Model

• If the bias current and voltages of a MOSFET are only disturbed slightly by signals, the nonlinear amd large signal model an be reduced to linear and small signal representation.


Recommended