+ All Categories
Home > Documents > Basics of QCD Lecture 1: the core ingredients - ICTP … · Basics of QCD Lecture 1: the core...

Basics of QCD Lecture 1: the core ingredients - ICTP … · Basics of QCD Lecture 1: the core...

Date post: 07-Aug-2018
Category:
Upload: vodieu
View: 214 times
Download: 0 times
Share this document with a friend
34
Basics of QCD Lecture 1: the core ingredients Gavin Salam CERN Theory Unit ICTP–SAIFR school on QCD and LHC physics July 2015, S˜ ao Paulo, Brazil
Transcript

Basics of QCDLecture 1: the core ingredients

Gavin Salam

CERN Theory Unit

ICTP–SAIFR school on QCD and LHC physicsJuly 2015, Sao Paulo, Brazil

QCD[What is QCD]

QUANTUM CHROMODYNAMICS

The theory of quarks, gluons and their interactions

It’s central to allmodern colliders.

(And QCD is whatwe’re made of)

Gavin Salam (CERN) QCD Basics 1 2 / 24

QCD predictions v. data for many processes[What is QCD]

∫L dt

[fb−1] Reference

ts−chantotal

95% CL upper limit 0.7 ATLAS-CONF-2011-11895% CL upper limit 20.3 arXiv:1410.0647 [hep-ex]

W±W±jj EWKfiducial

20.3 PRL 113, 141803 (2014)

Wγγfiducial, njet=0 20.3 arXiv:1503.03243 [hep-ex]

H→γγfiducial

20.3 Preliminary

Zjj EWKfiducial

20.3 JHEP 04, 031 (2014)

ttγfiducial

4.6 arXiv:1502.00586 [hep-ex]

ttZtotal

95% CL upper limit 4.7 ATLAS-CONF-2012-126

20.3 ATLAS-CONF-2014-038

ttWtotal

20.3 ATLAS-CONF-2014-038

Zγfiducial

4.6 PRD 87, 112003 (2013)arXiv:1407.1618 [hep-ph]

WW+WZfiducial

4.6 JHEP 01, 049 (2015)

Wγfiducial

4.6 PRD 87, 112003 (2013)arXiv:1407.1618 [hep-ph]

ZZtotal

4.6 JHEP 03, 128 (2013)

20.3 ATLAS-CONF-2013-020

WZtotal

4.6 EPJC 72, 2173 (2012)

13.0 ATLAS-CONF-2013-021

Wttotal

2.0 PLB 716, 142-159 (2012)

20.3 ATLAS-CONF-2013-100

γγfiducial

4.9 JHEP 01, 086 (2013)

WWtotal

4.6 PRD 87, 112001 (2013)

20.3 ATLAS-CONF-2014-033

tt−chantotal

4.6 PRD 90, 112006 (2014)

20.3 ATLAS-CONF-2014-007

ttfiducial

4.6 Eur. Phys. J. C 74: 3109 (2014)

20.3 Eur. Phys. J. C 74: 3109 (2014)

Ztotal

0.035 PRD 85, 072004 (2012)

Wtotal

0.035 PRD 85, 072004 (2012)

Dijets R=0.4|y |<3.0, y∗<3.0 4.5 JHEP 05, 059 (2014)0.3 < mjj < 5 TeV

Jets R=0.4|y |<3.0 4.5 arXiv:1410.8857 [hep-ex]0.1 < pT < 2 TeV

pptotal 8×10−8 Nucl. Phys. B, 486-548 (2014)

σ [pb]10−3 10−2 10−1 1 101 102 103 104 105 106 1011

observed/theory0.5 1 1.5 2

LHC pp√s = 7 TeV

TheoryObservedstatstat+syst

LHC pp√s = 8 TeV

Theory

Observedstatstat+syst

Standard Model Production Cross Section Measurements Status: March 2015

ATLAS Preliminary

Run 1√s = 7, 8 TeV

Gavin Salam (CERN) QCD Basics 1 3 / 24

QCD for Higgs physics[What is QCD]

QCD is especially relevant inorder to deduce information

about the Higgs boson.

[cf. lectures by Andre Sznajder& Claude Duhr]

Gavin Salam (CERN) QCD Basics 1 4 / 24

QCD for Higgs physics[What is QCD]

QCD is especially relevant inorder to deduce information

about the Higgs boson.

[cf. lectures by Andre Sznajder& Claude Duhr]

) µSignal strength (

2− 0 2 4

ATLASIndividual analysis

-1 = 7 TeV, 4.5-4.7 fbs

-1 = 8 TeV, 20.3 fbs

0.27-

0.27+ = 1.17µOverall:

0.38-

0.38+ = 1.32µggF:

0.7-

0.7+ = 0.8µVBF:

1.6-

1.6+ = 1.0µWH:

0.1-

3.7+ = 0.1µZH:

γγ →H 125.4

125.4

125.4

125.4

125.4

0.33-

0.40+ = 1.44µOverall:

0.4-

0.5+ = 1.7µggF+ttH:

0.9-

1.6+ = 0.3µVBF+VH:

ZZ*→H 125.36

125.36

125.36

0.21-

0.24+ = 1.16µOverall:

0.26-

0.29+ = 0.98µggF:

0.47-

0.55+ = 1.28µVBF:

1.3-

1.6+ = 3.0µVH:

WW*→H 125.36

125.36

125.36

125.36

0.37-

0.43+ = 1.43µOverall:

1.2-

1.5+ = 2.0µggF:

0.54-

0.59+ = 1.24µVBF+VH:

ττ →H 125.36

125.36

125.36

0.40-

0.40+ = 0.52µOverall:

0.61-

0.65+ = 1.11µWH:

0.49-

0.52+ = 0.05µZH:

b Vb→VH 125.36

125

125

3.7-

3.7+ = -0.7µOverall: µµ →H 125.5

4.3-

4.5+ = 2.7µOverall: γ Z→H 125.5

1.1-

1.1+ = 1.5µ: bb

1.2-

1.4+ = 2.1µMultilepton:

1.75-

2.62+ = 1.3µ: γγ

ttH125

125

125.4

(GeV)Hm

Input measurements

µ on σ 1±

Gavin Salam (CERN) QCD Basics 1 4 / 24

QCD and searches for new physics[What is QCD]

Identification and/or exclusion ofpotential new physics relies indiverse ways on a QCD-basedunderstanding of signals and

backgrounds.

Search for stop squarks

[GeV]missT

pE

vent

s / 5

0 G

eV0

20

40

60

80

100

120

140Data

+Xhadrτ →/Wtt+Xµ e,→/Wtt

νν→Z (500, 100)0χ∼ t→t~

(650, 50)0χ∼ t→t~

CMS

(8 TeV)-119.4 fb

[GeV]missT

p200 250 300 350 400 450 500D

ata

Dat

a -

MC

-2-1012

Gavin Salam (CERN) QCD Basics 1 5 / 24

QCD and searches for new physics[What is QCD]

Mass scales [GeV]0 200 400 600 800 1000 1200 1400 1600 1800

233'λ µ tbt→

Rt~

233λt ντµ →

Rt~ 123

λt ντµ → R

t~

122λt νeµ →

Rt~

112''λ qqqq →

Rq~ 233

'λ µ qbt→ q~

231'λ µ qbt→ q

~ 233λ ν qll→ q

~123

λ ν qll→ q~

122λ ν qll→ q

~ 112''λ qqqq → g

~323

''λ tbs → g~ 112

''λ qqq → g~

113/223''λ qqb → g

~ 233'λ µ qbt→ g

~231'λ µ qbt→ g

~233

λ ν qll→ g~ 123

λ ν qll→ g~

122λ ν qll→ g

~

0χ∼ l → l~

0

χ∼ 0

χ∼ν τττ → ±χ∼ 2

0χ∼

0

χ∼ 0

χ∼ν τ ll→ ±χ∼ 2

0χ∼

0χ∼

0χ∼ H W →

2

0χ∼ ±χ∼

0χ∼

0χ∼ H Z →

2

0χ∼

2

0χ∼

0χ∼

0χ∼ W Z →

2

0χ∼ ±χ∼

0χ∼

0χ∼ Z Z →

2

0χ∼

2

0χ∼

0χ∼

0χ∼νν-l

+ l→

-χ∼

+χ∼

0

χ∼ 0

χ∼ν lll → ±χ∼ 2

0χ∼

0χ∼ bZ → b

~

0χ∼ tW → b

~

0χ∼ b → b

~

) H 1

0χ∼ t →

1t~

(→ 2

t~

) Z 1

0χ∼ t →

1t~

(→ 2

t~

H G)→ 0

χ∼(0

χ∼ t b → t~

)0

χ∼ W→ +

χ∼ b(→ t~

0χ∼ t → t

~

0χ∼ q → q

~

))0

χ∼ W→ ±

χ∼ t(→ b~

b(→ g~

)0

χ∼ W→±

χ∼ qq(→ g~

)0

χ∼ t→ t~

t(→ g~

0χ∼ tt → g

~

0χ∼ bb → g

~

0χ∼ qq → g

~

SUS-13-006 L=19.5 /fb

SUS-13-008 SUS-13-013 L=19.5 /fb

SUS-13-011 L=19.5 /fbx = 0.25 x = 0.50

x = 0.75

SUS-14-002 L=19.5 /fb

SUS-13-006 L=19.5 /fbx = 0.05

x = 0.50x = 0.95

SUS-13-006 L=19.5 /fb

SUS-12-027 L=9.2 /fb

SUS-13-007 SUS-13-013 L=19.4 19.5 /fb

SUS-12-027 L=9.2 /fb

SUS 13-019 L=19.5 /fb

SUS-14-002 L=19.5 /fb

SUS-12-027 L=9.2 /fbSUS-13-003 L=19.5 9.2 /fb

SUS-13-006 L=19.5 /fb

SUS-12-027 L=9.2 /fb

EXO-12-049 L=19.5 /fb

SUS-14-011 L=19.5 /fb

SUS-12-027 L=9.2 /fb

SUS-13-008 L=19.5 /fb

SUS-12-027 L=9.2 /fb

EXO-12-049 L=19.5 /fb

SUS-12-027 L=9.2 /fb

SUS-12-027 L=9.2 /fb

SUS-13-024 SUS-13-004 L=19.5 /fb

SUS-13-003 L=19.5 /fb

SUS-12-027 L=9.2 /fb

SUS-13-019 L=19.5 /fb

SUS-13-018 L=19.4 /fb

SUS-13-014 L=19.5 /fb

SUS-14-011 SUS-13-019 L=19.3 19.5 /fb

SUS-13-008 SUS-13-013 L=19.5 /fb

SUS-13-024 SUS-13-004 L=19.5 /fb

SUS-13-013 L=19.5 /fb x = 0.20x = 0.50

SUS-12-027 L=9.2 /fb

SUS-13-003 L=19.5 9.2 /fb

SUS-12-027 L=9.2 /fb

SUS-13-008 SUS-13-013 L=19.5 /fb

SUS-12-027 L=9.2 /fb

SUS-14-002 L=19.5 /fb

SUS-12-027 L=9.2 /fb

SUS-13-013 L=19.5 /fb

SUS-13-006 L=19.5 /fb x = 0.05x = 0.50x = 0.95

SUS-13-006 L=19.5 /fb

RP

Vgl

uino

pro

duct

ion

squa

rkst

opsb

otto

mE

WK

gau

gino

ssl

epto

n

Summary of CMS SUSY Results* in SMS framework

CMS Preliminary

m(mother)-m(LSP)=200 GeV m(LSP)=0 GeV

ICHEP 2014

lspm⋅+(1-x)

motherm⋅ = xintermediatem

For decays with intermediate mass,

Only a selection of available mass limits*Observed limits, theory uncertainties not included

Probe *up to* the quoted mass limit

Gavin Salam (CERN) QCD Basics 1 6 / 24

Aims of the course[What is QCD]

The school will cover many aspects of QCD, from theadvanced calculation techniques to the experimental

consequences.

This course:

A reminder of what QCD is

A few core equations & concepts(running coupling, collider cross sectionsinfrared divergences and infrared safety)

More depth on topics not covered in other lectures(parton distribution functions, jets)

Gavin Salam (CERN) QCD Basics 1 7 / 24

The ingredients of QCD[What is QCD]

I Quarks (and anti-quarks): they come in 3 colours

I Gluons: a bit like photons in QEDBut there are 8 of them, and they’re colour charged

I And a coupling, αs, that’s not so small and runs fastAt LHC, in the range 0.08(@ 5 TeV) to O (1)(@ 0.5 GeV)

Gavin Salam (CERN) QCD Basics 1 8 / 24

Lagrangian + colour[What is QCD]

Quarks — 3 colours: ψa =

ψ1

ψ2

ψ3

Quark part of Lagrangian:

Lq = ψa(iγµ∂µδab − gsγµtCabAC

µ −m)ψb

SU(3) local gauge symmetry ↔ 8 (= 32 − 1) generators t1ab . . . t

8ab

corresponding to 8 gluons A1µ . . .A8

µ.

A representation is: tA = 12λ

A,

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

, λ4 =

0 0 10 0 01 0 0

,

λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

, λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

0 0

0 1√3

0

0 0 −2√3

,

Gavin Salam (CERN) QCD Basics 1 9 / 24

Let’s write down QCD in full detail

(There’s a lot to absorb here — but it should become morepalatable as we return to individual elements later)

Lagrangian + colour[What is QCD]

Quarks — 3 colours: ψa =

ψ1

ψ2

ψ3

Quark part of Lagrangian:

Lq = ψa(iγµ∂µδab − gsγµtCabAC

µ −m)ψb

SU(3) local gauge symmetry ↔ 8 (= 32 − 1) generators t1ab . . . t

8ab

corresponding to 8 gluons A1µ . . .A8

µ.

A representation is: tA = 12λ

A,

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

, λ4 =

0 0 10 0 01 0 0

,

λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

, λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

0 0

0 1√3

0

0 0 −2√3

,

Gavin Salam (CERN) QCD Basics 1 9 / 24

Lagrangian + colour[What is QCD]

Quarks — 3 colours: ψa =

ψ1

ψ2

ψ3

Quark part of Lagrangian:

Lq = ψa(iγµ∂µδab − gsγµtCabAC

µ −m)ψb

SU(3) local gauge symmetry ↔ 8 (= 32 − 1) generators t1ab . . . t

8ab

corresponding to 8 gluons A1µ . . .A8

µ.

A representation is: tA = 12λ

A,

λ1 =

0 1 01 0 00 0 0

, λ2 =

0 −i 0i 0 00 0 0

, λ3 =

1 0 00 −1 00 0 0

, λ4 =

0 0 10 0 01 0 0

,

λ5 =

0 0 −i0 0 0i 0 0

, λ6 =

0 0 00 0 10 1 0

, λ7 =

0 0 00 0 −i0 i 0

, λ8 =

1√3

0 0

0 1√3

0

0 0 −2√3

,

Gavin Salam (CERN) QCD Basics 1 9 / 24

Lagrangian: gluonic part[What is QCD]

Field tensor: FAµν = ∂µAA

ν − ∂νAAν − gs fABCAB

µACν [tA, tB ] = ifABC t

C

fABC are structure constants of SU(3) (antisymmetric in all indices —SU(2) equivalent was εABC ). Needed for gauge invariance of gluon part ofLagrangian:

LG = −1

4FµνA FAµν

Exercise

Consider gauge transformations

ψ → U(x)ψ , U(x) = e iuA(x)tA

How should the gluon field ACµ transform in order for Lq to be gague

invariant. Show that with the same transformations, LG is gague invariant.

Gavin Salam (CERN) QCD Basics 1 10 / 24

Lagrangian: gluonic part[What is QCD]

Field tensor: FAµν = ∂µAA

ν − ∂νAAν − gs fABCAB

µACν [tA, tB ] = ifABC t

C

fABC are structure constants of SU(3) (antisymmetric in all indices —SU(2) equivalent was εABC ). Needed for gauge invariance of gluon part ofLagrangian:

LG = −1

4FµνA FAµν

Exercise

Consider gauge transformations

ψ → U(x)ψ , U(x) = e iuA(x)tA

How should the gluon field ACµ transform in order for Lq to be gague

invariant. Show that with the same transformations, LG is gague invariant.

Gavin Salam (CERN) QCD Basics 1 10 / 24

Lagrangian: gluonic part[What is QCD]

Field tensor: FAµν = ∂µAA

ν − ∂νAAν − gs fABCAB

µACν [tA, tB ] = ifABC t

C

fABC are structure constants of SU(3) (antisymmetric in all indices —SU(2) equivalent was εABC ). Needed for gauge invariance of gluon part ofLagrangian:

LG = −1

4FµνA FAµν

Exercise

Consider gauge transformations

ψ → U(x)ψ , U(x) = e iuA(x)tA

How should the gluon field ACµ transform in order for Lq to be gague

invariant. Show that with the same transformations, LG is gague invariant.

Gavin Salam (CERN) QCD Basics 1 10 / 24

Perturbation theory[What is QCD]

[Perturbation theory]

Relies on idea of order-by-order expansion small coupling, αs � 1

αs + α2s︸︷︷︸

small

+ α3s︸︷︷︸

smaller

+ . . .︸︷︷︸negligible?

Interaction vertices of Feynman rules:A, µ

ba

−igstAbaγµ

A, µ

B, ν

C, ρ

p

q

r

−gs f ABC [(p − q)ρgµν

+(q − r)µgνρ

+(r − p)νgρµ]

B, ν

D, σ

C, ρ

A, µ

−ig2s f

XAC f XBD [gµνgρσ −gµσgνγ ] + (C , γ)↔

(D, ρ) + (B, ν)↔ (C , γ)

These expressions are fairly complex, so you reallydon’t want to have to deal with too many orders ofthem! i.e. αs had better be small. . .

[Zvi Bern will show you how to do things more easily!]

Gavin Salam (CERN) QCD Basics 1 11 / 24

What do Feynman rules mean physically?[What is QCD]

[Perturbation theory]

A, µ

b a

ψb(−igstAbaγµ)ψa

A, µ

b a

( 0 1 0 )

︸ ︷︷ ︸ψb

0 1 01 0 00 0 0

︸ ︷︷ ︸

t1ab

100

︸ ︷︷ ︸

ψa

A gluon emission repaints the quark colour.A gluon itself carries colour and anti-colour.

Gavin Salam (CERN) QCD Basics 1 12 / 24

What does “ggg” Feynman rule mean?[What is QCD]

[Perturbation theory]

A, µ

B, ν

C, ρ

p

q

r

−gs f ABC [(p − q)ρgµν

+(q − r)µgνρ

+(r − p)νgρµ]

A, µ

B, ν

C, ρ

p

q

r

A gluon emission also repaints the gluon colours.

Because a gluon carries colour + anti-colour, it emits ∼twice as strongly as a quark (just has colour)

Gavin Salam (CERN) QCD Basics 1 13 / 24

Quick guide to colour algebra[What is QCD]

[Perturbation theory]

Tr(tAtB) = TRδAB , TR = 1

2

A B

∑A tAabt

Abc = CF δac , CF =

N2c − 1

2Nc=

4

3a c

∑C ,D f ACD f BCD = CAδ

AB , CA = Nc = 3A B

tAabtAcd =

1

2δbcδad −

1

2Ncδabδcd (Fierz)

1

2 2N

−1

b a

c d

=

Nc ≡ number of colours = 3 for QCD

Gavin Salam (CERN) QCD Basics 1 14 / 24

Quick guide to colour algebra[What is QCD]

[Perturbation theory]

Tr(tAtB) = TRδAB , TR = 1

2

A B

∑A tAabt

Abc = CF δac , CF =

N2c − 1

2Nc=

4

3a c

∑C ,D f ACD f BCD = CAδ

AB , CA = Nc = 3A B

tAabtAcd =

1

2δbcδad −

1

2Ncδabδcd (Fierz)

1

2 2N

−1

b a

c d

=

Nc ≡ number of colours = 3 for QCD

Gavin Salam (CERN) QCD Basics 1 14 / 24

Quick guide to colour algebra[What is QCD]

[Perturbation theory]

Tr(tAtB) = TRδAB , TR = 1

2

A B

∑A tAabt

Abc = CF δac , CF =

N2c − 1

2Nc=

4

3a c

∑C ,D f ACD f BCD = CAδ

AB , CA = Nc = 3A B

tAabtAcd =

1

2δbcδad −

1

2Ncδabδcd (Fierz)

1

2 2N

−1

b a

c d

=

Nc ≡ number of colours = 3 for QCD

Gavin Salam (CERN) QCD Basics 1 14 / 24

Quick guide to colour algebra[What is QCD]

[Perturbation theory]

Tr(tAtB) = TRδAB , TR = 1

2

A B

∑A tAabt

Abc = CF δac , CF =

N2c − 1

2Nc=

4

3a c

∑C ,D f ACD f BCD = CAδ

AB , CA = Nc = 3A B

tAabtAcd =

1

2δbcδad −

1

2Ncδabδcd (Fierz)

1

2 2N

−1

b a

c d

=

Nc ≡ number of colours = 3 for QCD

Gavin Salam (CERN) QCD Basics 1 14 / 24

Exercise[What is QCD]

[Perturbation theory]

Use the Fierz identity (fourth line of previous slide) to derive the secondline.

Gavin Salam (CERN) QCD Basics 1 15 / 24

The running coupling[What is QCD]

[Running coupling]

All couplings run (QED, QCD, EW), i.e. they depend on the momentumscale (Q2) of your process.

The evolution equation for the QCD coupling, αs(Q2), is:

Q2 ∂αs

∂Q2= β(αs) , β(αs) = −α2

s (b0 + b1αs + b2α2s + . . .) ,

b0 =11CA − 2nf

12π, b1 =

17C 2A − 5CAnf − 3CFnf

24π2=

153− 19nf24π2

Note sign: Asymptotic Freedom, due to gluon to self-interaction

I At high scales Q, coupling becomes smallåquarks and gluons are almost free, interactions are weak

I At low scales, coupling becomes strongåquarks and gluons interact strongly — confined into hadrons

Perturbation theory fails.

Gavin Salam (CERN) QCD Basics 1 16 / 24

The running coupling[What is QCD]

[Running coupling]

All couplings run (QED, QCD, EW), i.e. they depend on the momentumscale (Q2) of your process.

The evolution equation for the QCD coupling, αs(Q2), is:

Q2 ∂αs

∂Q2= β(αs) , β(αs) = −α2

s (b0 + b1αs + b2α2s + . . .) ,

b0 =11CA − 2nf

12π, b1 =

17C 2A − 5CAnf − 3CFnf

24π2=

153− 19nf24π2

Note sign: Asymptotic Freedom, due to gluon to self-interaction

I At high scales Q, coupling becomes smallåquarks and gluons are almost free, interactions are weak

I At low scales, coupling becomes strongåquarks and gluons interact strongly — confined into hadrons

Perturbation theory fails.

Gavin Salam (CERN) QCD Basics 1 16 / 24

Running coupling (cont.)[What is QCD]

[Running coupling]

Solve Q2 ∂αs

∂Q2= −b0α

2s ⇒ αs(Q

2) =αs(Q

20 )

1 + b0αs(Q20 ) ln Q2

Q20

=1

b0 ln Q2

Λ2

Λ ' 0.2 GeV (aka ΛQCD) isthe fundamental scale of QCD,at which coupling blows up.

I Λ sets the scale for hadronmasses(NB: Λ not unambiguouslydefined wrt higher orders)

I Perturbative calculations validfor scales Q � Λ.

QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit

0.1

0.2

0.3

αs (Q)

1 10 100Q [GeV]

Heavy Quarkonia (NLO)

e+e– jets & shapes (res. NNLO)

DIS jets (NLO)

Sept. 2013

Lattice QCD (NNLO)

(N3LO)

τ decays (N3LO)

1000

pp –> jets (NLO)(–)

Gavin Salam (CERN) QCD Basics 1 17 / 24

Running coupling (cont.)[What is QCD]

[Running coupling]

Solve Q2 ∂αs

∂Q2= −b0α

2s ⇒ αs(Q

2) =αs(Q

20 )

1 + b0αs(Q20 ) ln Q2

Q20

=1

b0 ln Q2

Λ2

Λ ' 0.2 GeV (aka ΛQCD) isthe fundamental scale of QCD,at which coupling blows up.

I Λ sets the scale for hadronmasses(NB: Λ not unambiguouslydefined wrt higher orders)

I Perturbative calculations validfor scales Q � Λ.

QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit

0.1

0.2

0.3

αs (Q)

1 10 100Q [GeV]

Heavy Quarkonia (NLO)

e+e– jets & shapes (res. NNLO)

DIS jets (NLO)

Sept. 2013

Lattice QCD (NNLO)

(N3LO)

τ decays (N3LO)

1000

pp –> jets (NLO)(–)

Gavin Salam (CERN) QCD Basics 1 17 / 24

Nobel prize citation (annotated by Skands)[What is QCD]

[Running coupling]

Gavin Salam (CERN) QCD Basics 1 18 / 24

Exercise

There is a freedom in defining the “scheme” for αs. E.g.

αscheme-Bs = αscheme-A

s + cB(αscheme-As )2

where cB is some scheme-conversion coefficient.

The β-function coefficients, usually given in the so-calledMS renormalisation scheme, are known up to b3.

Which of the b0, b1, b2, etc. coefficients is modified if thescheme is changed?

Gavin Salam (CERN) QCD Basics 1 19 / 24

A dilemna[Basic methods]

QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit

0.1

0.2

0.3

αs (Q)

1 10 100Q [GeV]

Heavy Quarkonia (NLO)

e+e– jets & shapes (res. NNLO)

DIS jets (NLO)

Sept. 2013

Lattice QCD (NNLO)

(N3LO)

τ decays (N3LO)

1000

pp –> jets (NLO)(–)

I We want to investigate collisions athigh energies (∼ 100 GeV to fewTeV), where the coupling is small→ perturbative methods are thenatural choice

I But the LHC collides protons,m ' 0.94 GeV, which definitelyinvolve strong coupling physics

There is no escape from non-perturbative physics

Gavin Salam (CERN) QCD Basics 1 20 / 24

Lattice QCD[Basic methods]

[Lattice]

I Put all the quark and gluon fieldsof QCD on a 4D-lattice

NB: with imaginary time

I Figure out which fieldconfigurations are most likely (byMonte Carlo sampling).

I You’ve solved QCD

image credits: fdecomite [Flickr]

Gavin Salam (CERN) QCD Basics 1 21 / 24

Lattice hadron masses[Basic methods]

[Lattice]

Lattice QCD is great at cal-culation static properties of asingle hadron.

E.g. the hadron mass spec-trum

Durr et al ’08

Gavin Salam (CERN) QCD Basics 1 22 / 24

Lattice for LHC?[Basic methods]

[Lattice]

How big a lattice do you need for an LHC collision @ 14 TeV?

Lattice spacing:1

14 TeV∼ 10−5 fm

Lattice extent:

I non-perturbative dynamics for quark/hadron near rest takes place on

timescale t ∼ 1

0.5 GeV∼ 0.4 fm/c

I But quarks at LHC have effective boost factor ∼ 104

I So lattice extent should be ∼ 4000 fm

Total: need ∼ 4× 108 lattice units in each direction, or 3× 1034 nodes total.Plus clever tricks to deal with high particle multiplicity,

imaginary v. real time, etc.

Gavin Salam (CERN) QCD Basics 1 23 / 24

Neither lattice QCD nor perturbative QCD can offera full solution to using QCD at colliders

What the community has settled on is

1) factorisation of initial state non-perturbative problem

from

2) the “hard process,” calculated perturbatively

supplemented with

3) non-perturbative modelling of final-state hadronic-scale processes(“hadronisation”).

Gavin Salam (CERN) QCD Basics 1 24 / 24


Recommended