+ All Categories
Home > Documents > Basics on High Frequency Circuit Analysis -...

Basics on High Frequency Circuit Analysis -...

Date post: 04-May-2018
Category:
Upload: nguyenthuan
View: 227 times
Download: 0 times
Share this document with a friend
31
Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez April 25, 2018 1 1 Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas Sánchez Most of the figures of this presentation were taken from Agilent Technologies Educator’s Corner: 1999 RF Design and Measurement Seminar, David Ballo, Joe Civello, Ed Henicle, Sara Meszaros, Andy Potter, Boyd Shaw, My Le Truong 2 Dr. J. E. Rayas Sánchez Electrical Size Low frequencies wavelengths >> wire length current (I) travels down wires easily for efficient power transmission measured voltage and current not dependent on position along wire High frequencies Wavelength or < length of transmission medium need transmission lines for efficient power transmission matching to characteristic impedance (Z 0 ) is very important for low reflection and maximum power transfer measured envelope voltage dependent on position along line I + -
Transcript
Page 1: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

1

1

Basics on High Frequency Circuit Analysis

Dr. José Ernesto Rayas Sánchez

Most of the figures of this presentation were taken from Agilent Technologies Educator’s Corner: 1999 RF Design and Measurement Seminar, David Ballo, Joe Civello, Ed Henicle, Sara Meszaros, Andy Potter, BoydShaw, My Le Truong

2Dr. J. E. Rayas Sánchez

Electrical Size

Low frequencies wavelengths >> wire length current (I) travels down wires easily for efficient power transmission measured voltage and current not dependent on position along wire

High frequencies Wavelength or < length of transmission medium need transmission lines for efficient power transmission matching to characteristic impedance (Z0) is very important for low

reflection and maximum power transfer measured envelope voltage dependent on position along line

I+ -

Page 2: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

2

3Dr. J. E. Rayas Sánchez

The Need of Transmission Line Theory

For analog circuits:

If the physical length of the transmission media is larger 10% of the wavelength of the highest frequency of interest

For digital circuits:

If the propagation time in the longest transmission path is larger than 10% of the fastest transition time

4Dr. J. E. Rayas Sánchez

Common Transmission Media

Uniform Interconnects

microstrip

h

w

coplanar

w1

w2

r

waveguide

twisted-paircoaxial

b

a

h

w

(Hewlett-Packard's RF Design and Measurement Seminar, 2000)

r

Page 3: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

3

5Dr. J. E. Rayas Sánchez

Common Transmission Media (cont)

Practical interconnects can be decomposed in segments of uniform interconnects (usually necessary)

Components(Chip + Pkg)

PCB(Motherboard)

PCB(add-in card)

Connector

(H. Heck, 2005)

6Dr. J. E. Rayas Sánchez

Common Transmission Media (cont)

High-speed BGA (Ball Grid Array) packagesChip

Board

Flip chip interconnect (bump)

Signal layer

Signal layer

Power/ground plane

Power/ground plane

Through via

Burried via

Complete signal path (chip to board)

Chip carrier (substrate)

BGA ball

Blind via

Page 4: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

4

7Dr. J. E. Rayas Sánchez

From Lumped Circuits to Distributed Circuits

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX)

8Dr. J. E. Rayas Sánchez

Transmission Line Model

The interconnect is modeled using an infinite number of RLCG sections

(R. Ludwig and P. Bretchko, RF Circuit Design, Prentice Hall, 2000)

Page 5: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

5

9Dr. J. E. Rayas Sánchez

Transmission Line Model

The interconnect is modeled using an infinite number of RLCG sections

(R. Ludwig and P. Bretchko, RF Circuit Design, Prentice Hall, 2000)

10Dr. J. E. Rayas Sánchez

Transmission Line Model

Generic equivalent circuit for each section (R, L, C and G are per unit length)

The interconnect is modeled using an infinite number of these sections, making

(R. Ludwig and P. Bretchko, RF Circuit Design, Prentice Hall, 2000)

0z

Page 6: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

6

11Dr. J. E. Rayas Sánchez

Transmission Line Equations

Time-Domain (Telegrapher Equations)

Telegrapher Equations in Frequency-Domain

ttzi

LtzRiz

tzv

),(),(

),(

ttzv

CtzGvz

tzi

),(),(

),(

)()()(

zILjRdz

zdV

)()()(

zVCjGdz

zdI

12Dr. J. E. Rayas Sánchez

Transmission Line Equations (cont)

Wave equation (frequency-domain)

whereis the complex propagation constant

jCjGLjR ))((

Solutions to the wave equation are

zz eVeVzV 00)( zz eIeIzI 00)(

0)()( 2

2

2

zVdz

zVd 0)()( 2

2

2

zIdz

zId

incident wavesreflected waves

Page 7: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

7

13Dr. J. E. Rayas Sánchez

Transmission Line Equations (cont)

Solutions in the frequency domain

Solutions in the time domain

zz eVeVzV 00)(zz eIeIzI 00)(

zz eztVeztVtzv )cos(||)cos(||),( 00

Phase velocity, wave velocity or propagation speed

2p

f

v

jCjGLjR ))((

Wavelength

dtdz

vp

(speed at which a constant phase point travels down the line)

14Dr. J. E. Rayas Sánchez

Transmission Line Symbol

(Lossy) Transmission line

Length along the line

Z0,

l

Z0,

0l

ZL

z

Page 8: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

8

15Dr. J. E. Rayas Sánchez

Characteristic Impedance

Characteristic impedance of the TL

CjGLjR

Z

0

0

0

0

00 I

VIV

Z

16Dr. J. E. Rayas Sánchez

Reflection Coefficient

Reflection coefficient along the line, l

Reflection coefficient at the load,

l

l

l

l eVV

eVeV

l

2

0

0

0

0)(

0L

0L

0

0

0

0)0(ZZZZ

II

VV

ll

l

l

l

l eII

eIeI

l

2

0

0

0

0)(

Z0,

0l

ZL

Page 9: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

9

17Dr. J. E. Rayas Sánchez

Input Impedance

Input impedance along the line

)tanh()tanh(

)()(

)(L0

0L0in lZZ

lZZZ

lIlV

lZ

Z0,

0l

ZLZin

18Dr. J. E. Rayas Sánchez

Modeling Uniform Interconnects

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX)

Page 10: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

10

19Dr. J. E. Rayas Sánchez

Modeling Uniform Interconnects (cont)

Parasitic effects associated to each transmission media

– Capacitance between conductors, C

– Resistance of conductors (conductor losses), R

– Inductance of conductor loops, L

– Dielectric conductivity (dielectric losses), G

R, C, L, and G must be determined per unit length

20Dr. J. E. Rayas Sánchez

Interconnect Shunt Capacitance

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX)

F/m) 10854.8( 120

Page 11: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

11

21Dr. J. E. Rayas Sánchez

Fringing Capacitance Effect

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX)

22Dr. J. E. Rayas Sánchez

Interconnect Series Inductance

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX)

H/m) 104( 70

Page 12: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

12

23Dr. J. E. Rayas Sánchez

Interconnect Series DC Resistance

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX)

24Dr. J. E. Rayas Sánchez

Skin Effect

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX)

Page 13: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

13

25Dr. J. E. Rayas Sánchez

EM-Simulation of Conductor Current Distribution

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX)

26Dr. J. E. Rayas Sánchez

Proximity Effect

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX)

Page 14: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

14

27Dr. J. E. Rayas Sánchez

Proximity and Skin Effects

E. Bogatin, “Essential principles of signal integrity,” IEEE Microwave Magazine, vol. 12, pp. 34-41, Aug. 2011.

28Dr. J. E. Rayas Sánchez

Edge and Indy Effects – Example

W = 10 mil L = 40 milH = 5 mil r = 4.2dielectric loss tan = 0.017PCL-FR-226 Polyclad Laminates

EM simulation using SonnetAt 1 MHz:

rH

W

L

L

L

W

Page 15: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

15

29Dr. J. E. Rayas Sánchez

Edge and Indy Effects – Example (cont)

W = 10 mil L = 40 milH = 5 mil r = 4.2dielectric loss tan = 0.017PCL-FR-226 Polyclad Laminates

EM simulation using SonnetAt 10 MHz:

rH

W

L

L

L

W

30Dr. J. E. Rayas Sánchez

Edge and Indy Effects – Example (cont)

W = 10 mil L = 40 milH = 5 mil r = 4.2dielectric loss tan = 0.017PCL-FR-226 Polyclad Laminates

EM simulation using SonnetAt 100 MHz:

rH

W

L

L

L

W

Page 16: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

16

31Dr. J. E. Rayas Sánchez

Edge and Indy Effects – Example (cont)

W = 10 mil L = 40 milH = 5 mil r = 4.2dielectric loss tan = 0.017PCL-FR-226 Polyclad Laminates

EM simulation using SonnetAt 1 GHz:

rH

W

L

L

L

W

32Dr. J. E. Rayas Sánchez

Interconnect Shunt Conductance

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX)

Page 17: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

17

33Dr. J. E. Rayas Sánchez

Loss Tangent of Typical Materials

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX)

34Dr. J. E. Rayas Sánchez

Power Transfer Efficiency

RS

RL

Maximum power is transferred when RL = RS

RL / RS

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10

Lo

ad

Po

wer

(no

rmaliz

ed

)

(Hewlett-Packard's RF Design and Measurement Seminar, 2000)

Page 18: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

18

35Dr. J. E. Rayas Sánchez

Power Transfer Efficiency (cont)

For complex impedances, maximum power transfer occurs when ZL = ZS* (conjugate match)

Zs = R + jX

ZL = Zs* = R - jX

Zo

Zo

Rs

RL

+jX

-jX

At high frequencies, maximum power transfer occurs when RS = RL = Zo

(Hewlett-Packard's RF Design and Measurement Seminar, 2000)

36Dr. J. E. Rayas Sánchez

The Smith Chart

-90 o

0o180

o+-

.2

.4

.6

.8

1.0

90o

0 +R

+jX

-jX

Smith Chart maps rectilinear impedanceplane onto polar plane

Rectilinear impedance plane

Polar plane

Z = ZoL

= 0

Constant X

Constant R

Z = L

= 0 O

1

Smith Chart

(open)

LZ = 0

= ±180 O1

(short)

(Hewlett-Packard's RF Design and Measurement Seminar, 2000)

Page 19: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

19

37Dr. J. E. Rayas Sánchez

0.2

0.5

1.0

2.0

5.0

+0.2

-0.2

+0.5

-0.5

+1.0

-1.0

+2.0

-2.0

+5.0

-5.0

0.0

The Smith Chart – Interpretation

0L Z LZ

0L ZZ

0L jZZ

0L jZZ

(open circuit)(short circuit)

(pure inductive)

(pure capacitive)

(matched)Circles of constant XL

Circles of constant RL

0

180101

901

901

38Dr. J. E. Rayas Sánchez

Lightwave Analogy to RF Energy

RF

Incident

Reflected

Transmitted

Lightwave

(Hewlett-Packard's RF Design and Measurement Seminar, 2000)

Page 20: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

20

39Dr. J. E. Rayas Sánchez

Transmission Line Terminated with Zo

For reflection, a transmission line terminated in Zo behaves like an infinitely long transmission line

Zs = Zo

Zo

Vrefl = 0 (all the incident power is absorbed in the load)

Vinc

Zo = characteristic impedance of transmission line

(Hewlett-Packard's RF Design and Measurement Seminar, 2000)

40Dr. J. E. Rayas Sánchez

Transmission Line Terminated with Short, Open

Zs = Zo

Vrefl

V inc

For reflection, a transmission line terminated in a short or open reflects all power back to source

In phase (0°) for openOut of phase (180°) for short

(Hewlett-Packard's RF Design and Measurement Seminar, 2000)

Page 21: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

21

41Dr. J. E. Rayas Sánchez

Transmission Line Terminated with 25

Zs = Zo

ZL = 25

Vrefl

V inc

Standing wave pattern does not go to zero as with short or open

(Hewlett-Packard's RF Design and Measurement Seminar, 2000)

42Dr. J. E. Rayas Sánchez

Reflection Parameters

dB

No reflection(ZL = Zo)

RL

SWR

0 1

Full reflection(ZL = open, short)

0 dB

1

=Z L - Z O

ZL + OZ

ReflectionCoefficient

=Vreflected

Vincident=

= Return loss = -20 log(),

SWR = Emax

Emin

=1 + 1

Standing Wave RatioEmax

Emin

(Hewlett-Packard's RF Design and Measurement Seminar, 2000)

Page 22: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

22

43Dr. J. E. Rayas Sánchez

Standing Wave Ratio – EM Simulation

Microstrip lineLaminate: Rogers RO3003

H = 5 mil

r = 3

tan() = 0.0013 at 10 GHz

Lossy metals: Cu = 5.8×107 S/m

t = 0.6 mil (half-once copper)

W = 12.5 mil

L = 187.5 mil

44Dr. J. E. Rayas Sánchez

Standing Wave Ratio – EM Simulation (cont)

Using Zport1 = Zport2 = 50

f = 0.1 GHz f = 30 GHz

Page 23: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

23

45Dr. J. E. Rayas Sánchez

Standing Wave Ratio – EM Simulation (cont)

Using Zport1 = 50 , Zport2 = 1 K

f = 0.1 GHz f = 30 GHz

46Dr. J. E. Rayas Sánchez

Transmission Parameters

V TransmittedV

Incident

Transmission Coefficient = =VTransmitted

VIncident=

DUT

Gain (dB) = 20 Log V Trans

V Inc

= 20 log

Insertion Loss (dB) = - 20 Log V Trans

V Inc

= - 20 log

Insertion Phase (deg) = V Trans

V Inc

=

Page 24: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

24

47Dr. J. E. Rayas Sánchez

N-Ports Networks (Linear Circuits)

(R. Ludwig and P. Bretchko, RF Circuit Design, Prentice Hall, 2000)

48Dr. J. E. Rayas Sánchez

Impedance Matrix Representation (Z)

Each element of matrix Z is given by

NV

V

V

2

1

V

NI

I

I

2

1

I

ZIV

NNNN

N

N

ZZZ

ZZZ

ZZZ

21

22221

11211

Z

jkIj

iij

k

IV

Z

for 0

Page 25: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

25

49Dr. J. E. Rayas Sánchez

Admittance Matrix Representation (Y)

Each element of matrix Y is given by

NV

V

V

2

1

V

NI

I

I

2

1

I

YVI

NNNN

N

N

YYY

YYY

YYY

21

22221

11211

Y

jkVj

iij

k

VI

Y

for 0

50Dr. J. E. Rayas Sánchez

Z-Parameters for 2-Port Networks

2

1

V

VV

2

1

I

II

ZIV

2221

1211

ZZ

ZZZ

Equivalent circuit:

Page 26: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

26

51Dr. J. E. Rayas Sánchez

Y-Parameters for 2-Port Networks

2

1

V

VV

2

1

I

II

YVI

2221

1211

YY

YYY

Equivalent circuit:

52Dr. J. E. Rayas Sánchez

H-Parameters (Hybrid) for 2-Port Networks

2

1

2

1

V

I

I

VH

2221

1211

HH

HHH

Equivalent circuit:

Page 27: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

27

53Dr. J. E. Rayas Sánchez

The Scattering Matrix (S)

NV

V

V

2

1

V

NV

V

V

2

1

V

SVV

NNNN

N

N

SSS

SSS

SSS

21

22221

11211

S

jkVj

iij

k

VV

S

for 0

Vk+ = 0 if we terminate port k with a matched load (ZLK = Zok)

V1

I1I1

+V1+

I1V1

Zo1

V 2

I 2

I 2+

V 2+

I 2

V 2

Z o2

Vk

IkIk

+ Vk+

Ik Vk

Zok

VN

I N

IN+

VN+

IN VN

ZoN

N-port Linear Network

54Dr. J. E. Rayas Sánchez

The Scattering Matrix Representation (S)

They can be more easily obtained at high frequencies:

– Incident and reflected waves can be measured using a Vector Network Analyzer (VNA)

– They do not require “shorts” or “opens” (active devices might oscillate or self-destroy)

They are more directly related to high-frequency effects (, T, IL, RL, SWR, etc.)

We can convert back and forth between S, Y and Z parameters

Page 28: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

28

55Dr. J. E. Rayas Sánchez

Measuring S-Parameters

S 11 = Reflected

Incident=

b1

a 1 a2 = 0

S 21 =Transmitted

Incident=

b2

a 1 a2 = 0

S 22 = Reflected

Incident=

b2

a 2 a1 = 0

S 12 =Transmitted

Incident=

b1

a 2 a1 = 0

Incident TransmittedS 21

S 11Reflected

b 1

a 1

b 2

Z 0

Loada2 = 0

DUTForward

1IncidentTransmitted S 12

S 22

Reflected

b 2

a2

b

a1 = 0

DUTZ 0

Load Reverse

56Dr. J. E. Rayas Sánchez

Meaning of the S-parameters (cont)

S11 : forward reflection coefficient (input match)

S22 : reverse reflection coefficient (output match)

S21 : forward transmission coefficient (gain or loss)

S12 : reverse transmission coefficient (isolation)

ikVi

ikVi

iii

k

kVV

S

for 0

for 0

iiiS

jiij TS jkVji

jkVj

iij

k

k

TVV

S

for 0

for 0

Page 29: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

29

57Dr. J. E. Rayas Sánchez

An RF Prototype

58Dr. J. E. Rayas Sánchez

Hybrid Microwave Integrated Circuits (cont)

M. Pozar (1998), Microwave Engineering. Amherst, MA: John Wiley and Sons.

Page 30: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

30

59Dr. J. E. Rayas Sánchez

Monolithic Microwave Integrated Circuits (MMIC)

M. Pozar (1998), Microwave Engineering. Amherst, MA: John Wiley and Sons.

60Dr. J. E. Rayas Sánchez

High Speed Interconnects

J.C. Rautio, Rigorous Evaluation of Worst Case Total Crosstalk in the Time Domain Using Frequency Domain Scattering Parameters, 2001 High-Performance System Design Conference

Page 31: Basics on High Frequency Circuit Analysis - ITESOdesi.iteso.mx/erayas/documents/cad_course/lectures/HF_CIR... · Basics on High Frequency Circuit Analysis ... (R. Ludwig and P. Bretchko,

Basics on High Frequency Circuit Analysis Dr. José Ernesto Rayas-Sánchez

April 25, 2018

31

61Dr. J. E. Rayas Sánchez

High Speed Interconnects (cont)

J.C. Rautio, Rigorous Evaluation of Worst Case Total Crosstalk in the Time Domain Using Frequency Domain Scattering Parameters, 2001 High-Performance System Design Conference


Recommended