+ All Categories
Home > Documents > bib_GN.pdf

bib_GN.pdf

Date post: 08-Nov-2014
Category:
Upload: rs0004
View: 19 times
Download: 4 times
Share this document with a friend
Description:
Bibliography on Genetic Algorithms
Popular Tags:
12
Finite Elements in Analysis and Design 32 (1999) 51 62 Geometric-nonlinear analysis by finite element and boundary element methods A bibliography (19971998) Jaroslav Mackerle Linko ( ping Institute of Technology, Department of Mechanical Engineering, S-581 83 Linko ( ping, Sweden Abstract This bibliography contains references to papers, conference proceedings and theses/dissertations dealing with finite element and boundary element analyses of geometric-nonlinear problems that were published in 19971998. ( 1999 Elsevier Science B.V. All rights reserved. 1. Introduction This bibliography provides a list of references on finite element and boundary element methods applied to the analysis of geometric-nonlinear problems. General solution techniques as well as problem-specific applications are included. The entries have been retrieved from the author’s database, MAKEBASE. They are grouped into two main sections: finite elements boundary elements The references have been published in scientific journals, conference proceedings, and theses/dissertations between 19971998. Some previously published reviews and books on the finite element and boundary element analysis of geometric-nonlinear problems in general can be found in entries [225240] of the Finite element methods section and in [68] of the Boundary element methods section of this bibliography, respectively. The references are sorted in each category alphabetically according to the first author’s name. The main topics include: geometric-nonlinear static and dynamic analysis of 2-D and 3-D structures; geometric- and material-nonlinear static and dynamic analysis of 2-D and 3-D struc- tures; large rotations and large deformations problems; large displacements and large strains analysis; large strains and large rotations analysis; finite deformation coupled thermomechanical problems; geometric-nonlinear vibration analysis; constitutive modelling- finite deformation/strain plasticity, viscoelasticity, elastoviscoplasticity, etc.; large strain elastoplasticity with damage; large 0168-874X/99/$ see front matter ( 1999 Elsevier Science B.V. All rights reserved PII: S 0 1 6 8 - 8 7 4 X ( 9 8 ) 0 0 0 6 9 - 9
Transcript
Page 1: bib_GN.pdf

Finite Elements in Analysis and Design 32 (1999) 51—62

Geometric-nonlinear analysis by finite element and boundaryelement methods — A bibliography (1997—1998)

Jaroslav MackerleLinko( ping Institute of Technology, Department of Mechanical Engineering, S-581 83 Linko( ping, Sweden

Abstract

This bibliography contains references to papers, conference proceedings and theses/dissertations dealing with finiteelement and boundary element analyses of geometric-nonlinear problems that were published in 1997—1998. ( 1999Elsevier Science B.V. All rights reserved.

1. Introduction

This bibliography provides a list of references on finite element and boundary element methodsapplied to the analysis of geometric-nonlinear problems. General solution techniques as well asproblem-specific applications are included. The entries have been retrieved from the author’sdatabase, MAKEBASE. They are grouped into two main sections:

— finite elements— boundary elements

The references have been published in scientific journals, conference proceedings, andtheses/dissertations between 1997—1998. Some previously published reviews and books on thefinite element and boundary element analysis of geometric-nonlinear problems in general can befound in entries [225—240] of the Finite element methods section and in [6—8] of the Boundaryelement methods section of this bibliography, respectively. The references are sorted in eachcategory alphabetically according to the first author’s name.

The main topics include: geometric-nonlinear static and dynamic analysis of 2-D and 3-Dstructures; geometric- and material-nonlinear static and dynamic analysis of 2-D and 3-D struc-tures; large rotations and large deformations problems; large displacements and large strainsanalysis; large strains and large rotations analysis; finite deformation coupled thermomechanicalproblems; geometric-nonlinear vibration analysis; constitutive modelling- finite deformation/strainplasticity, viscoelasticity, elastoviscoplasticity, etc.; large strain elastoplasticity with damage; large

0168-874X/99/$ — see front matter ( 1999 Elsevier Science B.V. All rights reservedPII: S 0 1 6 8 - 8 7 4 X ( 9 8 ) 0 0 0 6 9 - 9

Page 2: bib_GN.pdf

strain cam-clay models; large anisotropic elasticity; finite elements development with geometric-nonlinearities- membranes, beams, plates, shells, 3-D solids; a posteriori error estimation; remesh-ing techniques.

The main applications to: material processing; sheet metal forming; rolling process; metalpowder forming; machining; fracture mechanics; contact mechanics; geomechanics; pressurevessels; offshore structures; material testing; biomechanics.

The following materials are included: metals; polymers; rubbers; composites; wood; smartmaterials; biological materials, soils, etc.

Bibiliography

Finite element methods

Papers in journals/conference proceedings and theses

[1] M.K. Apalak, Geometrically non-linear analysis of adhesively bonded double containment corner joints, J. Adhes.66 (1/4) (1998) 117—133.

[2] M.K. Apalak, Geometrically nonlinear analysis of adhesively bonded modified double containment corner joints:II, J. Adhes. Sci. Technol. 12 (2) (1998) 135—160.

[3] M.K. Apalak, A. Engin, Geometrically non-linear analysis of adhesively bonded double containment cantileverjoints, J. Adhes. Sci. Technol. 11 (9) (1997) 1153—1195.

[4] F. Armero, E. Petocz, On the formulation of stable time-stepping algorithms for contact problems, in: D.R.J. Owen(Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 865—872.

[5] I. Arregui et al., An Eulerian approach for large displacements of thin shells including geometrical non-linearities,Comput. Methods Appl. Mech. Eng. 140 (3/4) (1997) 361—381.

[6] A.K. Banerjee, S. Nagarajan, Efficient simulation of large overall motion of beams undergoing large deflection,Multibody Systems Dyn. 1 (1) (1997) 113—126.

[7] Y. Basar, Y. Ding, Shear deformation models for large-strain shell analysis, Int. J. Solids Struct. 34 (14) (1997)1687—708.

[8] Y. Basar, M. Itskov, Finite element formulation of the Ogden material model with application to rubber-likeshells, Int. J. Numer. Methods Eng. 42 (7) (1998) 1279—1305.

[9] J.L. Batoz, Y.Q. Guo, Analysis and design of sheet forming parts using a simplified inverse approach, in: D.R.J.Owen (Ed.) 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 178—195.

[10] R.C. Batra, X.Q. Liang, Finite dynamic deformations of smart structures, Comput. Mechanics 20 (5) (1997)427—438.

[11] A.C. Benjamin et al., CALEB: a computer program for geometric and material nonlinear analysis of offshoreplatforms and general framed structures, 10th Int. Symp. Offshore Eng., Rio de Janeiro, 1997, pp. 303—313.

[12] P. Betsch et al., On the parametrization of finite rotations in computational mechanics, a classification of conceptswith application to smooth shells, Comput. Methods Appl. Mech. Eng. 155 (3/4) (1998) 273—305.

[13] S. Bezzina, K. Saanouni, Computational procedures for finite strain elastoplasticity with damage: application forsheet cutting, in: D.R.J. Owen (Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 1065—1070.

[14] M. Bischoff, E. Ramm, Shear deformable shell elements for large strains and rotations, Int. J. Numer. MethodsEng. 40 (23) (1997) 4427—4449.

[15] J. Bonet, A.J. Burton, A simple average nodal pressure tetrahedral element for incompressible and nearlyincompressible dynamic explicit applications, Commun. Numer. Methods Eng. 14 (5) (1998) 437—449.

[16] R.I. Borja, C. Tamagnini, Numerical implementation of a mathematical model for finite strain elastoplasticconsolidation, in: D.R.J. Owen (Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 1631—1640.

52 J. Mackerle /Finite Elements in Analysis and Design 32 (1999) 51—62

Page 3: bib_GN.pdf

[17] R.I. Borja, C. Tamagnini, Cam-clay plasticity, Part III: Extension of the infinitesimal model to include finitestrains, Comput. Methods Appl. Mech. Eng. 155 (1/2) (1998) 73—95.

[18] P.A. Boucard et al., A nonincremental approach for large displacement problems, Comput. Struct. 64 (1/4) (1997)499—508.

[19] B. Brank et al., On large deformations of thin elasto-plastic shells: implementation of a finite rotation model forquadrilateral shell element, Int. J. Numer. Methods Eng. 40 (4) (1997) 689—726.

[20] B. Brank et al., On non-linear dynamics of shells: implementation of energy-momentum conserving algorithm fora finite rotation shell model, Int. J. Numer. Methods Eng. 42 (3) (1998) 409—442.

[21] U. Brink, E. Stein, A posteriori error estimation in large-strain elasticity using equilibrated local Neumannproblems, Comput. Methods Appl. Mech. Eng. 161 (1/2) (1998) 77—101.

[22] M. Brunig, Numerical modelling of finite elastic-plastic deformations of crystalline solids including non-Schmideffects, in: D.R.J. Owen (Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 907—912.

[23] M. Brunig, Numerical analysis and modeling of large deformation and necking behavior of tensile specimens,Finite Elements Anal. Design 28 (4) (1998) 303—319.

[24] H.T. Budiman, P.A. Lagace, Nondimensional parameters for geometric nonlinear effects in pressurized cylinderswith axial cracks, J. Appl. Mech., ASME 64 (2) (1997) 401—407.

[25] P. Bussy, Y. Mosbah, An error calculation method for finite element analysis in large displacements, Int. J. Numer.Methods Eng. 40 (20) (1997) 3703—3728.

[26] C. Callari et al., Finite-element implementation of a finite-strain cam-clay model, in: D.R.J. Owen (Ed.), 5th Int.Conf. Comput. Plast., CIMNE, 1997, pp. 1649—1656.

[27] F.L. Carranza et al., An adaptive space-time finite element model for oxidation-driven fracture, Comput. MethodsAppl. Mech. Eng. 157 (3/4) (1998) 399—423.

[28] E. Carrera, H. Parisch, Evaluation of geometrical nonlinear effects of thin and moderately thick multilayeredcomposite shells, Composite Struct. 40 (1) (1997) 11—24.

[29] E. Carrera et al., Large deflection FEM analysis of thermally loaded, stiffened shear deformable plates, in: 1997ASME Int. Mech. Eng. Cong. Expo, PVP 369, 1997, pp. 141—154.

[30] C.C. Celigoj, Finite deformation coupled thermomechanical problems and generalized standard materials, Int. J.Numer. Methods Eng. 42 (6) (1998) 1025—1043.

[31] S. Chakraborty, S. Majumdar, An arbitrary-shaped arch element for large deflection analysis, Comput. Struct. 65(4) (1997) 593—600.

[32] R. Chambon et al., One-dimensional localisation studied with a second grade model, European J. Mech., A/Solids17 (4) (1998) 637—656.

[33] J.H. Chang, C.B. Chen, FE calculation of elastodynamic energy release rate for rubbery materials, Finite ElementsAnal. Des. 28 (2) (1997) 151—163.

[34] J.H. Chang, Y.T. Gao, Numerical evaluation of J2-integral for rubber materials under dynamic loads with finite

element method, Comput. Mech. 20 (5) (1997) 460—467.[35] P.G. Charette et al., Large deformation mechanical testing of biological membranes using speckle interferometry

in transition. 2- Finite element modeling, Appl. Opt. 36 (10) (1997) 2246—2251.[36] R. Charlier et al., The effect of hydromechanical coupling on the numerical modelling of strain localization, in:

D.R.J. Owen (Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 682—689.[37] J.S. Chen, C.T. Wu, On computational issues in large deformation analysis of rubber bushings, Mech. Struct.

Mach. 25 (3) (1997) 287—309.[38] J.S. Chen et al., Large deformation analysis of rubber based on a reproducing kernel particle method, Comput.

Mech. 19 (3) (1997) 211—227.[39] J.S. Chen et al., Finite element procedures for large deformation analysis of arterial segments, in: 1997 Bioeng.

Conf. BED 35, ASME, 1997, pp. 465—466.[40] W. Chen, S. Zheng, Refined hybrid degenerated shell element for geometrically non-linear analysis, Int. J. Numer.

Methods Eng. 41 (7) (1998) 1195—1213.[41] J. Cheng et al., Nonlinear large deformation finite element analysis of orthodontic springs, Bio-Med. Mater. Eng.

7 (2) (1997) 99—110.[42] W. Cheng, A modified shell element method for determining 3D large strain distributions in sheet metal stamping,

Commun. Numer. Methods Eng. 14 (6) (1998) 519—527.

J. Mackerle /Finite Elements in Analysis and Design 32 (1999) 51—62 53

Page 4: bib_GN.pdf

[43] J.L. Chenot, New trends in finite element modelling of metal forming processes, in: D.R.J. Owen (Ed.), 5th Int.Conf. Comput. Plast., CIMNE, 1997, pp. 209—223.

[44] C. Cho et al., Stability analysis using a geometrically nonlinear assumed strain solid shell element model, FiniteElements Anal. Des. 29 (2) (1998) 121—135.

[45] S.R. Chowdhury, R. Narasimhan, Ductile failure in a constrained metal layer under mixed mode loading, ActaMater. 46 (4) (1998) 1103—1113.

[46] M.A. Crisfield et al., Dynamics of 3-D co-rotational beams, Comput. Mech. 20 (6) (1997) 507—519.[47] H. De Boer, F. Van Keulen, Pade approximants applied to a non-linear finite element solution strategy, Commun.

Numer. Methods Eng. 13 (4) (1997) 229—238.[48] H. De Boer, F. Van Keulen, Pade approximants applied to a non-linear finite element solution strategy, Commun.

Numer. Methods Eng. 13 (7) (1997) 593—602.[49] H. De Paula Faria, W.T.M. Silva, A congruential formulation of nonlinear plane structures, in: 4th World Cong.

Comput. Mech., Buenos Aires, 1998, pp. 179.[50] J. Descamps et al., An asymptotic numerical method to solve large strain viscoplastic problems, in: D.R.J. Owen

(Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 393—400.[51] P. Dluzewski, P. Rodzik, Elastic eigenstates in finite element modelling of large anisotropic elasticity, Comput.

Methods Appl. Mech. Eng. 160 (3/4) (1998) 325—335.[52] F.P.E. Dunne et al., Anisothermal large deformation constitutive equations and their application to modelling

titanium alloys in forging, Philo. Mag. A 3 (1997) 587—610.[53] M. Dutko et al., Bulk forming simulation by adaptive explicit FEM, in: D.R.J. Owen (Ed.), 5th Int. Conf. Comput.

Plast., CIMNE, 1997, pp. 1305—1312.[54] R. Eberlein, Finite-Elemente-Konzepte fur Schalen mit grossen elastischen und plastischenVerzerrungen, Dissert,

Tech. Hochschule Darmstadt, 1997.[55] R. Eberlein, P. Wriggers, Finite element formulations of five and six parameter shell theories accounting for finite

plastic strains, in: D.R.J. Owen (Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 1898—1903.[56] A.A. El Damatty et al., Large displacement extension of consistent shell element for static and dynamic analysis,

Comput. Struct. 62 (6) (1997) 943—960.[57] H.D. Espinoza et al., Adaptive FEM computation of geometric and material nonlinearities with application to

brittle failure, Mech. Mater. 29 (3/4) (1998) 275—305.[58] Y.T. Feng et al., A non-nested Galerkin multi-grid method for solving linear and nonlinear solid mechanics

problems, Comput. Methods Appl. Mech. Eng. 144 (3/4) (1997) 307—325.[59] L. Fourment et al., Optimum design of the hot forging process: a FE inverse model with remeshing for large

deformations, in: D.R.J. Owen (Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 804—809.[60] J.R.Q. Franco, F.B. Barros, An improved adaptive formulation for the computation of limit analysis problems on

axisymmetrical shells, in: D.R.J. Owen (Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, 626—632.[61] M.S. Gadala, Recent advances in the numerical modeling of constitutive relations, Finite Elements Anal. Des. 24

(3) (1997) 171—185.[62] S. Glaser, F. Armero, On the formulation of enhanced strain finite elements in finite deformations, Eng. Comput.

14 (7) (1997) 759—791.[63] B.W. Golley, The solution of open and closed elasticas using intrinsic coordinate finite elements, Comput.

Methods Appl. Mech. Eng. 146 (1/2) (1997) 127—134.[64] S. Govindjee, Accuracy and stability for integration of Jaumann stress rate equations in spinning bodies, Eng.

Comput. 14 (1) (1997) 14—30.[65] F. Gruttmann et al., A geometrical nonlinear eccentric 3D-beam element with arbitrary cross-sections, Comput.

Methods Appl. Mech. Eng. 160 (3/4) (1998) 383—400.[66] L.N.B. Gummadi, A.N. Palazotto, Nonlinear analysis of beams and arches undergoing large rotations, J. Eng.

Mech., ASCE 123 (4) (1997) 394—398.[67] L.N.B. Gummadi, A.N. Palazotto, Large strain analysis of beams and arches undergoing large rotations, Int. J.

Non-Linear Mech. 33 (4) (1998) 615—645.[68] L.N.B. Gummadi, A.N. Palazotto, Finite element analysis of arches undergoing large rotations — I: Theoretical

comparison, Finite Elements Anal. Design 24 (4) (1997) 213—235.

54 J. Mackerle /Finite Elements in Analysis and Design 32 (1999) 51—62

Page 5: bib_GN.pdf

[69] L.N.B. Gummadi, A.N. Palazotto, Non-linear dynamic finite element analysis of composite cylindrical shellsconsidering large rotations, 38th Str., Str. Dyn. Mater. Conf., Kissimmee, AIAA, 1997, pp. 2362—2370.

[70] E. Gunay, A.U. Erdem, A new heterosis plate element for geometrically non-linear finite element analysis oflaminated plates, Comput. Struct. 65 (6) (1997) 819—828.

[71] M. Hac, Dynamic analysis of geometrically nonlinear flexible mechanisms, Mach. Dyn. Prob. 18 (1997) 105—120.[72] W. Han, M. Petyt, Geometrically nonlinear vibration analysis of thin, rectangular plates using the hierarchical

FEM — I: The fundamental mode of isotropic plates, Comput. Struct. 63 (2) (1997) 295—308.[73] W. Han, M. Petyt, Geometrically nonlinear vibration analysis of thin, rectangular plates using the hierarchical

FEM — II: 1st mode of laminated plates and higher modes, Comput. Struct. 63 (2) (1997) 309—318.[74] R. Hauptmann, K. Schweizerhof, A systematic development of solid-shell element formulations for linear and

non-linear analyses employing only displacement degrees of freedom, Int. J. Numer. Methods Eng. 42 (1) (1998)49—69.

[75] K. Heiduschke, What is plastic strain? in: D.R.J. Owen (Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp.425—430.

[76] S. Holmberg, H. Petersson, Numerical simulations and experimental studies of large deformation and fracturingprocesses in wood, in: D.R.J. Owen (Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 929—936.

[77] T. Horie, T. Niho, Electromagnetic and structural coupled analysis with the effect of large deflection, IEEE Trans.Magn. 33 (2) (1997) 1658—1661.

[78] K.M. Hsiao, E.Y. Lin, Large displacement analysis of elasto-plastic ring under external pressure, in: D.R.J. Owen(Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 1910—1915.

[79] P. Hu et al., A finite element analysis of the large plastic deformation behavior of amorphous glassy circularpolymeric bars, Acta Mech. Solida Sinica 10 (2) (1997) 138—147.

[80] Y. Hu, M. F. Randolph, Practical numerical approach for large deformation problems in soil, Int. J. Numer. Anal.Methods Geomech. 22 (5) (1998) 327—350.

[81] C. Huettel, A. Matzenmiller, Generalized plasticity for finite strains, in: D.R.J. Owen (Ed.), 5th Int. Conf. Comput.Plast., CIMNE, 1997, pp. 434—440.

[82] C.L. Hwan, An upper bound finite element procedure for solving large plane strain deformation, Int. J. Numer.Methods Eng. 40 (10) (1997) 1909—1922.

[83] A. Ibrahimbegovic, Stress resultant geometrically exact shell theory for finite rotations and its finite elementimplementation, Appl. Mech. Rev. 50 (4) (1997) 199—226.

[84] A. Ibrahimbegovic, On the choice of finite rotation parameters, Comput. Methods Appl. Mech. Eng. 149 (1/4)(1997) 49—71.

[85] A. Ibrahimbegovic, Finite deformation plasticity and related localization effects, in: D.R.J. Owen (Ed.), 5th Int.Conf. Comput. Plast., CIMNE, 1997, pp. 774—780.

[86] A. Ibrahimbegovic, M. Al Mikdad, Finite rotations in dynamics of beams and implicit time-stepping schemes, Int.J. Numer. Methods Eng. 41 (5) (1998) 781—814.

[87] A.V. Idesman et al., Finite element simulation of martensitic phase transition in elastoplastic material at finitestrains, in: D.R.J. Owen (Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 1323—1328.

[88] M. Itskov, Finite-Elemente-Analyse gummiartiger inkompressibler Elastomere unter grossen Verzerrungen undKontaktwechselwirkungen, ZAMM 77 (8) (1997) 585—594.

[89] S. Jun et al., Explicit reproducing kernel particle methods for large deformation problems, Int. J. Numer. MethodsEng. 41 (1) (1998) 137—166.

[90] M. Kaliske, H. Rothert, Formulation and implementation of three-dimensional viscoelasticity at small and finitestrains, Comput. Mech. 19 (3) (1997) 228—239.

[91] M. Kaliske, H. Rothert, On the finite element implementation of rubber-like materials at finite strains, Eng.Comput. 14 (2/3) (1997) 216—232.

[92] M. Kaliske et al., A generalized approach to inelastic behaviour at finite strains — application to polymericmaterial, in: D.R.J. Owen (Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 937—944.

[93] J. Keck, C. Miehe, An Euler overstress-type viscoplastic constitutive model in spectral form. Formulationand numerical implementation, in: D.R.J. Owen (Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp.996—1003.

J. Mackerle /Finite Elements in Analysis and Design 32 (1999) 51—62 55

Page 6: bib_GN.pdf

[94] B.L. Kemp et al., Vectorial approach to the analysis of finite rotation dynamics of beams, in: 39th Str., Str. Dyn.Mater. Conf. Exh., Long Beach, 1998, pp. 313—318.

[95] A.R. Khoei, R.W. Lewis, Finite element modelling of large elasto-plastic deformation for the dynamic analysisof powder compaction processes, in: D.R.J. Owen (Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp.1329—1334.

[96] S.J. Kim et al., Viscoelastic model of finitely deforming rubber and its finite element analysis, J. Appl. Mech. ASME64 (4) (1997) 835—841.

[97] E. Kirchner et al., A finite element method for plane stress problems with large elastic and plastic deformations,Commun. Numer. Methods Eng. 13 (12) (1997) 963—976.

[98] L.S. Kistler, A.M. Waas, Impact response of cylindrically curved laminates including a large deformation scalingstudy, Int. J. Impact Eng. 21 (1/2) (1998) 61—75.

[99] S. Klinkel, W. Wagner, A geometrical non-linear brick element based on the EAS-method, Int. J. Numer. MethodsEng. 40 (24) (1997) 4529—4545.

[100] M. Kojic et al., Geometrically nonlinear analysis of cam-clay type porous material with fluid flow, in: D.R.J. Owen(Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 1685—1690.

[101] M. Kolli, K. Chandrashekhara, Non-linear static and dynamic analysis of stiffened laminated plates, Int. J.Non-Linear Mech. 32 (1) (1997) 89—101.

[102] C. Konke, Coupling of micro- and macro-damage models for the simulation of damage evolution in ductilematerials, Comput. Struct. 64 (1/4) (1997) 643—653.

[103] W.B. Kratzig et al., Simulation of inelastic damage in reinforced concrete structures using adaptive methods, in:D.R.J. Owen (Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 172—177.

[104] I. Kreja et al., Finite elements based on a first-order shear deformation moderate rotation shell theory withapplications to the analysis of composite structures, Int. J. Non-Linear Mech. 32 (6) (1997) 1123—1142.

[105] R.D. Krieg, S. Xu, Plane stress linear hardening plasticity theory, Finite Elements Anal. Des. 27 (1) (1997) 41—67.[106] T.A. Laursen, V.G. Oancea, On the constitutive modeling and finite element computation of rate-dependent

frictional sliding in large deformations, Comput. Methods Appl. Mech. Eng. 143 (3/4) (1997) 197—227.[107] D.W. Lee, D.Y. Yang, Consideration of geometric nonlinearity in rigid-plastic finite element formulation of

continuum elements for large deformation, Int. J. Mech. Sci. 39 (12) (1997) 1423—1440.[108] K. Lee, Analysis of large displacements and large rotations of three-dimensional beams by using small strains and

unit vectors, Commun. Numer. Methods Eng. 13 (12) (1997) 987—997.[109] S.J. Lee, W. Kanok-Nukulchai, A nine-node assumed strain finite element for large-deformation analysis of

laminated shells, Int. J. Numer. Methods Eng. 42 (5) (1998) 777—798.[110] M.E. Levenston et al., Finite deformation theory and finite element formulation for coupled electrokinetic and

fluid flow in soft tissues: application to electroosmotics, ASME Int. Mech. Eng. Cong. Expo. BED 36, ASME,1997, pp. 187—188.

[111] R.W. Lewis, A.R. Khoei, Numerical modelling of large deformation in metal powder forming, Comput. MethodsAppl. Mech. Eng. 159 (3/4) (1998) 291—328.

[112] K.P. Li, S. Cescotto, An 8-node brick element with mixed formulation for large deformation analyses, Comput.Methods Appl. Mech. Eng. 141 (1/2) (1997) 157—204.

[113] M. Li, The finite deformation theory for beam, plate and shell, Part I: The two-dimensional beam theory, Comput.Methods Appl. Mech. Eng. 146 (1/2) (1997) 53—63.

[114] M. Li, The finite deformation of beam, plate and shell structures, Part II: The kinematic model and theGreen-Lagrangian strains, Comput. Methods Appl. Mech. Eng. 156 (1/4) (1998) 247—257.

[115] X. Li et al., A mixed strain element method for pressure-dependent elastoplasticity at moderate finite strain, Int. J.Numer. Methods Eng. 43 (1) (1998) 111—129.

[116] D.G. Liaw, Nonlinear supersonic flutter of laminated composite plates under thermal loads, Comput. Struct. 65 (5)(1997) 733—740.

[117] Z.C. Lin, S.Y. Lee, Application of an elastic roller with slightly convex shape to the improvement of the flatness ofa strip for cold rolling, JSME Int. J. Ser A 40 (4) (1997) 459—469.

[118] Z.C. Lin, C.C. Shen, A rolling process two-dimensional finite element model analysis, Finite Elements Anal.Design 26 (2) (1997) 143—160.

56 J. Mackerle /Finite Elements in Analysis and Design 32 (1999) 51—62

Page 7: bib_GN.pdf

[119] W. Ling, H.K. Stolarski, On elasto-plastic finite element analysis of some frictional contact problems with largesliding, Eng. Comput. 14 (5) (1997) 558—580.

[120] C.H. Liu, J.Y. Wong, Large strain FE-analysis of sand using MARC, in: D.R.J Owen (Ed.), 5th Int. Conf. Comput.Plast., CIMNE, 1997, pp. 1716—1721.

[121] W.K. Liu et al., A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplasticanalysis, Comput. Methods Appl. Mech. Eng. 154 (1/2) (1998) 69—132.

[122] Y. Liu et al., Dynamic analysis of spatial truss structures undergoing large overall motion, J. Vibrat. Eng. 11 (1)(1998) 18—23.

[123] L.A. Louca, J.E. Harding, Non-linear analysis of imperfect plates under transient lateral pressure loading,Comput. Struct. 63 (1) (1997) 27—37.

[124] J. Lufrano et al., Hydrogen transport and large strain elastoplasticity near a notch in alloy X-750, Eng. Fract.Mech. 59 (6) (1998) 827—845.

[125] G. Luhrs et al., On the numerical treatment of finite deformations in elastoviscoplasticity, Comput. Methods Appl.Mech. Eng. 144 (1/2) (1997) 1—21.

[126] R. Mahnken, E. Stein, Parameter identification for finite deformation elasto-plasticity in principal directions,Comput. Methods Appl. Mech. Eng. 147 (1/2) (1997) 17—39.

[127] R. Mahnken, E. Stein, Concepts and computational methods for parameter identification of inelastic materialmodels, in: D.R.J. Owen (Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 20—37.

[128] J. Marcinowski, Large deflections of shells subjected to an external load and temperature changes, Int. J. SolidsStruct. 34 (6) (1997) 755—768.

[129] A. Masud et al., A finite-strain finite element model for the pseudoelastic behavior of shape memory alloys,Comput. Methods Appl. Mech. Eng. 148 (1/2) (1997) 23—37.

[130] J. Mayo, J. Dominguez, A finite element geometrically nonlinear dynamic formulation of flexible multibodysystems using a new displacements representation, J. Vibrat. Acoust. ASME 119 (4) (1997) 573—581.

[131] J.L. Meek, S. Ristic, Large displacement analysis of thin plates and shells using a flat facet finite elementformulation, Comput. Methods Appl. Mech. Eng. 145 (3/4) (1997) 285—299.

[132] S.A. Meguid, M.H. Refaat, Finite element analysis of the deep drawing process using variational inequalities,Finite Elements Anal. Des. 28 (1) (1997) 51—67.

[133] C. Meinsma, Seismic investigation of plane steel-concrete composite frames, Bauingenieur 72 (3) (1997)123—130.

[134] T. Merlini, A variational formulation for finite elasticity with independent rotation and Biot-axial fields, Comput.Mech. 19 (3) (1997) 153—168.

[135] C. Miehe, A formulation of finite elastoplasticity in shells based on dual co- and contra-variant eigenvectorsnormalized with respect to a plastic metric, in: D.R.J. Owen (Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp.1922—1929.

[136] C. Miehe, A theoretical and computational model for isotropic elastoplastic stress analysis in shells at large strains,Comput. Methods Appl. Mech. Eng. 155 (3/4) (1998) 193—233.

[137] C. Miehe, A formulation of finite elastoplasticity based on dual co- and contra-variant eigenvector triadsnormalized with respect to a plastic metric, Comput. Methods Appl. Mech. Eng. 159 (3/4) (1998) 223—260.

[138] J. Mitsugi, Direct strain measure for large displacement analyses on hinge connected beam structures, Comput.Struct. 64 (1/4) (1997) 509—517.

[139] Y. Mitsuya et al., Coupling and nonlinear effects of cantilever deflection and torsion encountered when measuringvertical and lateral forces using the scanning, Wear 211 (2) (1997) 198—202.

[140] P. Mohan, R.K. Kapania, Geometrically nonlinear analysis of composite plates and shells using a flat triangularshell element, in: 38th Str., Str. Dyn. Mater. Conf., Kissimmee, AIAA, 1997, pp. 2347—2361.

[141] P. Mohan, R.K. Kapania, Updated Lagrangian formulation of a flat triangular element for thin laminated shells,AIAA J. 36 (2) (1998) 273—281.

[142] U. Montag, On more efficient computational algorithms for elasto-plastic shell analysis, in: D.R.J. Owen (Ed.), 5thInt. Conf. Comput. Plast., CIMNE, 1997, pp. 1935—1942.

[143] G. Moreau, D. Caillerie, Continuum modeling of lattice structures in large displacement applications to bucklinganalysis, Comput. Struct. 68 (1/3) (1998) 181—189.

J. Mackerle /Finite Elements in Analysis and Design 32 (1999) 51—62 57

Page 8: bib_GN.pdf

[144] A. Myslinski, Mixed finite element approach for shape optimal design of large displacement contact problems,Comput. Struct. 64 (1/4) (1997) 595—602.

[145] B. Nedjar, M. Reynier, Error on the constitutive relation in the nonlinear formulation of elastic beams: the planecase, Comput. Methods Appl. Mech. Eng. 160 (3/4) (1998) 299—314.

[146] A. Neuenhofer, F.C. Filippou, Geometrically nonlinear flexibility-based frame finite element, J. Struct. Eng. ASCE124 (6) (1998) 704—711.

[147] Q. Nie, Q. Niu, p-version large strain finite element formulation and application in elastic-plastic deformation,Comput. Struct. 65 (5) (1997) 761—765.

[148] A.T. Noel, B.A. Szabo, Formulation of geometrically non-linear problems in the spatial reference frame, Int. J.Numer. Methods Eng. 40 (7) (1997) 1263—1280.

[149] S. Okamoto, Y. Omura, Large deformation analysis of a flexible structure moving along an arbitrary orbit ortrack, Trans. Jpn. Soc. Mech. Eng. Ser. C 63 (615) (1997) 3883—3891.

[150] F. Olmi et al., An interactive remeshing technique applied to two dimensional problems involving largeelasto-plastic deformations, in: D.R.J. Owen (Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 619—625.

[151] P.F. Pai et al., Polar decomposition and appropriate strains and stresses for nonlinear structural analyses,Comput. Struct. 66 (6) (1998) 823—840.

[152] A.N. Palazotto et al., Finite element analysis of arches undergoing large rotations — II: Classification, FiniteElements Anal. Des. 24 (4) (1997) 237—252.

[153] H. Parisch, C. Lubbing, A formulation of arbitrarily shaped surface elements for three-dimensional largedeformation contact with friction, Int. J. Numer. Methods Eng. 40 (18) (1997) 3359—3383.

[154] J. Park et al., Reinforcement redistribution in Al-SiC composites under cyclic deformations, Acta Mater. 45 (4)(1997) 1351—1364.

[155] D. Pantuso, K.J. Bathe, On the stability of mixed finite elements in large strain analysis of incompressible solids,Finite Elements Anal. Des. 28 (2) (1997) 83—104.

[156] T.O. Pedersen, Remeshing in analysis of large plastic deformations, Comput. Struct. 67 (4) (1998) 279—288.[157] D. Pelessone, C.M. Charman, Modeling of instruments in large-deformation structural computer codes, in: 1997

ASME Press. Vess. Piping Conf. PVP 351, ASME, 1997, pp. 391—397.[158] F.E. Penado, Simplified method for the geometrically nonlinear analysis of the single lap joint, J. Thermoplast.

Compos. Mater. 11 (3) (1998) 272—287.[159] D. Peric et al., Developments in multigrid strategies for FE simulations in nonlinear solid mechanics, in: 4th World

Cong. Comput. Mechanics Buenos Aires, 1998, p. 65.[160] N.S. Prasad, S. Sridhar, Elasto-plastic analysis using shell element considering geometric and material nonlineari-

ties, Struct. Eng. Mech. 6 (2) (1998) 217—227.[161] R. Qian, Modified Hellinger-Reissner variational functional including only two independent variables for large

displacement of thin shallow shell, Appl. Math. Mech. 18 (7) (1997) 663—670.[162] B.N. Qu et al., The nonlinear assembled finite element theory and application for structures contained cables, 4th

World Cong. Comput. Mech., Buenos Aires, 1998, p. 211.[163] B.M. Quadrelli, S.N. Atluri, Analysis of flexible multibody systems with spatial beams using mixed variational

principle, Int. J. Numer. Methods Eng. 42 (6) (1998) 1071—1090.[164] E. Ramm, F. Cirak, Adaptivity for nonlinear thin-walled structures, in: D.R.J. Owen (Ed.), 5th Int. Conf. Comput.

Plast., CIMNE, 1997, pp. 145—163.[165] S. Reese, P. Wriggers, A material model for rubber-like polymers exhibiting plastic deformation: computational

aspects and a comparison with experimental results, Comput. Methods Appl. Mech. Eng. 148 (3/4) (1997)279—298.

[166] M.H. Refaat, S.A. Meguid, Updated Lagrangian formulation of contact problems using variational inequalities,Int. J. Numer. Methods Eng. 40 (16) (1997) 2975—2993.

[167] J. Rhim, S.W. Lee, A vectorial approach to computational modelling of beams undergoing finite rotations, Int. J.Numer Methods Eng. 41 (3) (1998) 527—540.

[168] G.D.O. Ribeiro, R.J.H. Medeiros, Finite element analyse of two-dimensional problems with geometricand material non-linearities in the range of small strains, 4th World Cong. Comput. Mech., Buenos Aires, 1998,pp. 195.

58 J. Mackerle /Finite Elements in Analysis and Design 32 (1999) 51—62

Page 9: bib_GN.pdf

[169] M. Richards et al., Large-deformation behavior of mesenchymal distraction gap tissue, in: ASME Int. Mech. Eng.Cong. Expo. BED 36, ASME, 1997, pp. 135—136.

[170] A. Rodriguez-Ferran et al., Two stress update algorithms for large strains: accuracy analysis and numericalimplementation, Int. J. Numer. Methods Eng. 40 (23) (1997) 4363—4404.

[171] A. Rodriguez-Ferran et al., Accuracy analysis of two stress update algorithms for large strain, in: D.R.J. Owen(Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 532—539.

[172] A.A. Rogovoy, The stress recovery procedure for the finite element method, Comput. Struct. 63 (6) (1997)1121—1137.

[173] A. Rogovoy, B. Ivanov, Displacement formulation of the friction conditions on the contact surface, Comput.Struct. 62 (1) (1997) 133—139.

[174] M. Rouainia, D. Peric, Aspects of implementation of large strain elasto-viscoplasticity with applications to shells,in: D.R.J. Owen (Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 1957—1964.

[175] M. Rouainia, D. Peric, A computational model for elasto-viscoplastic solids at finite strain with reference to thinshell applications, Int. J. Numer. Methods Eng. 42 (2) (1998) 289—311.

[176] M. Saje et al., A kinematically exact finite element formulation of planar elastic-plastic frames, Comput. MethodsAppl. Mech. Eng. 144 (1/2) (1997) 125—151.

[177] M. Saje et al., A kinematically exact finite element formulation of elastic-plastic curved beams, Comput. Struct. 67(4) (1998) 197—214.

[178] C. Sansour, Large strain deformations of elastic shells, constitutive modelling and finite element analysis, Comput.Methods Appl. Mech. Eng. 161 (1/2) (1998) 1—18.

[179] C. Sansour, F.G. Kollmann, On theory and numerics of large viscoplastic deformation, Comput. Methods Appl.Mech. Eng. 146 (3/4) (1997) 351—369.

[180] C. Sansour, F.G. Kollmann, Finite strain viscoplasticity based on unified constitutive equations and decomposi-tion of logarithmic strain: application to shells, Appl. Mech. Rev. 50 (11) (1997) S184—S192.

[181] C. Sansour, F.G. Kollmann, Multiplicative versus additive decompositions in finite strain viscoplasticity. Applica-tions to shell computations based on unified constitutive equations, in: D.R.J. Owen (Ed.), 5th Int. Conf. Comput.Plast., CIMNE, 1997, pp. 1965—1972.

[182] C. Sansour, F.G. Kollmann, Large viscoplastic deformations of shells. Theory and finite element formulation,Comput. Mech. 21 (6) (1998) 512—525.

[183] C. Sansour et al., Nonlinear dynamics of shells: theory, finite element formulation, and integration schemes,Nonlinear Dyn. 13 (3) (1997) 279—305.

[184] J. Schroder, C. Miehe, Aspects of computational homogenization analysis of polycrystalline materials, in: D.R.J.Owen (Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 1004—1011.

[185] A. Selmane, A.A. Lakis, Influence of geometric non-linearities on the free vibrations of orthotropic open cylindricalshells, Int. J. Numer. Methods Eng. 40 (6) (1997) 1115—1137.

[186] R.H. Setyabudhy et al., Measuring and modeling of human soft tissue and seat interaction, SAE Spec. Publ. 1242(1997) 135—142.

[187] A.A. Shabana, A.P. Christensen, Three-dimensional absolute nodal co-ordinate formulation: plate problem, Int. J.Numer. Methods Eng. 40 (15) (1997) 2775—2790.

[188] A.A. Shabana, R. Schwertassek, Equivalence of the floating frame of reference approach and finite elementformulations, Int. J. Non-Linear Mech. 33 (3) (1998) 417—432.

[189] A.A. Shabana et al., Application of the absolute nodal coordinate formulation to large rotation and largedeformation problems, J. Mech. Des. ASME 120 (2) (1998) 188—195.

[190] J.G. Shin et al., A finite element approach to anisotropic damage of ductile materials in large deformations, Part I:An anisotropic ductile elastic-plastic model, Int. J. Fract. 84 (3) (1997) 261—277.

[191] J.G. Shin et al., A finite element approach to anisotropic damage of ductile materials in large deformations, Part II:FE formulation and applications, Int. J. Fract. 84 (3) (1997) 279—295.

[192] R. Slavokovic et al., Modelling of viscoplastic metal large strain deformation at hot working by a general creepmodel, in: D.R.J. Owen (Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 1375—1380.

[193] A.H.P. Siu, Y.K. Lee, A three-dimensional least-squares finite element technique for deformation analysis, Int. J.Numer. Methods Eng. 40 (22) (1997) 4159—4182.

J. Mackerle /Finite Elements in Analysis and Design 32 (1999) 51—62 59

Page 10: bib_GN.pdf

[194] R.J.M. Smit et al., Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finiteelement modeling, Comput. Methods Appl. Mech. Eng. 155 (1/2) (1998) 181—192.

[195] M.F. Snyman, J.C. Nagtegaal, Numerical techniques for modeling steady-state rolling contact with finitedeformations, 4th World Cong. Comput. Mechanics, Buenos Aires, 1998, p. 54.

[196] J. Soric, U. Montag, Robust simulation techniques for realistic elastoplastic shell responses, in: D.R.J. Owen (Ed.),5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 1985—1992.

[197] J. Soric et al., On the increase of computational algorithm efficiency for elasto-plastic shell analysis, Eng. Comput.14 (1) (1997) 75—97.

[198] J. Soric et al., An efficient formulation of integration algorithms for elastoplastic shell analysis based on layeredfinite element approach, Comput. Methods Appl. Mech. Eng. 148 (3/4) (1997) 315—328.

[199] L. Speier et al., Numerical simulation of the finite deformation and localization behaviour of porous elastic-plasticsolids, in: D.R.J. Owen (Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 668—673.

[200] W.R. Spillers, S. Rashidi, Member stiffness for 3D beam-columns, J. Struct. Eng. ASCE 123 (7) (1997) 971—972.[201] T. Steinkopff, M. Sautter, Finite element simulation of large plastic deformation in heterophase materials, Model.

Simul. Mater. Sci. Eng. 5 (1) (1997) 1—21.[202] P. Steinmann, Continuum theory of dislocations: impact to single crystal plasticity, in: D.R.J. Owen (Ed.), 5th Int.

Conf. Comput. Plast., CIMNE, 1997, pp. 973—980.[203] P. Steinmann et al., FE plane stress analysis incorporating arbitrary 3D large strain constitutive models, Eng.

Comput. 14 (2/3) (1997) 175—201.[204] J. Sweeney et al., Large deformations of semicrystalline polymer modeled using the necking network concept, J.

Eng. Mater. Tech. ASME 119 (3) (1997) 228—232.[205] J. Sweeney et al., Application of an elastic model to the large deformation, high temperature stretching of

polypropylene, Polymer 38 (24) (1997) 5991—5999.[206] L.H. Teh, M.J. Clarke, New definition of conservative internal moments in space frames, J. Eng. Mech. ASCE 123

(2) (1997) 97—106.[207] E.E. Theotokoglou, Interlaminar cracking of composite shells, Theoret. Appl. Fract. Mech. 27 (1) (1997)

13—20.[208] G.J. Turvey, M. Salehi, Circular plates with one diametral stiffener — an elastic large deflection analysis, Comput.

Struct. 63 (4) (1997) 775—783.[209] G.J. Turvey, M. Salehi, Elastic large deflection analysis of stiffened annular sector plates, Int. J. Mech. Sci. 40 (1)

(1998) 51—70.[210] G.J. Turvey, M. Salehi, Large deflection analysis of eccentrically stiffened sector plates, Comput. Struct. 68 (1/3)

(1998) 191—205.[211] V. Tvergaard, Cleavage crack growth resistance due to plastic flow around a near-tip dislocation-free region, J.

Mech. Phys. Solids 45 (6) (1997) 1007—1023.[212] W.J. Vankan et al., A finite element mixture model for hierarchical porous media, Int. J. Numer. Methods Eng. 40

(2) (1997) 193—210.[213] J. Wang, M.S. Gadala, Formulation and survey of ALE method in nonlinear solid mechanics, Finite Elements

Anal. Des. 24 (4) (1997) 253—269.[214] C. Wanji, Variational principles and refined non-conforming element methods for geometrically non-linear

analysis, Commun. Numer. Methods Eng. 13 (8) (1997) 665—673.[215] P. Wriggers, O. Scherf, Adaptive finite element techniques for frictional contact problems involving large elastic

strains, Comput. Methods Appl. Mech. Eng. 151 (3/4) (1998) 593—603.[216] P. Wriggers, G. Zavarise, On contact between three-dimensional beams undergoing large deflections, Commun.

Numer. Methods Eng. 13 (6) (1997) 429—438.[217] T.T. Wu, W.J. Horn, Degenerate solid element formulation for large deformations of thin shell structures, in: 38th

Str., Str. Dyn. Mater. Conf., Kissimmee, AIAA, 1997, pp. 2337—2346.[218] H. Xia, D.Y. Xue, Nonlinear structural analysis of vehicle body panels, Int. J. Veh. Des. 18 (5) (1997) 533—547.[219] F. Yang et al., Large deformation of a thin disk by a cylindrical punch, Mech. Mater. 26 (1) (1997) 15—22.[220] M. Ying et al., Finite element analysis of silicon condenser microphones with corrugated diaphragms, Finite

Elements Anal. Des. 30 (1/2) (1998) 163—173.

60 J. Mackerle /Finite Elements in Analysis and Design 32 (1999) 51—62

Page 11: bib_GN.pdf

[221] G. Zavarise, R.L. Taylor, A force control method for contact problems with large penetrations, in: D.R.J. Owen(Ed.), 5th Int. Conf. Comput. Plast., CIMNE, 1997, pp. 280—285.

[222] Q. Zeng, A. Combescure, A new one-point quadrature, general non-linear quadrilateral shell element with physicalstabilization, Int. J. Numer. Methods Eng. 42 (7) (1998) 1307—1338.

[223] J.D. Zhang et al., Large deformation biomechanical model for pressure ulcers, J. Biomech. Eng., ASME 119 (4)(1997) 406—408.

[224] J. Zhu, W. Chen, Geometric nonlinear—analysis by using refined triangular thin plate element and free formmembrane locking, Comput. Struct. 63 (5) (1997) 999—1005.

Other reviews and books

[225] K.J. Bathe, Some advances in finite element procedures for nonlinear structural and thermal problems, in:A K Noor (Ed.), Comput. Mech. Adv. Trends., AMD 75, ASME, 1986, pp. 183—216.

[226] M.S. Gadala, M. Abo-Elkhier, Comparison of finite element formulations in nonlinear structural mechanics, Res.Mech. 18 (2) (1986) 157—177.

[227] M. Henriksen, G.G.W. Mustoe, A review of some current problems in large displacement plasticity for processsimulation, in: J N Reddy (Ed.), Finite Elements Anal. Eng. Des., Springer, 1988, pp. 694—704.

[228] A.R. Luxmoore, et al. (Eds.), Numerical Methods in Fracture Mechanics, Pineridge Press, Swansea, 1987.[229] D.R.J. Owen, D. Peric, Recent developments in the application of finite element methods to nonlinear problems,

Finite Elements Anal. Des. 18 (1/3) (1994) 1—15.[230] D.R.J. Owen, et al. (Eds.), Numerical Methods for Non-Linear Problems, Pineridge Press, Swansea, 1986.[231] D.R.J. Owen, et al. (Eds.), Computational Plasticity: Models, Software and Applications, Pineridge Press,

Swansea, 1987.[232] D.R.J. Owen et al., Advanced computational strategies for 3-D large scale metal forming simulations, in: S.F. Shen,

P. Dawson (Eds.), NUMIFORM 95, Balkema, 1995, pp. 7—22.[233] M. Papadrakakis, Analysis methods for spatial structures, Shell Spatial Str.: Comput. Aspects, Springer, Berlin,

1987, pp. 121—148.[234] F.G. Rammerstorfer (Ed.), Nonlinear Analysis of Shells by Finite Elements, Courses Lect., vol. 328, Springer,

Berlin, 1992.[235] J.N. Reddy, On refined computational models of composite laminates, Int. J. Numer. Methods Eng. 27 (2) (1989)

361—382.[236] M. Sathyamoorthy, Nonlinear vibrations of plates: an update of recent research developments, Appl. Mech. Rev.

49 (10) (1996) S55—S62.[237] C. Taylor, et al. (Eds.), Computational Methods for Non-Linear Problems, Pineridge Press, Swansea, 1987.[238] G. Wempner, Mechanics and finite elements of shells, Appl. Mech. Rev. 42 (5) (1989) 129—142.[239] P. Wriggers, Finite element algorithms for contact problems, Arch. Comput. Methods Eng. 2 (4) (1995) 1—49.[240] Y. Yoshida, Finite element methods in geometrically nonlinear structural analysis, Proc. JSCE 374 (I-6) (1986)

25—37.

Boundary element methods

Papers in journals/conference proceedings and theses

[1] J.A. Garrido, A. Lorenzana, Boundary element approach for initial receding contact problem involving largedisplacements, 3rd Int. Conf. Contact Mech., Madrid, CMP, 1997, pp. 81—90.

[2] J.A. Garrido, A. Lorenzana, Receding contact problem involving large displacements using the BEM, Eng. Anal.Boundary Elements 21 (4) (1998) 295—303.

[3] Q. Huang et al., Analysis of rolling by elastoplastic finite deformation contact boundary element method, Chinese J.Mech. Eng. 10 (4) (1997) 289—294.

J. Mackerle /Finite Elements in Analysis and Design 32 (1999) 51—62 61

Page 12: bib_GN.pdf

[4] A. Lorenzana, J.A. Garrido, A boundary element approach for contact problems involving large displacements,Comput. Struct. 68 (4) (1998) 315—324.

[5] J.L. Ortiz, A.A. Barhorst, Large-displacement non-linear sloshing in 2-D circular rigid containers-prescribed motionof the container, Int. J. Numer. Methods Eng. 41 (2) (1998) 195—210.

Other reviews and books

[6] L. Morino, W.L. Wendland (Eds.), IABEM Symposium on Boundary Integral Methods for Nonlinear Problems,Kluwer, Dordrecht, 1996.

[7] H. Okada, S.N. Atluri, Recent developments in the field-boundary element method for finite/small strain elastoplas-ticity, Int. J. Solids Struct. 31 (12) (1994) 1737—1775.

[8] M. Tanaka, Review on research of nonlinear analysis by boundary element methods, Trans. Jpn. Soc. Mech. Eng. 49A (1983) 651—657.

62 J. Mackerle /Finite Elements in Analysis and Design 32 (1999) 51—62


Recommended