+ All Categories
Home > Documents > Berfikir Dan Bekerja Secara Saintifik

Berfikir Dan Bekerja Secara Saintifik

Date post: 03-Apr-2018
Category:
Upload: gengkapak
View: 233 times
Download: 0 times
Share this document with a friend

of 147

Transcript
  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    1/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    TOPIC 1 Primary Science Teaching

    SYNOPSIS

    This topic discusses about the teaching of science inprimary schools. It explains the aims of science teaching andemphasizes the components in primary science curriculum.

    LEARNING OUTCOMES

    By the end of this topic teachers will able to :

    1. Explain the aims of teaching science in primary schools.

    2. List down the components that are emphasized in theteaching of science curriculum in primary schools.

    TOPICS FRAMEWORK

    PRIMARYSCIENCE

    TEACHING

    AIMS OFSCIENCE

    TEACHING

    EMPHASISIN

    PRIMARYSCIENCE

    SCIENTIFICLITERACY

    PROFESIONALS

    IN SCIENCE

    SCIENCECONCEPTS

    SCIENTIFICAND

    THINKINGSKILLS

    SCIENTIFATTITUDE

    ANDNOBLESVALUES

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    2/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    CONTENTS

    1.0 WHY SHOULD WE TEACH SCIENCE IN PRIMARYSCHOOLS?

    The two main general goals of science education in primary

    schoolsare:

    i. To inculcate scientific literacy so that people can make

    sensible decisions about science related issues that

    affect their lives.

    ii. To produce competent professionals in the various

    scientific disciplines.

    Scientific literacy is the capacity to use scientific knowledge, to

    identify questions and to draw evidence-based conclusions in

    order to understand and helps to make decisions about natural

    world and the changes made to it through human activities.

    Scientific literacy will help the population to:

    i. develop effective solutions to problems

    ii. foster intelligent respect for nature

    iii. avoid being prey to dogmatists

    iv. assess use of new technologies.

    Embodied in Vision 2020 is the challenge to establish a

    scientific and progressive society, a society that is innovative

    and forward-looking. The challenge is also to establish a society

    that is not only acts as consumer of technology but also as acontributor to the scientific and technological civilization of the

    future as well. Our primary science curriculum is developed in

    line with this vision.

    Malaysian primary science curriculum aims to develop pupils

    interest and creativity through everyday experiences and

    investigations that promote the acquisition of scientific and

    thinking skills as well as the inculcation of scientific attitudes and

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    3/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    noble values. The Primary Science curriculum is designed to

    stimulate pupils curiosity and develop their interest as well as

    enable pupils to learn more about themselves and the world

    around them through pupil-centered activities. This will provide

    the pupils with experiences to build their interest in science and

    opportunities to acquire scientific and thinking skills.

    The emphasis of the Malaysian primary science

    curriculum are learning through experience relevant to pupils

    daily lives, developing scientific and thinking skills, applying

    scientific principles and inculating scientific attitudes and noble

    values. (Yeoh P.C. & Gan C.M. 2003 p22)

    Science exploration for children is science inquiry exploring

    materials/events, asking questions, investigating,

    recording/representing their work, reflecting on what they have

    done and what it means allowing them to create new theories

    or ideas about how the world works. These skills, attitudes, and

    ways of thinking are important to many areas of learning

    throughout life. In primary schools, pupils are learning scientific

    skills because:

    o They are the methods used by scientists in investigating

    and constructing answers to questions about the natural

    world. Through using the process skills pupils learn

    science in a manner similar to the way scientists conduct

    their investigations.

    o Meaningful learning takes place when pupils are using

    process skills to explore the environment and to acquire

    and interpret information, leading to the construction of

    their own knowledge.

    o They are not only useful in science learning but are also

    applicable across disciplines and experiences and thus,

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    4/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    useful in making personal decisions and in solving

    problems.

    o Scientific theories and principles may be modified or

    replaced when found to be inconsistent with newevidence. Unlike scientific knowledge, process skills do

    not become obsolete.

    (Wan Yoke Kum et. al, 2003 p 33)

    Teaching scientific skills should be integrated into the science

    content. The science process skills need to be taught explicitly

    at the initial stage and reinforced through further practice. The

    skills should be introduced in progression to match the stages of

    cognitive development in pupils. At level one, pupils are

    expected to learn basic process skills. Whereas for level two

    pupils, the basic process skills will continue to be reinforced and

    developed further while integrated process skills are introduced.

    Tutorial 1

    By referring to the article Higher Order Thinking

    discuss how we implement HOTS in Primary Scienceteaching.

    Tutorial 2

    Discuss how Ten Myths of Science opens up yourminds about the misconceptions that you might have.Give an example of a misconception that portrays eachmyth.

    Give the benefits of scientific literacyto the world population

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    5/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    Skamp, K. (Ed.),(2004) Teaching primary science

    constructively(2nd ed.).Melbourne, Australia: ThomsonLearning.

    Find the 5-E instructional Model andprepare a ppt. presentation.

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    6/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    Tutorial 1

    Higher order thinking

    Russell Tytler, March 28, 2004

    There is a lot of focus currently on the notion of higher order thinking,particularly in relation to the Middle Years concerns, focusing onengaging students in meaningful learning. Terms such as the ThinkingCurriculum are used to describe a school focus on deeper level ideas.Higher order thinking is used as a term to describe a number of relatedideas, all essentially held to be in contrast to rote learning, learning offacts, superficial thinking etc. Schemes such Blooms taxonomy havebeen used to order knowledge forms in a hierarchy, with information at

    the bottom (Bloom called it knowledge but the term tends to have awider meaning these days), then comprehension, then higher levelssuch as application, analysis, synthesis and evaluation. The threetiered intellect uses similar terms, with higher order thinking beingassociated with words such as interprets, analyses, reflects,evaluates.

    Also associated with higher level thinking are dimensions of creativity,or divergent thinking. Emphasising, in science tasks, such things ascreativity, imagination, flexibility all aim at developing in students acapacity to think through ideas and apply them to a range of contexts,to think outside the square and to think critically.

    Higher level thinking is also associated with investigative practices inscience, and with problem solving. Such behaviours and knowledge asasking investigable questions, designing investigations ormeasurement procedures, critically evaluating evidence, thinking ofways to test ideas etc. are all part of what we would hope an engagedand resourceful student to be doing.

    The first two SIS Components of effective teaching and learning are

    closely related to higher level thinking. These are given below, withlinks to the science education literature.

    1. Encouraging students to actively engage with ideas andevidenceComponent 1 is a key characteristic of effective teaching and learning.It is linked with a number of important ideas that appear in the scienceeducation research literature, and in curriculum and innovation changeprojects.

    The key idea embodied in this Component is that real learning is anactive process that involves students being challenged, and

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    7/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    challenging each other, rather than accepting received wisdom andpracticing its application. A predominant image projected by thisComponent is thus one of the active,searching mind. The underlyinglogic of this Component is consistent with constructivist insights intolearning.

    This does not in any way diminish, however, the role of the teacher. Ifanything it makes teachers roles more complex and difficult, in askingthem to encourage students to express their ideas, but to maintain ahigh standard of challenge and attention to evidence based onscientific traditions. The Component combines two ideas thatlearning involves activity and engagement, and that scientificprocesses fundamentally involve argument from evidence. It is hard, ina practising science classroom situation, to separate these notions.

    Related ideas in the science education literature:

    Sharing intellectual control, or student centredness The idea thatstudents ideas be treated with respect is well established in researchon students conceptions and research on learning in science. TheMonash University Extended PD materials, now embedded within theSISPD program, emphasised this control aspect. One cannot expectstudents to be engaged with a pre-packaged program entirely dictatedby teachers understandings, and this Component asks that teacherstake some risks in acknowledging that students, if they are to learn,must be given a measure of control over the ideas that are discussed.

    Inquiry based learning This is a term much in vogue in the U.S.,implying that science teaching and learning must be based on studentsactively exploring and investigating and questioning. This is different todiscovery learning which, in its pure form, implied somehow thatstudents could learn science simply by undertaking appropriatepractical investigations, and under-represented the critical role of theteacher in structuring and responding to student experiences. A relatedphrase often used in primary science education is hands-on, minds-onscience. It is the minds-on part that is referred to by this Component.

    Student autonomy, and responsibility for learning These ideasemphasise both the active and intentional nature of learning and thepurpose of schooling in promoting autonomous adults. Engagement isa prior condition for both. The Middle Years concern with studentengagement with ideas and with schooling is also linked to thisComponent. The Component should not be thought about, however,simply in terms of motivation or a willingness to join in. It focusesclearly on ideas.

    Maximising student-student interaction A video study ofmathematics and science teachers (Clark, 2001) found that the key

    determinant of a rich learning environment was the amount of high

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    8/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    quality student student dialogue. This could be taken as one of thecritical features of engagement with ideas.

    Community of learners This idea of a class or group as a communitydedicated to particular forms of learning sits comfortably with

    Component 1, since engagement with ideas and evidence can beinterpreted as a communal enterprise. Social constructivism, or sociocultural theory, is also linked with this idea.

    Argumentation there is growing interest in idea that the ability toframe and respond to argument is an important focus for scienceeducation. Science as it is practised in the community is characterizedby argument based on evidence.

    Science processes and concepts of evidence The teaching ofscience processes has a long history in science education. These are

    sometimes called skills, but in fact there is a good deal of knowledgeassociated with things like experimental design, measurementprinciples, or analysis. Evidence is handled in science in particularways (eg. principles of sampling, or variable control, or measurementprocedures) and learning how this occurs in a more formal way is apart of this first Component. The teaching and learning focusassociated with this would include being taught how to do things likesample biological data, control variables, set up tables, deal withmeasurement error etc. These may be taught explicitly, but teachingfor an understanding of the way evidence is used would imply thatstudents need to learn to make decisions about design, measurementand analysis. Open ended investigations form an important end of thepractical work spectrum.

    2. Challenging students to develop meaningful understandings

    Component 2 raises the questions what does it mean to understandsomething in science, and what is meaningful? Neither arestraightforward questions. The teachers who were originallyinterviewed to develop the Components talked of deeper levelunderstandings, or understandings that would be revisited in different

    situations to enrich and challenge.

    Related ideas in the science education literature:

    Student conceptions The research into student conceptions showsclearly that students come to any science topic with prior ideas that willoften contradict the science version of understanding, that can interferewith learning. Learning, and gaining understanding should be viewedoften as a shift in perspective rather than something implanted overnothing. The conceptual change literature, whichemphasises probes of understanding, and challenge activities, is thus

    relevant to this Component. Lesson and topic structure becomesimportant for the development of understanding.

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    9/147

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    10/147

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    11/147

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    12/147

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    13/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    Lesson plans are strictly followed, with too much material tobe covered to allow divergent discussions in response tostudent questions or comments.

    Students work mainly individually, with not much whole-class

    or small- group discussion.

    Class discussion is dominated by the teachers voice.

    Teacher questions are mainly closed, with a particularresponse in mind.

    There is a strong focus on ensuring content coverage, asdistinct from understanding.

    Intellectual control is firmly maintained by the teacher.

    Examples to illustrate the Component:

    The history of science ideas is strongly represented.Eg. A science topic on disease focuses on the history of ourunderstanding of the bacterial nature of infection, to emphasisethe power of science insights, and the way evidence is used totest and verify theories in science.

    Attention is paid to the processes of hypothesis generationand experimental design Eg. Yvonne ran an animal behaviourunit for her Year 1 class. They discussed, using observations ofa classroom pet rat, the difference between observation andinference. They learnt the technique of time sampling of animalposition and behaviour using birds in a cage, and one, then tworats in an enclosure. Following discussions about the survivalimplications of behaviour, they then examined crickets andcame up with a class list of questions about cricket behaviour, orstructure and function. Pairs of students designed, carried outand reported on a chosenquestion, using a template that required presentation of data in

    two formats, and an evaluation of the generality of the findings.The focus in the discussion continually referred back to theadaptive purpose of particular behaviours. Eg. Year 10 studentsstudying genetics investigate recent claims there has beencross-breeding of genetically modified soy into local crops. Theylook at the suggested mechanism for cross-pollination, andstudy genetic techniques, to come up with suggestions aboutwhat controls should be in place.

    Planning is flexible enough so that student ideas andquestions can be genuinely followed up, perhaps by further

    investigation. Eg. Julies Year 4 class raised the question abouthow long a ballpoint pen would last. They discussed how you

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    14/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    would find out, then arranged a comparative investigation withdifferent brands, measuring the length of line with appropriatecontrols. Eg. During a genetics unit, the question of geneticallymodified food captures student interest and leads to a debateinformed by independent research using the web.

    Anomalous results from experiments are discussed openly inthe class. Eg. Craigs Year 8 class found an experimentculturing bacteria gave anomalous results. Before handing thecultures back to groups he displayed them, then led adiscussion in which they discussed the surprise results to comeup with some possible reasons and an evaluation of theadequacy of the controls they had put in place. Eg. A class usesde Bonos thinking hats technique to fully explore thegreenhouse effect. Eg. A unit is planned using the interactiveapproach, whereby students questions are discussed and

    refined to form the basis of investigations forming the core of theunit.

    Current issues are discussed in class, which encouragestudents to raise questions about evidence, or the ideasunderlying such issues. Eg. Methods of responding to acontemporary outbreak of foot and mouth are discussed anddebated, using newspaper analyses. Eg. The nutritional value ofchildrens lunches is discussed, using evidence from a resourcebook on dietary principles. Eg. In a unit on road safety, evidencerelated to the wearing of seat belts, or of bicycle helmets, isdebated in the contextof public policy.

    Open-ended tasks are set that encourage divergent, creativethinking Eg. Students are asked to use their scienceunderstandings to design a system, or technological device,such as an automated plant nursery, or method of analysing themovement of a netball player. Eg. Students are challengedusing what would happen if.. questions (If gravity on earth wasstronger, if we could clone dinosaurs), or take place in

    hypotheticals.

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    15/147

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    16/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    In an attempt to provide a more realistic view of science and point outissues on which science teachers should focus, this article presentsand discusses 10 widely-held, yet incorrect ideas about the nature ofscience. There is no implication that all students, or most teachers forthat matter, hold all of these views to be true, nor is the list meant to be

    the definitive catolog. Cole (1986)and Rothman (1992) have suggested additional misconceptions worthyof consideration. However, years of science teaching and the reviewof countless texts has substantiated the validity of the inventorypresented here.

    Myth 1: Hypotheses become theories which become lawsThis myth deals with the general belief that with increased evidencethere is a developmental sequence through which scientific ideas passon their way to final acceptance. Many believe that scientific ideaspass through the hypothesis and theory stages and finally mature as

    laws. A former U.S. president showed his misunderstanding of scienceby saying that he was not troubled by the idea of evolution because itwas "just a theory." The president's misstatement is theessence of this myth; that an idea is not worthy of consideration until"lawness" has been bestowed upon it. The problem created by thefalse hierarchical nature inherent in this myth is that theories and lawsare very different kinds of knowledge. Of course there is a relationshipbetween laws and theories, but one simply does not become theother--no matter how much empirical evidence isamassed. Laws are generalizations, principles or patterns in natureand theories are the explanations of those generalizations (Rhodes &Schaible, 1989; Homer & Rubba, 1979; Campbell, 1953). Forinstance, Newton described the relationship of mass and distance togravitational attraction between objects with such precision that we canuse the law of gravity to plan spaceflights. During the Apollo 8 mission,astronaut Bill Anders responded to the question of who was flying thespacecraft by saying, "I think that Issac Newton is doing most of thedriving fight now." (Chaikin, 1994, p. 127). His response wasunderstood by all to mean that the capsule was simply following thebasic laws of physics described by Isaac Newton years centuriesearlier. The more thorny, and many would say more interesting, issue

    with respect to gravity is the explanation for why the law operates as itdoes. At this point, there is no well. accepted theory of gravity. Somephysicists suggest that gravity waves are the correct explanation forthe law of gravity, but with clear confirmation and consensus lacking,most feel that the theory of gravity still eludes science. Interestingly,Newton addressed the distinction between law and theory with respectto gravity. Although he had discovered the law of gravity, he refrainedfrom speculating publically about its cause. In Principial, Newtonstates" . . . I have not been able to discover thecause of those properties of gravity from phenomena, and I frame nohypothesis . . ." " . . . it is enough that gravity does really exist, and act

    according to the laws which we have explained . . ." (Newton,1720/1946, p. 547).

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    17/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    Myth 2: A hypothesis is an educated guessThe definition of the term hypothesis has taken on an almost mantra-like life of its own in science classes. If a hypothesis is always aneducated guess as students typically assert, the question remains, "an

    educated guess about what?" The best answer for this question mustbe, that without a clear view of the context in which the term is used, itis impossible to tell. The term hypothesis has at least three definitions,and for that reason, should be abandoned, or atleast used with caution. For instance, when Newton said that heframed no hypothesis as to the cause of gravity he was saying that hehad no speculation about an explanation of why the law of gravityoperates as it does. In this case, Newton used the term hypothesis torepresent an immature theory. As a solution to the hypothesisproblem, Sonleitner (1989) suggested that tentative or trial laws becalled generalizing hypotheses with provisional theories referred to as

    explanatory hypotheses. Another approach would be to abandon theword hypothesis altogether in favor of terms such as speculative law orspeculative theory. With evidence, generalizing hypotheses maybecome laws and speculative theories become theories, but under nocircumstances do theories become laws. Finally, when students areasked to propose a hypothesis during a laboratory experience, theterm now means a prediction. As for those hypotheses that are reallyforecasts, perhaps they should simply be called what they are,predictions.

    Myth 3: A general and universal scientific method existsThe notion that a common series of steps is followed by all researchscientists must be among the most pervasive myths of science giventhe appearance of such a list in the introductory chapters of manyprecollege science texts. This myth has been part of the folklore ofschool science ever since its proposal by statistician Karl Pearson(1937). The steps listed for the scientific method vary from text to textbut usually include, a) define the problem, b) gather backgroundinformation, c) form a hypothesis, d) make observations, e) test thehypothesis, and f) draw conclusions. Some texts conclude their list ofthe steps of the scientific method by listing communication of results as

    the final ingredient.One of the reasons for the widespread belief in a general scientificmethod may be the way in which results are presented for publicationin research journals. The standardized style makes it appear thatscientists follow a standard research plan. Medawar (1990) reacted tothe common style exhibited by research papers by calling the scientificpaper a fraud since the final journal report rarely outlines the actualway in which the problem was investigated. Philosophers of sciencewho have studied scientists at work have shown that no researchmethod is applied universally (Carey, 1994; Gibbs & Lawson, 1992;Chalmers, 1990; Gjertsen, 1989). The notion of a single scientific

    method is so pervasive it seems certain that many students must bedisappointed when they discover that scientists do not have a framed

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    18/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    copy of the steps of the scientific method posted high above eachlaboratory workbench. Close inspection will reveal that scientistsapproach and solve problems with imagination, creativity, priorknowledge and perseverance. These, of course, are the samemethods used by all problem-solvers. The lesson to be learned is that

    science is no different from other human endeavors when puzzles areinvestigated. Fortunately, this is one myth that may eventually bedisplaced since many newer texts are abandoning or augmenting thelist in favor of discussions of methods of science.

    Myth 4: Evidence accumulated carefully will result in sureknowledgeAll investigators, including scientists, collect and interpret empiricalevidence through the process called induction. This is a technique by

    which individual pieces of evidence are collected and examined until alaw is discovered or a theory is invented. Useful as this technique is,even a preponderance of evidence does not guarantee the productionof valid knowledge because of what is called the problem of induction.Induction was first formalized by Frances Bacon in the 17th century. Inhis book, Novum Organum (1620/ 1952), Bacon advised that facts beassimilated without bias to reach a conclusion. The method ofinduction he suggested is the principal way in which humanstraditionally have produced generalizations that permit predictions.What then is the problem with induction?It is both impossible to make all observations pertaining to a givensituation and illogical to secure all relevant facts for all time, past,present and future. However, only by making all relevant observationsthroughout all time, could one say that a final valid conclusion hadbeen made. This is the problem of induction. On a personal level, thisproblem is of little consequence, but in science the problem issignificant. Scientists formulate laws and theories that are supposed tohold true in all places and for all time but the problem of inductionmakes such a guaranteeimpossible. The proposal of a new law begins through induction asfacts are heaped upon other relevant facts. Deduction is useful in

    checking the validity of a law. For example, if we postulate that allswans are white, we can evaluate the law by predicting that the nextswan found will also be white. If it is, the law is supported, but notproved as will be seen in the discussion of another science myth.Locating even a single black swan will cause the law to be called intoquestion. The nature of induction itself is another interesting aspectassociated with this myth. If we set aside the problem of inductionmomentarily, there is still the issue of how scientists make the finalleap from the mass of evidence to the conclusion. In an idealized viewof induction, the accumulated evidence will simply result in theproduction of a new law or theory in a procedural or mechanical

    fashion. In reality, there is no such method. The issue is far morecomplex and interesting --than that. The final creative leap from

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    19/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    evidence to scientific knowledge is the focus of another myth ofscience.

    Myth 5: Science and its methods provide absolute proofThe general success of the scientific endeavor suggests that its

    products must be valid. However, a hallmark of scientific knowledge isthat it is subject to revision when new information is presented.Tentativeness is one of the points that differentiates science from otherforms of knowledge. Accumulated evidence can provide support,validation and substantiation for a law or theory, but will never provethose laws and theories to be true. This idea has been addressed byHomer and Rubba (1978) and Lopnshinsky (1993). The problem ofinduction argues against proof in science, but there is another elementof this myth worth exploring. In actuality, the only truly conclusiveknowledge produced by science results when a notion is falsified. Whatthis means is that no matter what scientific idea is considered, once

    evidence begins to accumulate, at least we know that the notion isuntrue. Consider the example of the white swans discussed earlier.One could search the world and see only white swans, and arrive atthe generalization that "all swans are white. " However, the discoveryof one black swan has the potential to overturn, or at least result inmodifications of,this proposed law of nature. However, whether scientists routinely tryto falsify their notions and how much contrary evidence it takes for ascientist's mind to change are issues worth exploring.

    Myth 6: Science is procedural more than creativeWe accept that no single guaranteed method of science can accountfor the success of science, but realize that induction, the collection andinterpretation of individual facts providing the raw materials for lawsand theories, is at the foundation of most scientific endeavors. Thisawareness brings with it a paradox. If induction itself is not aguaranteed method for arriving at conclusions, how do scientistsdevelop useful laws and theories? Induction makes use of individualfacts that are collected, analyzed and examined. Some observers mayperceive a pattern in these data and propose a law in response, butthere is no logical or procedural method by which the pattern is

    suggested. With a theory, the issue is much the same. Only thecreativity of the individual scientist permits the discovery of laws andthe invention of theories. If there truly was a single scientific method,two individuals with the same expertise could review the same factsand reach identical conclusions. There is no guarantee of this becausethe range and nature of creativity is a personal attribute. Unfortunately,many common science teaching orientations and methods serve towork against the creative element in science. The majority of laboratoryexercises, for instance, are verification activities. The teacherdiscusses what will happen in the laboratory, the manual providesstep-bystep directions, and the student is expected to arrive at a

    particular answer. Not only is this approach the antithesis of the way inwhich science actually operates, but such a portrayal must seem dry,

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    20/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    clinical and uninteresting to many students. In her book, They're NotDumb, They're Different (1990) Shiela Tobias argues that manycapable and clever students reject science as a career because theyare not given an opportunity to see it as an exciting and creativepursuit. The moral in Tobias' thesis is that science itself may be

    impoverished when students who feel a need for a creative outleteliminate it as a potential career because of the way it is taught.

    Myth 7: Science and its methods can answer all questions.Philosophers of science have found it useful to refer to the work of KarlPopper (1968) and his principle of falsifiability to provide an operationaldefinition of science. Popper believed that only those ideas that arepotentially falsifiable are scientific ideas. For instance, the law ofgravity states that more massive objects exert a stronger gravitationalattraction than do objects with less mass when distance is heldconstant. This is a scientific law because it could be falsified if newly-

    discovered objects operate differently with respect to gravitationalattraction. In contrast, the core idea among creationists is that specieswere place on earth fully-formed by some supernatural entity.Obviously, there is no scientific method by which such a belief could beshown to be false. Since this special creation view is impossible tofalsify, it is not science at all and the term creation science is anoxymoron. Creation science is a religious belief and as such, does notrequire that it be falsifiable. Hundreds of years ago thoughtfultheologians and scientists carved out their spheres of influence andhave since coexisted with little acrimony. Today, only those who fail tounderstand the distinction between science and religion confuse therules, roles, and limitations of these two important world views. Itshould now be clear that some questions simply must not be asked ofscientists. During a recent creation science trial for instance, Nobellaureates were asked to sign a statement about the nature of scienceto provide some guidance to the court. These famous scientistsresponded resoundingly to support such a statement; after all theywere experts in the realm of science (Klayman, Slocombe, Lehman, &Kaufman, 1986). Later, those interested in citing expert opinion in theabortion debate asked scientists to issue a statement regarding theirfeelings on this issue. Wisely, few participated. Science cannot answer

    the moral and ethical questions engendered by the matter of abortion.Of course, scientists as individuals have personal opinions about manyissues, but as a group, they must remain silent if those issues areoutside the realm of scientific inquiry. Science simply cannot addressmoral, ethical, aesthetic, social and metaphysical questions.

    Myth 8. Scientists are particularly objectiveScientists are no different in their level of objectivity than are otherprofessionals. They are careful in the analysis of evidence and in the

    procedures applied to arrive at conclusions. With this admission, it mayseem that this myth is valid, but contributions from both the philosophy

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    21/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    of science and psychology reveal that there are at least three majorreasons that make complete objectivity impossible.Many philosophers of science support Popper's (1963) view thatscience can advance only through a string of what he calledconjectures and refutations. In other words, scientists should propose

    laws and theories as conjectures and then actively work to disprove orrefute those ideas. Popper suggests that the absence of contraryevidence, demonstrated through an active program of refutation, willprovide the best support available. It may seem like a strange way ofthinking about verification, but the absence of disproof is consideredsupport. There is one major problem with the idea of conjecture andrefutation. Popper seems to have proposed it as a recommendation forscientists, not as a description of what scientists do. From aphilosophical perspective the idea is sound, but there are noindications that scientists actively practice programs to search fordisconfirming evidence. Another aspect of the inability of scientists to

    be objective is found in theory-laden observation, a psychologicalnotion (Hodson, 1986). Scientists, like all observers, hold a myriad ofpreconceptions and biases about the way the world operates. Thesenotions, held in the subconscious, affect everyone's ability to makeobservations. It is impossible to collect and interpret facts without anybias. There have been countless cases in the history of science inwhich scientists have failed to include particular observations in theirfinal analyses of phenomena. This occurs, not because of fraud ordeceit, but because of the prior knowledge possessed by theindividual. Certain facts either were not seen at all or were deemedunimportant based on the scientists's prior knowledge. In earlierdiscussions of induction, we postulated that two individuals reviewingthe same data would not be expected to reach the same conclusions.Not only does individual creativity play a role, but the issue of personaltheory-laden observation further complicates the situation. This lessonhas clear implications for science teaching. Teachers typically providelearningexperiences for students without considering their prior knowledge. Inthe laboratory, for instance, students are asked to perform activities,make observations and then form conclusions. There is anexpectation that the conclusions formed will be both self-evident and

    uniform. In other words, teachers anticipate that the data will lead allpupils to the same conclusion. Thiscould only happen if each student had the same exact priorconceptions and made and evaluate observations using identicalschemes. This does not happen in science nor does it occur in thescience classroom. Related to the issue of theory-based observationsis the allegiance to the paradigm. Thomas Kuhn (1970), in his ground-breaking analysis of the history of science, shows that scientists workwithin a research tradition called a paradigm. This research tradition,shared by those working in a given discipline, provides clues to thequestions worth investigating, dictates what evidence is admissible and

    prescribes the tests and techniques that are reasonable. Although theparadigm

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    22/147

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    23/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    used in the social sciences than the experimental techniquescommonly associated with the natural sciences. For his mostrevolutionary discoveries, Darwin recorded his extensiveobservations in notebooks annotated by speculations and thoughtsabout those observations. Although Darwin supported the inductive

    method proposed by Bacon, he was aware that observation withoutspeculation or prior understanding was both ineffective and impossible.The techniques advanced by Darwin have been widely used byscientists Goodall and Nossey in their primate studies. Scientificknowledge is gained in a variety of ways including observation,analysis, speculation, library investigation and experimentation.

    Myth 10: All work in science is reviewed to keep the processhonest.Frequently, the final step in the traditional scientific method is thatresearchers communicate their results so that others may learn from

    and evaluate their research. When completing laboratory reports,students are frequently told to present their methods section so clearlythat others could repeat the activity. The conclusion that students willlikely draw from this request is that professional scientists are alsoconstantly reviewing each other's experiments to check up on eachother. Unfortunately, while such a check and balance system would beuseful, the number of findings from one scientist checked by others isvanishingly small. In reality, most scientists are simply too busy andresearch funds too limited for this type of review. The result of the lackof oversight has recently put science itself under suspicion. With thepressures of academic tenure, personal competition and funding, it isnot surprising that instances of outright scientific fraud do occur.However, even without fraud, the enormous amount of originalscientific research published, and the pressure to produce newinformation rather than reproduce others' work dramatically increasesthe chance that errors will go unnoticed. An interesting corollary to thismyth is that scientists rarely report valid, but negative results. Whilethis is understandable given the space limitations in scientific journals,the failure to report what did not work is a problem. Only when thoseworking in a particular scientific discipline have access to all of theinformation regarding a phenomenon -- both positive and negative

    can the discipline progress.

    ConclusionsIf, in fact, students and many of their teachers hold these myths to betrue, we have strong support for a renewed focus on science itselfrather than just its facts and principles in science teaching and scienceteacher education. This is one of the central messages in both of thenew science education projects. Benchmarks for Science Literacy(AAAS, 1993) and the National Science Education Standards (NationalResearch Council, 1994) project both strongly suggest that schoolscience must give students an opportunity to experience science

    authentically, free of the legends, misconceptions and idealizationsinherent in the myths about the nature of the scientific enterprise.

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    24/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    There must be increased opportunity for both preservice and inserviceteachers to learn about and apply the real rules of the game of scienceaccompanied by careful review of textbooksto remove the "creeping fox terriers" that have helped provide aninaccurate view of the nature of science. Only by clearing away the

    mist of half-truths and revealing science in its full light, with knowledgeof both its strengths and limitations, will learners become enamored ofthe true pageant of science and be able fairly to judge its processesand products. Note: William McComas' address is School of Education-WPH 1001E, University of Southern California, Los Angeles, CA90089-0031.

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    25/147

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    26/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    TOPICS FRAMEWORK

    Figure 2 :Content Overview

    CONTENTS

    2.0 MANIPULATIVE SKILLS

    Science emphasises inquiry and problem solving. In inquiry and

    problem solving processes, scientific and thinking skills are utilised.

    Scientific skills are important in any scientific investigation such as

    conducting experiments and carrying out projects. Scientific skills

    encompass science process skills and manipulative skills.

    MANIPULATIVE SKILLS

    Types and units of measurements

    Clean science apparatus correctly

    Store science apparatus and laboratory

    substances

    correctly and safely.

    Handling specimens correctly and carefully

    Draw diagrams and apparatus accurately

    Use and handle science apparatus

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    27/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    What are Manipulative skills? Manipulate means to control or use

    something in a skilful way. So manipulative skills are psychomotor

    skills that enable us to carry out the practical works. They involve the

    development of hand-eye coordination and an ability to handle objects

    with skill and dexterity. Example: A student uses a pair of tweezers and

    a hand magnifier to examine the inside of a flowering plant.

    Manipulative skills in scientific investigation are psychomotor skills that

    enable students to:

    a. Types and units of measurements

    b. Using and handling science apparatus

    c. Drawing diagrams and apparatus accurately

    d. Handling specimens correctly and carefully

    e. Cleaning science apparatus correctly

    f. Storing science apparatus and laboratory substances

    correctly and safely.

    By mastering the manipulative skills, scientist can get reliable result.

    Its also can avoid accidents and wastages.

    1. Draw and name the apparatus that are usually used for primaryscience teaching

    2. Find out how to use the apparatus above correctly

    When using manipulative skills, pupils need to take care of their safety

    as well as that of their friends. Steps that need to be taken include care

    when using breakable apparatus, not pointing hot and boiling

    substances towards others, avoid by specimens which are sharp, not

    be bitten by small animals, and accidentally eat substances which are

    poisonous. Practicing responsibility towards the safety of self and

    others as a good and noble attitude.

    Using a suitable graphic organizer, make a concept map of the

    importance of mastering the manipulative skills for our pupils.

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    28/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    2.1 TYPE AND UNITS OF MEASUREMENT

    2.1.1 MEASURING LENGTH

    To measure lengths, we can use ruler or measuring tapes. The

    smallest division on a meter rule is 0.1 cm. A meter rule can therefore

    measure length accurately up to 0.1 cm only.

    1. Describe the correct way how to read the scale on a ruler toavoid parallax error.

    2. Describe how the diameter of a ping-pong ball can be measuredusing the meter rule and a pair set squires.

    A vernier caliper micrometer screw gauge and are common tools used

    in laboratories and industries to accurately determine the fraction part

    of the least count division. The vernier is convenient when measuring

    the length of an object, the outer diameter (OD) of a round or

    cylindrical object, the inner diameter (ID) of a pipe, and the depth of a

    hole.

    Collect information from several sources about Vernier Caliper andMicrometer Screw Gauge.

    2.1.2 MEASURING TIME

    Time can be measure using apparatus like watch, hourglass, or any

    device which exhibits periodic motion.

    Analogue stopwatch Digital stopwatch

    STOPWATCH

    http://aa.wrs.yahoo.com/_ylt=A0S0zu.NxOlLZHcA_nPlPwx.;_ylu=X3oDMTBpc2ozM2gzBHBvcwM0BHNlYwNzcgR2dGlkAw--/SIG=1oev7j1qu/EXP=1273697805/**http%3A/malaysia.images.search.yahoo.com/images/view%3Fback=http%253A%252F%252Fmalaysia.images.search.yahoo.com%252Fsearch%252Fimages%253Fp%253DSTOPWAtch%2526ei%253Dutf-8%2526y%253DSearch%2526fr%253Dyfp-t-101%26w=362%26h=420%26imgurl=clackhi.nclack.k12.or.us%252Fphysics%252Fprojects%252FSoundProfile%252F2008-09%252F1-2-SoundProject%252FSpeed%252520of%252520Sound%252FPictures%252Fstopwatch_widget.png%26rurl=http%253A%252F%252Fclackhi.nclack.k12.or.us%252Fphysics%252Fprojects%252FSoundProfile%252F2008-09%252F1-2-SoundProject%252FSpeed%252520of%252520Sound%252FSpeed%252520of%252520Sound%252520Process.html%26size=103k%26name=stopwatch%2Bwidget...%26p=STOPWAtch%26oid=083955c717f0c5b6%26fr2=%26no=4%26tt=62751%26sigr=14bn0ce26%26sigi=140g6mob2%26sigb=130rjnd4dhttp://aa.wrs.yahoo.com/_ylt=A0S0zu.NxOlLZHcABHTlPwx.;_ylu=X3oDMTBqMjRpazg1BHBvcwMxMARzZWMDc3IEdnRpZAM-/SIG=1htm6d856/EXP=1273697805/**http%3A/malaysia.images.search.yahoo.com/images/view%3Fback=http%253A%252F%252Fmalaysia.images.search.yahoo.com%252Fsearch%252Fimages%253Fp%253DSTOPWAtch%2526ei%253Dutf-8%2526y%253DSearch%2526fr%253Dyfp-t-101%26w=267%26h=350%26imgurl=etc.usf.edu%252Fclipart%252F13100%252F13154%252Fstopwatch_13154_md.gif%26rurl=http%253A%252F%252Fetc.usf.edu%252Fclipart%252F13100%252F13154%252Fstopwatch_13154.htm%26size=16k%26name=stopwatch%2B13154%2B...%26p=STOPWAtch%26oid=781212d841079856%26fr2=%26no=10%26tt=62751%26sigr=11q9b9uq8%26sigi=11me3hv1b%26sigb=130rjnd4d
  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    29/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    Stopwatches are used to measure short intervals of time. There are

    two types of stopwatches; The digital stopwatch and analogue

    stopwatch. The digital stopwatch is more accurate than the analogue

    as it can measure time in intervals of 0.01 seconds while the latter can

    only measure time in intervals of 0.1 seconds.

    As the stopwatch is a sensitive instrument, two or three reading may

    need to be taken and the average time computed. This is due to the

    fact that the reaction time in starting and stopping the stopwatch varies

    from person to person.

    The typical reaction time of an individual is around 0.2 to 0.3 second.Think of an experiment to estimate the reaction time of an individual.

    2.1.3 MEASURING VOLUME

    Volume, the amount of space occupied, is usually measured with

    beaker, conical flask, volumetric flask, graduated cylinder, syringe,

    burette and pipette. Chemist use the units litres and millilitres,

    abbreviated land ml. The graduations on a beaker and a conical flask

    are only approximate, and are not used for accurate measurement.

    Pipette, burette and volumetric flask are used for accurate

    measurement.

    Describe how to use pipette in an acid-base titration correctly.Is it acid or base we put in the pipette in this titration? Why?

    http://aa.wrs.yahoo.com/_ylt=A0S0zu0Pt.lLkHcA5CflPwx.;_ylu=X3oDMTBpZTByOGFiBHBvcwMyBHNlYwNzcgR2dGlkAw--/SIG=1lhcdqdb0/EXP=1273694351/**http%3A/malaysia.images.search.yahoo.com/images/view%3Fback=http%253A%252F%252Fmalaysia.images.search.yahoo.com%252Fsearch%252Fimages%253Fp%253Dmeasuring%252Bcylinder%2526sado%253D1%2526ei%253Dutf-8%2526fr%253Dyfp-t-101%2526fr2%253Dsg-gac%26w=400%26h=400%26imgurl=www.bcssa.org%252Fnewsroom%252Fscholarships%252Fgreat8sci%252FPhotos%252FMatter%252Fgcylinder.jpg%26rurl=http%253A%252F%252Fwww.bcssa.org%252Fnewsroom%252Fscholarships%252Fgreat8sci%252FMatter%252FMeasuring%252FMeasuringVolumeDensity.html%26size=29k%26name=Graduated%2BCylind...%26p=measuring%2Bcylinder%26oid=c96160915aa2f2b8%26fr2=sg-gac%26no=2%26tt=877%26sigr=1310tv880%26sigi=129vi9597%26sigb=13i8q053ohttp://aa.wrs.yahoo.com/_ylt=A0S0zu3JtulLdg4AOE7lPwx.;_ylu=X3oDMTBpc2VvdmQ2BHBvcwM3BHNlYwNzcgR2dGlkAw--/SIG=1ggf4rvg0/EXP=1273694281/**http%3A/malaysia.images.search.yahoo.com/images/view%3Fback=http%253A%252F%252Fmalaysia.images.search.yahoo.com%252Fsearch%252Fimages%253Fp%253Dsyringe%2526sado%253D1%2526ei%253Dutf-8%2526fr%253Dyfp-t-101%2526fr2%253Dsg-gac%26w=500%26h=428%26imgurl=www.varolmedikal.com%252Fimages%252FSyringe.jpg%26rurl=http%253A%252F%252Fwww.varolmedikal.com%252Fsiringa.htm%26size=23k%26name=Syringe%2Bjpg%26p=syringe%26oid=2e2bd46c62572c72%26fr2=sg-gac%26no=7%26tt=140804%26sigr=117dtdu8m%26sigi=117fklv1m%26sigb=137ll2p2k
  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    30/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    2.1.4 MEASURING TEMPERATURE

    THERMOMETER

    The mercury thermometer is a thermometer commonly used in the

    science laboratory. The mercury in the bulb is expands when heated.

    The expansion of the mercury pushes the thread of mercury up the

    capillary tube. The bulb is made of thin glass so that heat can be

    conducted quickly to the mercury. The round glass stem acts as a

    magnifying glass enabling the temperature to be read easily.

    2.1.5 MEASURING MASS

    Mass is the amount of matter an object has. We often use a triple-

    balance beam to measure mass.A triple-beam balance gets its name

    because it has three beams that allow you to move known masses

    along the beam.

    1. Discuss the correct way how to use a mercury thermometer.2. What are the similarities and differences between a mercury

    thermometer and a clinical thermometer?

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    31/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    Here is a picture of a triplebeam balance. You probablyhave used one in school.There are also many othertypes of balances. Scientistsneed balances that canmeasure very small amountsof mass.

    A triple beam balance compares a known mass to an unknown mass it

    is unaffected by gravity. Unlike a spring scale which really measures

    weight, the The first beam reads the mass from zero to 10 grams. The

    middle beam reads in 100 gram increments and the far beam reads in

    10 gram increments. By using all three of the beams, you can find the

    mass of your object.

    2.1.6 MEASURING ELECTRIC CURRENT/VOLTAGE

    AMMETER

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    32/147

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    33/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    VOLTMETER

    The potential difference across two point in a circuit can be measured

    by a voltmeter. The volt meter must be connected in parallel to the

    component across which the potential difference is being measured.

    The current must flow into the positive terminal and flow out of the

    negative terminal. Same precautions for ammeter apply to voltmeter.

    2.2 USE AND HANDLE SCIENCE APPARATUS

    2.2.1 Microscopes

    A multimeter is a multi-functional

    electrical meter.

    Discuss what it can measure and how

    to use it.

    http://aa.wrs.yahoo.com/_ylt=A0S0zu2nsulLhTsA7RPlPwx.;_ylu=X3oDMTBpdnJhMHUzBHBvcwMxBHNlYwNzcgR2dGlkAw--/SIG=1h5lo9lkh/EXP=1273693223/**http%3A/malaysia.images.search.yahoo.com/images/view%3Fback=http%253A%252F%252Fmalaysia.images.search.yahoo.com%252Fsearch%252Fimages%253Fp%253Dmultimeter%2526ei%253Dutf-8%2526y%253DSearch%2526fr%253Dyfp-t-101%26w=440%26h=541%26imgurl=img9.imageshack.us%252Fimg9%252F2016%252Fdigital20multimeter06.jpg%26rurl=http%253A%252F%252Fwww.icalvyn.com%252Flt%252Fdiy-cisco-console-cable%26size=56k%26name=digital20multime...%26p=multimeter%26oid=d16377d872dc4ebe%26fr2=%26no=1%26tt=56407%26sigr=11h3obe69%26sigi=11m5oe4a5%26sigb=131castn2http://aa.wrs.yahoo.com/_ylt=A0S0zu2nsulLhTsA7hPlPwx.;_ylu=X3oDMTBpZTByOGFiBHBvcwMyBHNlYwNzcgR2dGlkAw--/SIG=1g9rvkkhj/EXP=1273693223/**http%3A/malaysia.images.search.yahoo.com/images/view%3Fback=http%253A%252F%252Fmalaysia.images.search.yahoo.com%252Fsearch%252Fimages%253Fp%253Dmultimeter%2526ei%253Dutf-8%2526y%253DSearch%2526fr%253Dyfp-t-101%26w=168%26h=243%26imgurl=www.kpsec.freeuk.com%252Fphotos%252Frapid%252Fmultiman.jpg%26rurl=http%253A%252F%252Fwww.kpsec.freeuk.com%252Fmeters.htm%26size=15k%26name=multiman%2Bjpg%26p=multimeter%26oid=a812d41b7754f96e%26fr2=%26no=2%26tt=56407%26sigr=1165hlc46%26sigi=11e6d9t5o%26sigb=131castn2http://aa.wrs.yahoo.com/_ylt=A0S0zu1UselL0HIAAlblPwx.;_ylu=X3oDMTBpZm5udGl1BHBvcwM1BHNlYwNzcgR2dGlkAw--/SIG=1hejheabq/EXP=1273692884/**http%3A/malaysia.images.search.yahoo.com/images/view%3Fback=http%253A%252F%252Fmalaysia.images.search.yahoo.com%252Fsearch%252Fimages%253Fp%253Dvoltmeter%2526ei%253DUTF-8%2526rd%253Dr1%2526fr%253Dyfp-t-101%2526fr2%253Dtab-web%26w=396%26h=400%26imgurl=www.cpperformance.com%252Fimages%252F865-200757.jpg%26rurl=http%253A%252F%252Fwww.cpperformance.com%252Fdetail.aspx%253FID%253D9479%26size=72k%26name=865%2B200757%2Bjpg%26p=voltmeter%26oid=4415cac1c8b8e67c%26fr2=tab-web%26no=5%26tt=25112%26sigr=11gdipn7k%26sigi=11bj65to3%26sigb=139nnl5crhttp://aa.wrs.yahoo.com/_ylt=A0S0zu1UselL0HIA_lXlPwx.;_ylu=X3oDMTBpdnJhMHUzBHBvcwMxBHNlYwNzcgR2dGlkAw--/SIG=1lfn45i2q/EXP=1273692884/**http%3A/malaysia.images.search.yahoo.com/images/view%3Fback=http%253A%252F%252Fmalaysia.images.search.yahoo.com%252Fsearch%252Fimages%253Fp%253Dvoltmeter%2526ei%253DUTF-8%2526rd%253Dr1%2526fr%253Dyfp-t-101%2526fr2%253Dtab-web%26w=480%26h=360%26imgurl=thuvienvatly.com%252Fhome%252Fimages%252Frsgallery%252Foriginal%252Fvoltmeter_001.jpg%26rurl=http%253A%252F%252Fthuvienvatly.com%252Fhome%252Findex.php%253Foption%253Dcom_rsgallery2%2526Itemid%253D236%2526page%253Dinline%2526id%253D154%26size=40k%26name=voltmeter%2B001%2526lt%253Bp%2526gt%253B...%26p=voltmeter%26oid=1346c196e971ec2a%26fr2=tab-web%26no=1%26tt=25112%26sigr=12q9ok68q%26sigi=121tcs1mv%26sigb=139nnl5cr
  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    34/147

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    35/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    2.3 DRAW DIAGRAMS AND APPARATUS ACCURATELY

    Here are some tips how to draw a specimen.

    1. Use unlined paper and plenty of space

    2. Use a sharp pencil.

    3. Draw only what you see

    4. Sketch a large & simple diagram

    5. Draw using correct scales

    6. Do not shade or colour the drawing. Use stippling to indicate a

    darker area

    7. Use ruler to draw lines. Do not cross label lines

    8. Labels to identify parts of object

    9. Give your drawing a title

    Access the internet to gather information on the Virtual lab.

    How is it different from the normal science room?

    2.4 HANDLING SPECIMENS CORRECTLY AND CAREFULLY

    Draw and name the apparatus that are usually used for primaryscience teaching.

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    36/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    Living thing brought to the classroom must be kept for short period or

    permenant lodging. So they need specialised housing and regular

    care. If possible build up an outdoor study area. You need to take

    safety precaution while handling the specimen.

    Hygiene and safety when handling living specimens must be given

    extra attention. Make sure students wash their hand thoroughly with

    soap and water after handling living specimens. Extra care must be

    given when living specimens come with characteristics that may be

    harmful to children (e.g. cactus with sharp thorns, insects that may bite

    or sting, plant parts that may cause irritation). Remind students never

    to taste or put anything in their mouth.

    Activity 1: Green Bean Seeds

    1. Prepare three spreads of cotton wool layer on separate tiles.

    2. Place five green bean seeds on each cotton wool spread.

    3. Leave the first cotton wool spread dry. Wet the second cotton

    wool spread with five spoonful of water and the third with 20

    spoonful or water

    4. Water the second and third cotton wool spread with the same

    amount of water for five days.

    5. Observe the seedlings plant growing and record the height and

    number of leaves everyday.

    Activity 2: Fish and Lizard

    1. Prepare an aquarium with fish and a lizard in a tank.

    2. Observe these animals.

    3. Identify and compare the features of these two animals.

    a) What are the common features of these animals?

    b) What characteristics are different?

    HANDLING OF BIOLOGICAL MATERIALS

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    37/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    All hand to mouth operations should be avoided.

    Insects and small animals should be placed in a safe cage or

    aquarium.

    Injury by studied animals should be treated with antiseptic andfurther treatment should be taken.

    Wounds must be completely covered before work.

    Consider using films, video, and computer simulations in place

    of dissection activities.

    Glassware and microscope slides can be sterilized and reused.

    Any spillage or accidents must be recorded although there is no

    injury.

    Plant

    Do the observation in the field

    Return the specimens to the field

    Dont throw the specimens into the dustbin

    Do not handle poisonous plants

    Animal

    Observe life insect in closed petri dishes

    Release the insect in nature after the activity

    To ensure safety

    Before starting work, cover all wounds

    Hands must be thoroughly washed with soap at least

    If bitten treat the wound with antiseptic

    2.5 CLEAN SCIENTIFIC APPARATUS CORRECTLY

    Clean glassware using cleansing detergent, rinse with water and

    then dry them up.

    For drying, let the glassware stand or hang on drying boards or

    racks.

    After using any instruments make sure clean them before

    storing.

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    38/147

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    39/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    In this topic you will be introduced to seven basic science process

    skills. You also will be provided with activities that you can try with your

    pupils to develop all these skills. Exercises and tutorial questions

    given here will help you to evaluate how good are you in these basic

    science process skills and can enhance your understanding as well.

    LEARNING OUTCOMES

    By the end of this topic teachers will able to :

    1. Develop a critical appreciation of the basic science process

    skills and its practice in the teaching of science in primary schools.2. Demonstrate competence in designing approaches that support

    children in developing their science procedural skills and

    understandings

    TOPICS FRAMEWORK

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    40/147

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    41/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    between seeing, looking and observation should be made very clear.

    At one end of the spectrum, seeing is presented as a passive approach

    whereas at the other end of the spectrum, observing is an active

    approach.

    When we want to know about a fruit, you will use your eyes to see the

    shape and the colour of the fruit. You also will touch and smell the

    fruits to determine whether the fruit ripe or not. Then you will test

    whether the fruit sweet or not by tasting it using your tongue. Some

    time we also shake and listen the sound produced to test how good is

    the texture. Here we use all our senses to learn about the fruit. This

    type of observation is called qualitative observation. If we go more

    detail by telling the mass and the length of the fruit for example 200 g

    and 30 cm, the observation is called quantitative observation

    because it involves a number or the quantity.

    Quantitative observations give more precise information than our

    senses alone. Not surprisingly, students, especially younger children,

    need help in order to make good observations. If a student is

    describing what he or she can see, they might describe the color of an

    object but not its size or shape. Good productive observations are

    detailed and accurate written or drawn descriptions, and students need

    to be prompted to produce these elaborate descriptions. The reason

    that observations must be so full of detail is that only then students can

    increase their understanding of the concepts being studied.

    How can we guide our students to make a better more detailed

    description?

    Ask the students to focus on the objects or phenomena to be

    studied and identify the characteristics.

    Let them give initial qualitative observation. Then prompting

    them to elaborate by questioning them or giving them the tools

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    42/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    that can be used to aid them making some more qualitative

    and quantitative observation.

    If something is changing, students should include, before,

    during, and after appearances in their observations. If possible,students should be encouraged to name what is being

    observed.

    Try to use so-called referents, references to items that all

    persons are already familiar with to describe the observation

    clearer. For example, we often describe colors using referents.

    We might say blue as sky, green asgrass, or yellow as lemon

    to describe particular shades of blue, green, or yellow.

    When we measure some property, we compare the property to

    a defined referent called a unit. A measurement statement

    contains two parts, a number to tell us how much orhow many,

    and a name for the unit to tell us how much of what. The use of

    the number makes a measurement a quantitative observation.

    For example, the leaves are clustered in groups of five or mass

    of one leaf is five grams.

    As a conclusion we can say that observation is made when;

    Using all the senses to get the information

    Using tools or instruments to make precise observation

    Identify the similarities and differences to make comparison

    Identify the special attributes of the objects and its environment

    Realizing changes in environment

    Identify the arrangement about object or phenomena

    The ability to make good observations is also essential to the

    development of the other science process skills: communicating,

    classifying, measuring, inferring, and predicting

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    43/147

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    44/147

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    45/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    1. Why do we need to observe?

    2. What is the importance of observation?

    3. Plan three activies of Science Process Skill, observing based on

    Primary Science Specification.

    Tutorial 1

    1. In groups, carry out the Candle Activity. Discuss and present

    your answers

    Tutorial 2

    2. Read the article Elephant Observations and answer the

    questions.

    Read the article on Working Scientifically and prepare a concept

    map.

    Congratulation!

    Tutorial 1

    You have done your work diligently. Have a short rest and then continue to theanother basic science process skil.

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    46/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    CANDLE ACTIVITY

    Materials:

    Candle

    Lighter

    Make qualitative and quantitative measurements of a small candle bothbefore and after it has burned for two minutes. Anchor the candle in aball of modeling clay.

    Qualitative Observations

    Before burning

    ____________________________________________________

    ________________________________________________________

    During burning____________________________________________________

    _______________________________________________________

    After burning_____________________________________________________

    ________________________________________________________

    Quantitative Observations

    Observations Before Burning After Burning

    How does the two types of observations differ from one another?

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    47/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    ________________________________________________________

    ________________________________________________________

    Which one is more appropriate for use with scientific observations?Why?

    ________________________________________________________

    ________________________________________________________

    Tutorial 2

    ELEPHANT OBSERVATIONS

    Long time ago in a distant land, six blind men lived together. All ofthem had heard of elephants, but they had never seen one. Whenthey heard that an elephant and his trainer would be visiting theirvillage, they all wanted an encounter with this beast. They made theirway to the site where the elephant was being kept. Each blind mantouched the elephant and made his observations. The observations

    are listed below.

    One man touched the elephants side and said.

    An elephant is like a wall.

    Another man touched the trunk and said,

    An elephant is like a snake.

    Another man touched a tusk and said,

    An elephant is like a spear.

    Another man touched a leg and said,

    An elephant is like a fan.

    The last man touched the tail and said,

    An elephant is like a rope.

    Did the blind men make appropriate inferences? Explain.

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    48/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    _______________________________________________________

    How might the blind men improve their inferences?

    ________________________________________________________

    One of the characteristics of science is that scientistscommunicate their ideas, observation, results, and inferences witheach other. Why is this a good idea?

    ________________________________________________________

    ________________________________________________________

    ________________________________________________________

    In the space below, write a sentence or two explaining what you havelearned.

    Qualitative Observations

    ________________________________________________________

    ________________________________________________________

    Quantitative Observations

    ________________________________________________________

    Did the activities above help you to make better observations?Explain.

    ________________________________________________________

    ________________________________________________________

    How does telling stories can make teaching more fun to primarystudents?

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    49/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    ________________________________________________________

    ________________________________________________________

    Working scientifically

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    50/147

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    51/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    varying the length and timing of the swing.

    However, for many branches of

    science, this type of control is not possible.

    For instance, in studying

    ecological systems, in many cases theories

    must be established by lookingat existing ecosystems with many variables.

    In geology and astronomy the

    idea of controlling and repeating observations

    is very different. What is

    common to all these areas, however, is the

    collection of evidence to support

    or argue against claims, and reasoning with

    evidence that attempts to isolate

    clear causes for phenomena.

    Working scientifically involves anumber of concepts of evidence,

    including the purpose and techniques of

    focused observation, the

    recognition of a scientific question that can

    be investigated, the need for

    repeat measurements and skills in devising

    measurement processes, ways of

    recording data (these can vary considerably)

    and representing data for

    analysis, different experimental designs and

    associated principles

    (e.g. understanding sample size in making

    observations in the field), and

    reporting.

    Students alternative conceptions of

    working scientifically

    Research into students ideas about this topic has

    identified the following

    non-scientific conceptions:

    Students will not immediately see the task of

    an investigation as exploring

    ideas or looking for patterns, but will treat an

    investigation simply as

    establishing what is without thought for

    considering alternative

    interpretations.

    Students have problems recognising what isan investigable question and

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    52/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    will propose questions such as What is

    electricity? as the basis for

    investigation. Their questions need to be

    worked with and clarified to

    become amenable to scientific investigation.

    Students will not understand many of the

    concepts relating to

    measurementfor instance, the reading of a

    scale, the recording of

    comparison measurements using consistent

    processes, the calibration of

    instruments, the need for repeat measurements

    and the concept of

    uncertainty in measurement. They need to be

    supported in making

    defensible measurements. Students can understand the need to control

    variables in simple situations

    (to make the test fair), such as the need to

    use the same amount of each

    type of sugar when comparing the solubility

    of sugars. However, they have

    difficulty in cases of interacting variables (e.g.

    finding out the separate

    effects of weight and length on a pendulum

    swing, or the separate effect oflight and moisture in determining where

    slaters prefer to live).

    Students will not understand the power of

    laying out data in tables and

    graphs, and the use of a table as a design

    organiser to help plan a series of

    measurements.

    Depending on their knowledge and

    experience, students may have trouble

    arguing clearly from evidence.

    It has been amply demonstrated that, with

    appropriate support, even very young

    children are capable of distinguishing between

    observations and inferences, of

    asking investigable questions, planning

    experiments and arguing from evidence.

    Consumer scienceConsumer science refers to activities in the

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    53/147

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    54/147

    SCE 3106 WORKING AND THINKING SCIENTIFICALLY

    In judging different products,

    the things that need to be considered

    (summarising the discussion above) are:

    what criteria are relevant for the evaluation

    what weighting should be given to the various

    criteria

    whether the test is fair

    whether the results are reproducible

    whether the method of comparison (scale,

    addition of scores, etc.) is

    appropriate.

    Development of students testingcapabilities

    The following descriptions of students

    capabilities at different year levels, and

    the type of activity appropriate for each, are based

    on reports of Deakin

    University students teaching consumer science

    activities to groups of students

    in schools.

    Prep/Year 1

    It is most appropriate to structure tests and

    scaffold childrens experimenting.

    Criteria and procedures need to be decided by the

    teacher, using simple tests

    and comparisons, rather than measurements.

    Ensure there is a low demand for

    manipulation skills.

    Examples of appropriate tests include comparing

    the sweetness of cereals, theamount of salt or oil in chips or the amount of

    bubble in detergents.

    Year 2

    Students can define criteria, but have littleunderstanding of a fair test, e.g. so

    they may cheat to make sure their chosen sample

    wins.

    Year 3Students are beginning to appreciate the notion of

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    55/147

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    56/147

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    57/147

    SCE 3106 : WORKING AND THINKING SCIENTIFICALLY

    Dissolve in water and taste (what will you control?)crush a chip of

    each brand

    (making sure you keep the samples the same size) and put the crumbs of

    each chip

    into separate containers with about 40 mL of water. Add a pinch of

    salt to another40 mL of water. Have a clean glass of water on hand. Alternatively taste the

    salted

    water and each chip water, taking a sip of fresh water in between tastes.

    Which is

    saltier?

    b) Test for oil content by rubbing between sheets of brown paper

    Place a chip between two sheets of brown paper on the breadboard, and then

    crush it by rolling over it with the rolling pin. How much oil appears

    on the brown

    paper? Measure the spot using a ruler.

    Alternatively, place a chip on top of a pile of brown paper pieces. Roll over it

    using

    the rolling pin. How many thicknesses of paper did the oil penetrate? Hold

    the oil

    patch over some print or up to the light. How translucent is the patch?

    Repeat the experiment for the other brands of chips.

    c) Taste test

    Place a sample of each brand of chip into a paper bag. Have one student act

    as the

    taste-tester (only one student at a time should test the chips!). Get thestudent to

    taste each brand of chip from the unmarked bags. It might be a good idea to

    get

    them to have a sip of clean water between each taste. What could they test

    for

    (e.g. crunch, flavour, texture)?

    d) Testing the packaging

    Examine the packaging that the chips come in. How is the manufacturer

    trying to

    sell the chips? What colours are used in the packaging? What is the salt or

    fat

    content according to the nutrition label? Is there a trinket included in the

    pack? Is

    this important to the group? How easy are the bags to open? Rate what the

    students think of each and keep score. Which brand of chips is considered to

    be

    best according to its packaging? Why?

    57

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    58/147

    SCE 3106 : WORKING AND THINKING SCIENTIFICALLY

    Rank the criteria in order of importance. Which chips would you

    recommend

    A C T I V I T Y:

    C E R E A L

    Teaching note: This activity is similar to the chip

    experiment above and so thesame guidance should be offered. The experiments outlined

    above for potato

    chips can be carried out for cereals, although you should test

    for sugar content

    instead of salt!

    You will need:

    a variety of cereal packages.

    Look at the packet nutrition guide. Compare cereals for sugar, fat,

    carbohydratecontent.

    A C T I V I T Y:

    T E S T I N G

    B A L L S Teaching note: This activity is suitable for all levelsdepending on thecomparisons made.

    You will need:

    a range of types of balls, e.g. tennis, squash, ping-pong, golf, rubber,

    plastic

    a range of different surfaces, e.g. carpet, concrete, grassa metre rule.

    58

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    59/147

    SCE 3106 : WORKING AND THINKING SCIENTIFICALLY

    3.2 CLASSIFYING

    What is classifying?

    Whether we realise or not, we always classify things in our daily life. We classify

    books in the library according to the subject and keep the science apparatus in

    the store room according to the type of the apparatus. Your employer classifies

    you according the work you do and the government classifies you by sex, age,

    income and so on. Classifying can be defined as a process of grouping objects

    according to certain characteristics for a purpose . We need to identify similarities

    and differences while identifying characteristics. So we also can say that

    classifying is a process of grouping objects or events according to similarities or

    differences. This is an important step towards a better understanding of the

    different objects and events in the world.

    When do we need to classify?We classify when there are many items orinformation which are not organized. To classify these items we can follow the

    following steps:

    1. Identify the general characteristics of the items.

    2. Sort out items of the same characteristic into their respective groups.3. Identify other characteristics.

    4. Repeat steps 1-3 until there is only one item in each group.

    Beside that, Indicators For Classifying constructed byMalaysia Curriculum

    Development Centre (PPK, 1994)can be usedas a guideline to classify items or

    information correctly. The indicators are:

    Identify similarities and differences

    Group objects based on common characteristics

    Explain methods of classification in simple terms

    Other criteria may be used to group objects

    Objects may be grouped in various ways

    59

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    60/147

    SCE 3106 : WORKING AND THINKING SCIENTIFICALLY

    There are 3 types of classification

    Series system: This is the simplest method of classification.

    Objects are placed into rank order based on some property. For

    example, students can be serial ordered according to height, or

    different breakfast cereals can be serial ordered according to

    number of calories per serving.

    Example:

    Binary system: In this system, a set of objects is simply divided into two

    subsets. This is usually done on the basis of whether each object has or

    does not have a particular property. For example, animals can be

    classified into two groups: those with backbones and those without

    backbones. A binary classification can also be carried out using more than

    one property at once. Objects in one group must have allof the requiredproperties; otherwise they will belong to the other group.

    Example:

    OR

    60

    HUMAN

    MAN WOMAN

    INDIANCHINESEMALAY

    HUMAN

    EUROPEAN

    HUMAN

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    61/147

    SCE 3106 : WORKING AND THINKING SCIENTIFICALLY

    Multilevel system: A multi-stage classification is constructed by

    performing consecutive binary classifications on a set of objects

    and then on each of the ensuing subsets. The result is a

    classification system consisting of layers or stages. A multi-stage

    classification is complete when each of the objects in the original

    set has been separated into a category by itself. The familiar

    classifications of the animal and plant kingdoms are examples of

    multi-stage classifications. A useful activity for younger children

    could be to create a multi-stage classification of some local

    animals using physical and/or behavioral similarities and

    differences.

    Example:

    You can add some more shapes according to their characteristics and you can

    extent this classification as well to become more layers if possible.

    Try these activities to develop your classifying skills

    Activity 1.

    Materials:

    1. A bag of coins with different value

    Procedures

    1. Observe the coins and characterised them.

    61

    HUMAN

    MAN WOMAN

    SHAPE

    2 DIMENSIONAL 3 DIMENSIONAL

    CONECUBECUBOID

    RECTANGLETRIANGLECIRCLE

    CYLINDERSPHERE

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    62/147

    SCE 3106 : WORKING AND THINKING SCIENTIFICALLY

    2. Classify the coins by using serial system, binary system and multilevel

    system.

    Result

    1. Serial system

    2. Binary system

    3. Multilevel system

    62

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    63/147

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    64/147

    SCE 3106 : WORKING AND THINKING SCIENTIFICALLY

    1 What is the importance of classifying?

    2. Plan three classifying activies based on Primary Science Specification.

    Carry out the Classifying Button Activity. From your experience, discuss

    what other things in our lives that need classification?

    Congratulation! You have done your work.

    Tutorial

    CLASSIFYING BUTTONSMaterials:

    8 different types of buttonsMethods:

    1. Place the eight buttons in the box at the top of the chart on the next page.

    2. Trace around the buttons and color them.

    64

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    65/147

    SCE 3106 : WORKING AND THINKING SCIENTIFICALLY

    3. Divide the buttons into two groups in the boxes below the large box at the top.

    4. Trace around the buttons and color them. In the boxes, write the property you

    used to sort the buttons.

    5. Group the buttons from each box into the two boxes below each box.

    6. Trace around the buttons and color them. Write the property you used to sort

    the buttons.

    7. Place one button in each of the boxes at the attachment sheet.

    8. Trace around each button and color it. In the boxes, write the properties ofeach button.

    Answer the following questions:

    By going through the primary science curriculum specifications, list the

    topics that you think are important to do classification?

    ________________________________________________________________

    ________________________________________________________________

    What are the ways in which things can be classified?________________________________________________________________

    ______________________________________________________________

    65

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    66/147

    SCE 3106 : WORKING AND THINKING SCIENTIFICALLY

    3.3 COMMUNICATING

    Communicating is the skill to pass on information or ideas to other people orally

    or in writing. Students have to communicate in order to share their observations

    with someone else. The communication must be clear and effective if the other

    person to understand the information. Effective communication is clear, precise

    and unambiguous and uses skills that need to developed and practiced.

    What is communicating? Communicating is a process of receiving, spreading

    and sharing of information and ideas. You are communicating

    when you are:

    1. Speaking, listening or writing to express ideas or meanings.

    2. Recording information from investigations.

    3. Drawing and making notes.

    4. Using and explaining the meaning of symbols.

    5. Using charts, graphs and tables to present information.

    6. Posting questions clearly.

    7. Using references.

    8. Writing experiment report to enable others to repeat the experiment.

    The idea to communicate using descriptive word for which both people share acommon understanding.There is three steps that shows you are communicating

    when:

    1. Record information obtained from various resources.

    2. Translate the information into other forms such as charts, graphs and

    tables.

    66

  • 7/28/2019 Berfikir Dan Bekerja Secara Saintifik

    67/147

    SCE 3106 : WORKING AND THINKING SCIENTIFICALLY

    3. Spread the information through various means and ways.

    We can communicate effectively if we:

    1. Describe only what we observe (see, smell, hear and taste) rather than

    what you infer about the object or events.

    2. Make your description brief by using precise language.

    3. Communicate information accurately using many qualitive observations

    as the situation may call for.

    4. Consider the point of view and past experience of the person with whom

    you are communicating.

    5. Provide a means for getting feedback from the person with you are

    communicating in order to determine the effectiveness of your

    communication.

    6. Construct an alternative description if necessary.

    Talking while doing science activities, making entries in journals,recording and

    organizing data, comparing results and sharing findings are all activities that help

    children develop effective ways to communicate. Learning to use communication

    tools helps children to be able to make good decisions about how to

    communicate observations and ideas.

    COMMUNICATION TOOLS

    COMMUNICATING

    ORAL

    DESCRIPTIONS

    BODY

    LANGUAGE

    SYMBOLS

    GRAPHS

    MODELS

    CHARTS

    CONCEPT MAPS TABLES

    WRITTEN

    LANGUAG


Recommended