+ All Categories
Home > Documents > Best Practice LCA: Impact Assessment - Life Cycle ...€¦ · LCI results Human Health Biotic &...

Best Practice LCA: Impact Assessment - Life Cycle ...€¦ · LCI results Human Health Biotic &...

Date post: 05-May-2018
Category:
Upload: vutu
View: 213 times
Download: 0 times
Share this document with a friend
51
Copyright (c) (2014) PE International AG All rights reserved Best Practice LCA: Impact Assessment Webinar October 1, 2014
Transcript

Copyright (c) (2014) PE International AG – All rights reserved

Best Practice LCA: Impact Assessment

Webinar

October 1, 2014

Copyright (c) (2014) PE International AG – All rights reserved

Agenda

Short background

• Methodologies: CML, TRACI, ReCiPe,

ILCD/PEF

• Models: USEtox, Riskpoll, AE

Impact categories

• Global Warming (GWP100)

• Photochemical Ozone Creation (POCP)

• Acidification (AP)

• Eutrophication (EP)

• Human and Eco-Toxicity (ETP + HTP)

• Resource depletion (ADP)

Copyright (c) (2014) PE International AG – All rights reserved

Short methodology

background

3

Copyright (c) (2014) PE International AG – All rights reserved

LCA workflow according to ISO 14040/44

Goal and scope definition

Inventory analysis

Impact assessment

LCA framework

Inte

rpre

tation

§4.2 ISO 14044

§4.3 ISO 14044

§4.4 ISO 14044

§4.5

ISO

14044

Copyright (c) (2014) PE International AG – All rights reserved

Human toxicity

Photochemical oxidant formation

Ozone depletion

Climate change

Acidification

Eutrophication

Ecotoxicity

Land use impacts

Species & organism dispersal

Abiotic resources deplection

Biotic resources deplection

LCI

results

Human Health

Biotic & abiotic

natural environment

Biotic & abiotic

natural resources

Biotic & abiotic

manmade resources

Midpoint/Endpoint indicators

Copyright (c) (2014) PE International AG – All rights reserved

• LCIA recommendations, 2011

• Level I: Recommended and satisfactory

• Level II Recommended, some improvements needed

• Level II Recommended, but to be applied with caution

• ILCD and PEF = Identical LCIA

• Emphasis on European methodologies

• heterogeneous continent,

• middle latitude

• ok to represent average global fate

ILCD / PEF

6

Copyright (c) (2014) PE International AG – All rights reserved

• Commissioned by 4 Dutch ministries

• Carried out by:

• CML (University of Leiden, Netherlands)

• Bureau B&G (Fuels and Raw Materials Bureau), Netherlands

• Systems Engineering, Policy Analysis and Management – Delft University of Technology

• History

• Published 1996

• Methodology update in 2001

• Substance updates 2001-2013

• Up until now the PE recommended methodology (excl. US)

• Medium ILCD scores due to less advanced methodologies

CML

7

Copyright (c) (2014) PE International AG – All rights reserved

• Supported by Dutch Government

• PRé Consultants, Amersfoort, Netherlands

• CML, University of Leiden, Netherlands

• RUN, Radboud University Nijmegen Netherlands

• RIVM, Bilthoven, Netherlands

• CML (midpoint) and Ecoindicator (endpoint)

• Currently on version 1.08, 2012

• Better scores than CML in ILCD evaluation for most impacts

ReCiPe

8

Copyright (c) (2014) PE International AG – All rights reserved

• Tool for the Reduction and Assessment of

Chemical and Other Environmental Impacts

• Developed by the U.S. Environmental Protection

Agency (US EPA)

• History

• Work began in 1995 because no US equivalent to

CML

• US EPA decided to begin development of software

• Currently version 2.1

• Application

• Both research and applied

• Default in US/CAN – (almost) not used elsewhere

TRACI

9

Copyright (c) (2014) PE International AG – All rights reserved

Not covered

Impacts

• Water:

• Water assessment methods -

Dec 2, 2014, 16:00 CEST

• Water footprinting in GaBi -

Dec 9, 2014, 16:00 CEST

• Ozone depletion

• Ionizing radiation

• Land use

• Particles / respiratory inorganics

Methodologies

10

Copyright (c) (2014) PE International AG – All rights reserved

Impact categories

11

Copyright (c) (2014) PE International AG – All rights reserved

• Geography

• US: TRACI

• Europe: CML, ReCiPe, Impact World+

• Other regions: Lime

• ILCD/PEF

• ‘Composite’ version

• EN15804 EPDs

• CML

Key influencing factors

Recommendations

12

Copyright (c) (2014) PE International AG – All rights reserved

Global Warming (Radiative Forcing)

Copyright (c) (2014) PE International AG – All rights reserved

• CML, ReCiPe, TRACI all based on IPCC AR4

• ILCD recommended

• 100 year is a value choice, but consensus in science

• Same reference substance – results directly comparable

• NEW: AR5: Assessment Report 5, 2013

• Approved version April 2014

• + 110 substances

• GaBi end 2014 as separate Quantity

• CML + ReCiPe + TRACI will probably follow

• GWP 20 & 100, GTP 20, 50 & 100

Global Warming

14

Copyright (c) (2014) PE International AG – All rights reserved

Global Warming: AR4 AR5

AR4 AR5

Carbon dioxide (CO2) 1 1

Methane (CH4) 25 30

Nitrous oxide (N2O) 298 265

0

10

20

30

40

50

60

70

0-20% 20-40% >40%

Nu

mb

ers

of

sub

stan

ces

Delta intervals

GWP values AR4 -> AR5

15

Copyright (c) (2014) PE International AG – All rights reserved

Smog Creation (Photo Oxidant Formation)

Copyright (c) (2014) PE International AG – All rights reserved

Smog creation

TRACI

• Maximum Incremental Reactivity

(MIR)

• ΔO3 concentration

• O3 eq

• Urban areas in North America

Methodological background

17

CML and ReCiPe

• Photochemical Ozone Creation

Potential (POCP)

• ΔO3 concentration

• CML: C2H4 eq (ethylene)

• ReCiPe: NMVOC eq

• Regional European scenarios

Copyright (c) (2014) PE International AG – All rights reserved

Smog creation

• TRACI covers 900 + 280 non-

specific

• TRACI uses MIR values

• O3 equivalents

• Not comparable in absolute

values to ReCiPe and CML

• Same substances are important

Substance coverage

18

• CML and ReCiPe cover ~125

• CML and ReCiPe use POCP

• Same same but different

• CML: Ethene (C2H4)

• ReCiPe: NMVOC (unspecific)

• CFReCiPe /CFC2H4 = CFCML

• ILCD recommend ReCiPe

Copyright (c) (2014) PE International AG – All rights reserved

POCPs vs. MIRs – same substances important

Smog creation

-200

-100

0

100

200

300

400

500

600

700

800

Bia

cety

l

Met

hyl

met

hac

ryla

te (

MM

A)

Met

hac

ryla

te

Met

hyl

nit

rite

cis-

2-B

ute

ne

Met

hyl

vin

yl k

eto

ne

Fura

n

2-M

eth

yl-2

-bu

ten

e

Bu

tad

ien

e

Xyl

ene

(dim

eth

yl b

enze

ne)

C9

-C1

0 a

rom

ates

Iso

pro

pyl

amin

e

2-C

hlo

rom

eth

yl-3

-ch

loro

pro

pen

e

Cyc

lop

ente

ne

ort

ho

-Eth

ylto

luen

e

par

a-Et

hyl

tolu

ene

Form

ald

eh

yde

(met

han

al)

Pen

tan

ald

ehyd

e

iso

-Bu

ten

e

Iso

ph

oro

ne

1-H

epte

ne

3-M

eth

ylb

uta

no

ic a

cid

1-B

uta

no

l

1-P

rop

ylb

enze

ne

1-P

rop

ano

l

Die

thyl

ene

glyc

ol

Cu

men

e (i

sop

rop

ylb

enze

ne)

NM

VO

C (

un

spec

ifie

d)

Cyc

loh

exan

ol

1,2

,3-P

rop

anet

rio

l (G

lyce

rin

)

Diis

op

rop

ylet

her

Tetr

alin

2-C

hlo

roto

luen

e

Vin

yl c

hlo

rid

e (V

CM

; ch

loro

eth

ene)

Hex

ane

(iso

mer

s)

Bu

tan

e (n

-bu

tan

e)

Ph

thal

ic a

nh

ydri

de

1,2

-Bu

tan

dio

l

Die

than

ola

min

e

1-M

eth

yl-2

-pyr

rolid

on

e

ort

ho

-Cre

sol

Pen

tan

e (n

-pen

tan

e)

Met

hyl

iso

pro

pyl

keto

ne

No

nan

e

Dec

ane

2-E

thyl

-1-h

exan

ol

Do

dec

ane

Ch

loro

pic

rin

Bu

tyri

c ac

id (

bu

tan

e ac

id)

1,1

-Dic

hlo

roet

hyl

ene

Pro

pyl

ene

glyc

ol m

eth

yl e

ther

ace

tate

Pro

pyl

ace

tate

2,4

-Dim

eth

ylp

enta

ne

2,5

-Dim

eth

ylh

exan

e

2,4

-Dim

eth

ylh

epta

ne

Ben

zen

e

Dib

uty

lph

thal

ate

2-M

eth

ylp

rop

ano

ic a

cid

C7

Cyc

lic k

eto

nes

Pro

pio

nic

aci

d (

pro

pan

e ac

id)

2,2

,3 T

rim

eth

ylb

uta

ne

iso

-Pen

tyla

ceta

te

Neo

pen

tan

e

Cyc

loal

kan

es (

un

spec

.)

C9

Cyc

lic k

eto

nes

C1

0 C

yclic

ket

on

es

1-B

uty

lpro

pio

nat

e

Eth

ine

(ace

tyle

ne)

Thio

ben

carb

Hex

ylcy

clo

hex

ane

iso

-Bu

tyl i

sob

uty

rate

3,9

-Die

thyl

un

dec

ane

Hex

adec

ane

Sulp

hu

r d

ioxi

de

tert

iary

-Bu

tyl a

ceta

te

Dic

hlo

rop

rop

ane

Dim

eth

yl s

ucc

inat

e

Dic

hlo

rob

en

zen

e (o

-DC

B;

1,2

-dic

hlo

rob

enze

ne)

Car

bo

n m

on

oxi

de

Cyc

lop

rop

ane

1,1

,1-T

rich

loro

eth

ane

Met

han

e

R 2

25

cb (

dic

hlo

rop

enta

flu

oro

pen

tan

e)

R 4

3-1

0 (d

ecaf

luo

rop

enta

ne)

POCP indexed to average = 100

TRACI

ReCiPe

CML

Average per method

19

Copyright (c) (2014) PE International AG – All rights reserved

Smog creation

GaBi 2011: NOx split into NO and NO2 for truck emissions.

• Heavy trucks in city center emits NO

• CML good for air quality ?!?!

• ReCiPe no effect on air quality ?!?!

• Authors: “ReCiPe assumes average European weather conditions while CML assumes

that the sun always shines”

The nitrogen monoxide (NO) problem

20

NO2 NO NOx Unit

CML 2013 0.028 -0.427 0.028 kg C2H4-eq.

TRACI 2.1 16.8 24.8 24.8 kg O3-eq.

ReCiPe 1.08 1 #N/A 1 kg NMVOC eq.

Copyright (c) (2014) PE International AG – All rights reserved

Acidification

Copyright (c) (2014) PE International AG – All rights reserved

Acidification

• Atmospheric models;

• CML, ReCiPe, AE = Europe,

• TRACI = US

• CML and TRACI

• TRACI use H+; CML converts this to SO2e

• Deposition of acidifying substances; no soil reaction

• ReCiPe

• One step further; includes Base Saturation (BS) of soil

• Higher BS =

• more basic cations

• higher buffer capacity of soil

• neutralize more acid

• Accumulated exceedance (AE), ILCD recommend

• One step further; includes ecosystem sensitivity on national level

Methodological background

22

𝐵𝑆 = 𝐵𝑎𝑠𝑒 𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝐶𝑎𝑡𝑖𝑜𝑛 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝐶𝐸𝐶) 𝑥 100

Why is CFSO2 = 1.2 SO2 eq ?!?!

It should say

CFSO2, EU = 1.2SO2-Suisse-eq

Copyright (c) (2014) PE International AG – All rights reserved

Acidification

• TRACI covers the

most substances

• PE has calculated

additional values

and verified with

CML authors

• AE cover fewest

Substance coverage

23

0

2

4

6

8

10

12

14

16

CML ReCiPe TRACI AccumulatedExceedance

No

. of

sub

stan

ces

cove

red

PE Calculated& verified

Methodology

EDIP

19

97

+N

H4

fate

mo

de

l

Copyright (c) (2014) PE International AG – All rights reserved

Acidification

• TRACI and CML

(incl. PE factors)

produce similar

values

• ReCiPe produce

different values

for NO/NOx

Comparison of characterization factors

24

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Nit

roge

n d

ioxi

de

Nit

roge

n o

xid

es

Sulf

ur

dio

xid

e

Hyd

roch

lori

c ac

id

Am

mo

nia

Hyd

roge

n s

ulf

ide

Hyd

rofl

uo

ric

acid

Nit

ric

oxi

de

Sulf

ur

oxi

de

s (s

ox)

Ph

osp

ho

ric

acid

Sulf

ur

trio

xid

e

Sulf

uri

c ac

id

Nit

ric

acid

Am

mo

niu

m

Am

mo

niu

m n

itra

te

Hyd

roge

n b

rom

ine

SO2

eq

.

Acidification CML (incl. PE)

ReCiPe

TRACI

AE

Copyright (c) (2014) PE International AG – All rights reserved

Eutrophication

Copyright (c) (2014) PE International AG – All rights reserved

Aquatic Eutrophication

Biomass formation; unlimited supply of other nutrients

• ‘Average’ chemical composition of aquatic organisms: C106H263O110N16P

• 1 mol biomass: 16 mol N and 1 mol P

• 1 kg biomass: 6.3% N and 0.9% P

Different reference substance

• CML: kg PO43- eq.

• TRACI kg N eq.

• ReCiPe freshwater: kg P eq.

• ReCiPe marine: kg N eq.

Air emissions

• TRACI air emissions assume 85% removal

• CML and ReCiPe assume no removal

Methodological background

26

Copyright (c) (2014) PE International AG – All rights reserved

Aquatic Eutrophication

• Equal coverage on number

• PE calculation

• Organic substance CxHyOz

• C CO2; H H2O; O H2O & CO2

• PE calculated using COD

• ILCD recommend ReCiPe for

aquatic

Substance coverage

27

0

5

10

15

20

25

30

CML ReCiPe TRACI

PE Calculated and verified

Methodology

Copyright (c) (2014) PE International AG – All rights reserved

Aquatic Eutrophication

• Values can be

converted to

same unit: 16

mole N per 1

mole P

• Values are

virtually

identical

Comparison of characterization factors

28

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ph

osp

ha

te e

q.

Eutrophication

CML

ReCiPe

TRACI

Copyright (c) (2014) PE International AG – All rights reserved

Terrestrial Eutrophication

Accumulated Exceedance (AE), ILCD recommended

• Includes ecosystem sensitivity

• Implemented on global average

• 6 substances

29

Copyright (c) (2014) PE International AG – All rights reserved

Toxicity

Copyright (c) (2014) PE International AG – All rights reserved

• UNEP

• Model developers worldwide

• Now at DTU, Denmark

• ILCD + PE recommend

• 100% in TRACI

Toxicity

• Dutch

• CML authors

• Simplebox + USES-LCA

• CML + ReCiPe

• (despite authors involved in USEtox)

31

Copyright (c) (2014) PE International AG – All rights reserved

• Multi-media, steady-state

• Global, continental and regional compartments

• Fate x exposure x effect

Toxicity

32

Copyright (c) (2014) PE International AG – All rights reserved

Toxicity

• USEtox

• Contains many

substances not

characterized

• Flagged = higher

uncertainty

• Many flows are not

implemented in GaBi

• not needed in

2000+ LCAs

Number of substances

33

0

500

1000

1500

2000

2500

3000

3500

Usetox, Human USEtox, Eco CML ReCiPe 1.07 ReCiPe 1.08

Nu

mb

er

of

sub

stan

ces

Number of substances covered in LCIA methods

n/a

Flagged

Recommended

GaBi standard flow list

Copyright (c) (2014) PE International AG – All rights reserved

Toxicity

• USEtox does not cover marine and terrestrial ecotoxicity

• If this is a focus in LCA – expand with or use ReCiPe

34

USEtox CML/ReCiPe

Freshwater X X

Marine X

Terrestrial X

Human, cancer X

XHuman, non-cancer X

Compartments

Copyright (c) (2014) PE International AG – All rights reserved

1. Identify key contributing emissions and process steps

2. Display these as percentage breakdown only (no absolute values)

3. Recommendations or conclusions should only be based on this information

4. If there are outliers, double-check with at least one other methodology

PE Methodology Guideline MCG-02-2011

USEtox™ in LCA

35

0% 20% 40% 60% 80% 100%

product B

product AMercury (to air)

Selenium (to air)

Copper (to air)

Barium (to air)

Nickel (to water)

Other

Copyright (c) (2014) PE International AG – All rights reserved

Resource Depletion Potential

36

Copyright (c) (2014) PE International AG – All rights reserved

Resource Depletion Potential

• ADP = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒

𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑠2𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑆𝑏

(𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑠 𝑆𝑏) 2

• Ultimate = earth crust default in CML

• Base = meets physical and chemical criteria ILCD recommendation

• Economic = economic sense to extract

• Anthropogenic ADP (AADP)

Methodological background CML

37

Ultimate Base Econ

Copyright (c) (2014) PE International AG – All rights reserved

Resource Depletion

• 47 mineral deposit types

containing several

minerals/metals

• The highest ore grade is mined

first

the value of ore decrease

future is more expensive to

mine

ReCiPe

38

y = -6E+11x + 4E+11R² = 0.9046

0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

3E+11

3.5E+11

4E+11

4.5E+11

5E+11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Cu

mu

late

d y

ield

($

)

Ore grade value ($/kg)

Dunitic - ni

1. The more

you mine

2. The lower ore

value you will use

Copyright (c) (2014) PE International AG – All rights reserved

Metal/resource depletion

• CML covers the most

substances

• ReCiPe + AADP less

than half

• And TRACI none

Comparison

39

0

10

20

30

40

50

60

CML ReCiPe TRACI AADP

Nu

mb

er

of

ele

me

nts

Elements

Copyright (c) (2014) PE International AG – All rights reserved

Metal/resource depletion: Compared

• Example: Galvanized steel

• CML = Zinc dominating

• ReCiPe = Iron dominating

• Zinc a little more expensive to mine

(ReCiPe)…

• …but much lower reserves (CML).

• From 4 orders of magnitude to

factor 2 between CFs for Zn and Fe

CML vs. ReCiPe

40

0

20

40

60

80

100

CML ReCiPe

%

Rest

Manganese ore

Iron ore

Zinc ores

Copyright (c) (2014) PE International AG – All rights reserved

Resource depletion

• Rare Earth metals = Not

the rarest in total

abundance

• They do not concentrate

in ores – scattered in

earth crust

• Not available from USGS

• Not in CML, baseline

• Not in ReCiPe

• ILCD: Same factor for all

RE

Rare earth metals

41

Copyright (c) (2014) PE International AG – All rights reserved

• End of Life modelling - Oct 28, 2014, 16:00 CEST/ 11:00 EDT

• Water assessment methods - Dec 2, 2014, 16:00 CEST

• Water footprinting in GaBi - Dec 9, 2014, 16:00 CEST

www.pe-international.com/academy/webinars/

Best Practice LCA

Upcoming webinars

42

Copyright (c) (2014) PE International AG – All rights reserved

z

43

Thank you very much!

[email protected]

GaBi user group on LinkedIn

Copyright (c) (2014) PE International AG – All rights reserved

References and links

• AR4: The Physical Science Basis. Contribution of Working Group I to

the Fourth Assessment Report of the Intergovernmental Panel on

Climate Change

• AR5: Climate Change 2013: The Physical Science Basis. Contribution

of Working Group I to the Fifth Assessment Report of the

Intergovernmental Panel on Climate Change

• http://www.ipcc.ch/

Global Warming Potential

Copyright (c) (2014) PE International AG – All rights reserved

References and links

• CML• Derwent, R.G., M.E. Jenkin & S.M. Saunders, 1996. Photochemical ozone creation potentials for a large number of

reactive hydrocarbons under European conditions. Atmos. Environ. 30 (2): 181–199.

• Derwent, R.G., M.E. Jenkin, S.M. Saunders & M.J. Pilling, 1998. Photochemical ozone creation potentials for organic compounds in Northwest Europe calculated with a master chemical mechanism. Atmos. Environ. 32 (14–15): 2429–2441.

• Jenkin, M.E. & G.D. Hayman, 1999. Photochemical ozone creation potentials for oxygenated volatile organic compounds: sensitivity to variations in kinetic and mechanistic parameters. Atmos. Environ. 33 (8): 1275–1293.

• ReCiPe• Rosalie van Zelm, Mark A.J. Huijbregts, Henri A. den Hollander, Hans A. van Jaarsveld, Ferd J. Sauter, Jaap Struijs,

Harm J. van Wijnen and Dik van de Meent. European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Atmospheric Environment 42 (2008): 441-453

• TRACI• Carter W (2007) Development of the SAPRC-07 chemical mechanism and updated ozone reactivity scales, final

report, California Air Resources Board

• Carter W (2008) Estimation of the maximum ozone impacts of oxides of nitrogen

• Carter W (2010a) Email to Jane Bare. Feb 3:2010

• Carter W (2010b) SAPRC atmospheric chemical mechanisms and VOC Reactivity Scales

Summer smog

Copyright (c) (2014) PE International AG – All rights reserved

References and links

• CML• Huijbregts, M., 1999b. Life cycle Impact assessment of acidifying and eutrophying air pollutants. Calculation of

equivalency factors with RAINS-LCA. Interfaculty Department of Environmental Science, Faculty of Environmental Science, University of Amsterdam.

• ReCiPe• Rosalie van Zelm, Mark A.J. Huijbregts, Hans A. van Jaarsveld, Gert Jan Reinds, Jaap Struijs & Dik van de Meent.

Time horizon dependent characterization factors for acidification in life-cycle assessment based on forest plant species occurrence in Europe. Environmental Science & Technology 41 (2007), 922-927.

• EUTREND model of acid deposition following acidifying emission: Van Jaarsveld, JA. 1995. Modelling the long-term atmospheric behaviour of pollutants on various spatial scales. PhD thesis. University of Utrecht, Utrecht, The Netherlands.

• SMART2 model of changes in soil base saturation following acid deposition, Kros J. 2002. Evaluation of biogeochemical models at local and regional scale. PhD thesis. Wageningen University, Wageningen, The Netherlands.

• TRACI• Bare JC, Norris GA, Pennington DW, McKone T (2003) TRACI–the tool for the reduction and assessment of

chemical and other environmental impacts. Journal of Industrial Ecology 6:49–78

• Norris G (2003) Impact characterization in the tool for the reduction and assessment of chemical and other environmental impacts-methods for acidification, eutrophication, and ozone formation. Journal of Industrial Ecology 6:79–101

Acidification

Copyright (c) (2014) PE International AG – All rights reserved

References and links

• CML• Heijungs, R., J. Guinée, G. Huppes, R.M. Lankreijer, H.A. Udo de Haes, A. Wegener Sleeswijk, A.M.M.

Ansems, P.G. Eggels, R. van Duin & H.P. de Goede, 1992. Environmental Life Cycle Assessment of products. Guide and Backgrounds. CML, Leiden University, Leiden.

• ReCiPe• Beusen A (2005). User manual of CARMEN1. National Institute of Public Health and Environ-mental

Protection (RIVM), Bilthoven (Manuscript, not published)

• Crouzet P, Leonard J, Nixon S, Rees Y, Parr W, Laffon, L, Bogestrand J, Kristensen P, Lallana C, Izzo G, Bokn T, Bak J, Lack TJ, Thyssen N (ed.) (1999). Nutrients in European ecosystems. European Environment Agency, Copenhagen, Environmental assessment report, no 4.

• TRACI• Bare JC, Norris GA, Pennington DW, McKone T (2003) TRACI–the tool for the reduction and assessment of

chemical and other environmental impacts. Journal of Industrial Ecology 6:49–78

• Norris G (2003) Impact characterization in the tool for the reduction and assessment of chemical and other environmental impacts-methods for acidification, eutrophication, and ozone formation. Journal of Industrial Ecology 6:79–101

Eutrophication

Copyright (c) (2014) PE International AG – All rights reserved

References and links

• CML• Huijbregts, M.A.J., U. Thissen, J.B. Guinée, T. Jager, D. van de Meent, A.M.J. Ragas, A. Wegener Sleeswijk and L. Reijnders,

2000. Priority assessment of toxic substances in life cycle assessment, I: Calculation of toxicity potentials for 181 substances

with the nested multi-media fate, exposure and effects model USES-LCA. Chemosphere 41: 541-573

• Van Zelm R., Huijbregts M.A.J., Van de Meent D. 2009. USES-LCA 2.0: a global nested multi-media fate, exposure and effects

model. The International Journal of LCA 14, p. 282-284.

• ReCiPe• Huijbregts MAJ, Struijs J, Goedkoop M, Heijungs R, Hendriks AJ, Van de Meent D. 2005. Human population intake fractions

and environmental fate factors of toxic pollutants in Life Cycle Impact Assessment. Chemosphere 61 (10): 1495-1504.

• Van Zelm R, Huijbregts MAJ, Harbers JV, Wintersen A, Struijs J, Posthuma L, Van de Meent D. 2007. Uncertainty in msPAF-

based ecotoxicological freshwater effect factors for chemicals with a non-specific mode of action in life cycle impact

assessment. Integrated Environmental Assessment and Management 3 (2): 203-210.

• Van Zelm R, Huijbregts MAJ, Posthuma L, Wintersen A, Van de Meent D. 2009. Pesticide ecotoxicological effect factors and

their uncertainties for freshwater ecosystems. International Journal of LCA . Vol 14 (1), 43-51

• TRACI• Rosenbaum et al (2008): USEtox – the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity

and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess (2008) 13:532–546

Eco-toxicity

Copyright (c) (2014) PE International AG – All rights reserved

References and links

Ozone Depletion

• WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 2006, Global

Ozone Research and Monitoring Project—Report No. 50, 572 pp., Geneva, Switzerland, 2007

Resource Risk Assessment

• Rosenau-Tornow et al. (2009): Assessing the long-term supply risks for mineral raw materials—a

combined evaluation of past and future trends. Resources Policy 34 (2009) 161–175.

• Nassar et al. (2011): Criticality of the Geological Copper Family. Environmental Science & Technology.

dx.doi.org/10.1021/es203535w.

Land Use Change

• Beck et al. (2010): LANCA® - Land Use Indicator Value Calculation in Life Cycle Assessment – Method

Report. http://www.lbp-gabi.de/files/lanca_website.pdf.

• Koellner et al. (2012): Principles for life cycle inventories of land use on a global scale. Int J Life Cycle

Assess. DOI 10.1007/s11367-012-0392-0

Copyright (c) (2014) PE International AG – All rights reserved

References and links

• CML

• Guinée, J. & R. Heijungs, 1995. A proposal for the definition of resource equivalency factors for use

in product Life-Cycle Assessment. Environmental Toxicology and Chemistry 14 (5): 917–925.

• ReCiPe

• Verhoef E. V.; Dijkema P. J., and Markus A. Reuter; 2004 ; Process Knowledge, System Dynamics,

and Metal Ecology. Industrial Ecology, MIT press Volume 8, Number 1–2.

• USGS, 2004. USGS mineral commodity summaries. U.S. Geological Survey, Denver, CO, United

States.

• TRACI

• Not included

Abiotic Resource Depletion

Copyright (c) (2014) PE International AG – All rights reserved

All rights reserved.

The materials in this communication are subject to copyright protection. No part of

this communication may be reproduced, distributed, or transmitted in any form or

by any means, including photocopying, recording, or other electronic or mechanical

methods, without the prior written permission of PE INTERNATIONAL AG.

51


Recommended