+ All Categories
Home > Documents > Biblio cfd

Biblio cfd

Date post: 17-Jul-2016
Category:
Upload: mplios
View: 63 times
Download: 2 times
Share this document with a friend
Description:
biblio graphy vol. 2
26
Bibliography [1] T. Ahmad, S. L. Plee, and J. P. Myers. Computation of Nitric Oxide and Soot Emissions from Turbulent Diffusion Flames. J. of Engineering for Gas Turbines and Power, 107:48–53, 1985. [2] B. J. Alder and T. E. Wainwright. Studies in Molecular Dynamics II: Behaviour of a Small Number of Elastic Spheres. J. Chem. Phys., 33:1439, 1990. [3] T. B. Anderson and R. Jackson. A Fluid Mechanical Description of Fluidized Beds. I & EC Fundam., 6:527–534, 1967. [4] F. Backmier, K. H. Eberius, and T. Just. Comb. Sci. Tech., 7:77, 1973. [5] S. Badzioch and P. G. W. Hawksley. Kinetics of Thermal Decom- position of Pulverized Coal Particles. Ind. Eng. Chem. Process Design and Development, 9:521–530, 1970. [6] F. J. Barnes, J. H. Bromly, T. J. Edwards, and R. Madngezewsky. NO x Emissions from Radiant Gas Burners. Journal of the Institute of Energy, 155:184–188, 1988. [7] T. J. Barth and D. Jespersen. The design and application of up- wind schemes on unstructured meshes. Technical Report AIAA- 89-0366, AIAA 27th Aerospace Sciences Meeting, Reno, Nevada, 1989. [8] H. Barths, C. Antoni, and N. Peters. Three-Dimensional Simula- tion of Pollutant Formation in a DI-Diesel Engine Using Multiple Interactive Flamelets. SAE Paper, accepted for publication 1998. [9] H. Barths et al. Simulation of Pollutant Formation in a Gas Tur- bine Combustor Using Unsteady Flamelets. In 27th Symp. (Int’l.) on Combustion. The Combustion Institute, accepted for publica- tion 1998. c Fluent Inc. November 28, 2001 Bib-1
Transcript
Page 1: Biblio cfd

Bibliography

[1] T. Ahmad, S. L. Plee, and J. P. Myers. Computation of NitricOxide and Soot Emissions from Turbulent Diffusion Flames. J. ofEngineering for Gas Turbines and Power, 107:48–53, 1985.

[2] B. J. Alder and T. E. Wainwright. Studies in Molecular DynamicsII: Behaviour of a Small Number of Elastic Spheres. J. Chem.Phys., 33:1439, 1990.

[3] T. B. Anderson and R. Jackson. A Fluid Mechanical Descriptionof Fluidized Beds. I & EC Fundam., 6:527–534, 1967.

[4] F. Backmier, K. H. Eberius, and T. Just. Comb. Sci. Tech., 7:77,1973.

[5] S. Badzioch and P. G. W. Hawksley. Kinetics of Thermal Decom-position of Pulverized Coal Particles. Ind. Eng. Chem. ProcessDesign and Development, 9:521–530, 1970.

[6] F. J. Barnes, J. H. Bromly, T. J. Edwards, and R. Madngezewsky.NOx Emissions from Radiant Gas Burners. Journal of the Instituteof Energy, 155:184–188, 1988.

[7] T. J. Barth and D. Jespersen. The design and application of up-wind schemes on unstructured meshes. Technical Report AIAA-89-0366, AIAA 27th Aerospace Sciences Meeting, Reno, Nevada,1989.

[8] H. Barths, C. Antoni, and N. Peters. Three-Dimensional Simula-tion of Pollutant Formation in a DI-Diesel Engine Using MultipleInteractive Flamelets. SAE Paper, accepted for publication 1998.

[9] H. Barths et al. Simulation of Pollutant Formation in a Gas Tur-bine Combustor Using Unsteady Flamelets. In 27th Symp. (Int’l.)on Combustion. The Combustion Institute, accepted for publica-tion 1998.

c© Fluent Inc. November 28, 2001 Bib-1

Page 2: Biblio cfd

BIBLIOGRAPHY

[10] G. K. Batchelor. An Introduction to Fluid Dynamics. CambridgeUniv. Press, Cambridge, England, 1967.

[11] D. L. Baulch, D. D. Drysdall, D. G. Horne, and A. C. Lloyd.Evaluated Kinetic Data for High Temperature Reactions, volume1,2,3. Butterworth, 1973.

[12] D. L. Baulch et al. Evaluated Kinetic Data for Combustion Mod-elling. J. Physical and Chemical Reference Data, 21(3), 1992.

[13] M. M. Baum and P. J. Street. Predicting the Combustion Behaviorof Coal Particles. Combust. Sci. Tech., 3(5):231–243, 1971.

[14] L. L. Baxter. Turbulent Transport of Particles. PhD thesis,Brigham Young University, Provo, Utah, 1989.

[15] L. L. Baxter and P. J. Smith. Turbulent Dispersion of Particles:The STP Model. Energy & Fuels, 7:852–859, 1993.

[16] A. Bejan. Convection Heat Transfer. John Wiley and Sons, NewYork, 1984.

[17] R. W. Bilger. Turbulent Flows with Nonpremixed Reactants. InP. A. Libby and F. A. Williams, editors, Turbulent Reacting Flows,Springer-Verlag, Berlin, 1980.

[18] R. W. Bilger and R. E. Beck. In 15th Symp. (Int’l.) on Combustion,page 541. The Combustion Institute, 1975.

[19] R. W. Bilger, M. B. Esler, and S. H. Starner. On Reduced Mech-anisms for Methane-Air Combustion. In Lecture Notes in Physics,volume 384, page 86. Springer-Verlag, 1991.

[20] B. Binniger, M. Chan, G. Paczkko, and M. Herrmann. Numeri-cal Simulation of Turbulent Partially Premixed Hydrogen Flameswith the Flamelet Model. Technical report, Advanced CombustionGmbh, Internal Report, 1998.

[21] J. Blauvens, B. Smets, and J. Peters. In 16th Symp. (Int’l.) onCombustion. The Combustion Institute, 1977.

Bib-2 c© Fluent Inc. November 28, 2001

Page 3: Biblio cfd

BIBLIOGRAPHY

[22] R. M. Bowen. Theory of Mixtures. In A. C. Eringen, editor, Con-tinuum Physics, pages 1–127. Academic Press, New York, 1976.

[23] C. T. Bowman. Chemistry of Gaseous Pollutant Formation andDestruction. In W. Bartok and A. F. Sarofim, editors, Fossil FuelCombustion. J. Wiley and Sons, Canada, 1991.

[24] R. K. Boyd and J. H. Kent. Three-dimensional furnace computermodeling. In 21st Symp. (Int’l.) on Combustion, pages 265–274.The Combustion Institute, 1986.

[25] J. U. Brackbill, D. B. Kothe, and C. Zemach. A ContinuumMethod for Modeling Surface Tension. J. Comput. Phys., 100:335–354, 1992.

[26] A. Brandt. Multi-level Adaptive Computations in Fluid Dynamics.Technical Report AIAA-79-1455, AIAA, Williamsburg, VA, 1979.

[27] K. N. Bray and N. Peters. Laminar Flamelets in Turbulent Flames.In P. A. Libby and F. A. Williams, editors, Turbulent ReactingFlows, pages 63–114. Academic Press, 1994.

[28] S. Brunauer. The Absorption of Gases and Vapors. PrincetonUniversity Press, Princeton, NJ, 1943.

[29] M. Bui-Pham and K. Seshadri. Comparison between Experimen-tal Measurements and Numerical Calculations of the Structure ofHeptane-Air Diffusion Flames. Combust. Sci. and Tech., 79:293–310, 1991.

[30] M. G. Carvalho, T. Farias, and P. Fontes. Predicting RadiativeHeat Transfer in Absorbing, Emitting, and Scattering Media Usingthe Discrete Transfer Method. In W.A. Fiveland et al., editor,Fundamentals of Radiation Heat Transfer, volume 160, pages 17–26. ASME HTD, 1991.

[31] T. Cebeci and P. Bradshaw. Momentum Transfer in BoundaryLayers. Hemisphere Publishing Corporation, New York, 1977.

[32] S. Chapman and T. G. Cowling. The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge, England,3rd edition, 1990.

c© Fluent Inc. November 28, 2001 Bib-3

Page 4: Biblio cfd

BIBLIOGRAPHY

[33] S. Charpenay, M. A. Serio, and P. R. Solomon. In 24th Symp.(Int’l.) on Combustion, pages 1189–1197. The Combustion Insti-tute, 1992.

[34] H. C. Chen and V. C. Patel. Near-Wall Turbulence Models forComplex Flows Including Separation. AIAA Journal, 26(6):641–648, 1988.

[35] P. Cheng. Two-Dimensional Radiating Gas Flow by a MomentMethod. AIAA Journal, 2:1662–1664, 1964.

[36] D. Choudhury. Introduction to the Renormalization GroupMethod and Turbulence Modeling. Fluent Inc. Technical Mem-orandum TM-107, 1993.

[37] E. H. Chui and G. D. Raithby. Computation of Radiant HeatTransfer on a Non-Orthogonal Mesh Using the Finite-VolumeMethod. Numerical Heat Transfer, Part B, 23:269–288, 1993.

[38] Clift, Grace, and Weber. Bubbles, Drops, and Particles. Technicalreport, Academic Press, 1978.

[39] P. J. Coelho and M. G. Carvalho. Modelling of Soot Formationand Oxidation in Turbulent Diffusion Flames. J. of Thermophysicsand Heat Transfer, 9(4):644–652, 1995.

[40] M. F. Cohen and D. P. Greenberg. The Hemi-Cube: A Ra-diosity Solution for Complex Environments. Computer Graphics,19(3):31–40, 1985.

[41] A. Coppalle and P. Vervisch. The Total Emissivities of High-Temperature Flames. Combust. Flame, 49:101–108, 1983.

[42] C. Crowe, M. Sommerfield, and Yutaka Tsuji. Multiphase Flowswith Droplets and Particles. CRC Press, 1998.

[43] G. T. Csanady. Turbulent Diffusion of Heavy Particles in the At-mosphere. J. Atmos. Science, 20:201–208, 1963.

[44] E. H. Cuthill and J. McKee. Reducing Bandwidth of Sparse Sym-metric Matrices. In Proc. ACM 24th National Conf., pages 157–172, New York, 1969.

Bib-4 c© Fluent Inc. November 28, 2001

Page 5: Biblio cfd

BIBLIOGRAPHY

[45] Cohen S. D. and Hindmarsh A. C. CVODE User Guide. LLNLReport UCRL-MA-118618, 1994.

[46] J. Dacles-Mariani, G. G. Zilliac, J. S. Chow, and P. Bradshaw.Numerical/Experimental Study of a Wingtip Vortex in the NearField. AIAA Journal, 33(9):1561–1568, 1995.

[47] J. M. Dalla Valle. Micromeritics. Pitman, London, 1948.

[48] B. J. Daly and F. H. Harlow. Transport Equations in Turbulence.Phys. Fluids, 13:2634–2649, 1970.

[49] M. K. Denison and B. W. Webb. A Spectral Line-Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers. J. HeatTransfer, 115:1002–1012, 1993.

[50] J. Ding and D. Gidaspow. A Bubbling Fluidization Model UsingKinetic Theory of Granular Flow. AIChE J., 36(4):523–538, 1990.

[51] G. Dixon-Lewis. Structure of Laminar Flames. In 23rd Symp.(Int’l.) on Combustion, pages 305–324. The Combustion Institute,1990.

[52] N. Dombrowski and W. R. Johns. The aerodynamic Instabilityand Disintegration of Viscous Liquid Sheets. Chemical EngineeringScience, 18:203, 1963.

[53] M. C. Drake and R. J. Blint. Thermal NOx in Stretched LaminarOpposed-Flow Diffusion Flames with CO/H2/N2 Fuel. Combustionand Flame, 76:151–167, 1989.

[54] M. C. Drake and R. J. Blint. Relative Importance of NitrogenOxide Formation Mechanisms in Laminar Opposed-Flow DiffusionFlames. Combustion and Flame, 83:185–203, 1991.

[55] M. C. Drake, S. M. Correa, R. W. Pitz, W. Shyy, and C. P. Fen-imore. Superequilibrium and Thermal Nitric Oxide Formation inTurbulent Diffusion Flames. Combustion and Flame, 69:347–365,1987.

c© Fluent Inc. November 28, 2001 Bib-5

Page 6: Biblio cfd

BIBLIOGRAPHY

[56] M. C. Drake, R. W. Pitz, M. Lapp, C. P. Fenimore, R. P. Lucht,D. W. Sweeney, and N. M. Laurendeau. In 20th Symp. (Int’l.) onCombustion, page 327. The Combustion Institute, 1984.

[57] D. A. Drew and R. T. Lahey. In Particulate Two-Phase Flow,pages 509–566. Butterworth-Heinemann, Boston, 1993.

[58] V. Dupont, M. Porkashanian, A. Williams, and R. Woolley. Re-duction of NOx formation in natural gas burner flames. Fuel,72(4):497–503, April 1993.

[59] D. K. Edwards and R. Matavosian. Scaling Rules for Total Ab-sorptivity and Emissivity of Gases. J. Heat Transfer, 106:684–689,1984.

[60] J. K. Edwards, B. S. McLaury, and S. A. Shirazi. Evaluation ofAlternative Pipe Bend Fittings in Erosive Service. In Proceedingsof ASME FEDSM’00: ASME 2000 Fluids Engineering DivisionSummer Meeting, Boston, June 2000.

[61] S. E. Elgobashi and T. W. Abou-Arab. A Two-Equation Turbu-lence Model for Two-Phase Flows. Phys. Fluids, 26(4):931–938,1983.

[62] S. Ergun. Fluid Flow through Packed Columns. Chem. Eng. Prog.,48(2):89–94, 1952.

[63] C. P. Fenimore. Formation of Nitric Oxide in Premixed Hydrocar-bon Flames. In 13th Symp. (Int’l.) on Combustion, page 373. TheCombustion Institute, 1971.

[64] J. L. Ferzieger and M. Peric. Computational Methods for FluidDynamics. Springer-Verlag, Heidelberg, 1996.

[65] M. A. Field. Rate of Combustion Of Size-Graded Fractions of Charfrom a Low Rank Coal between 1200 K–2000 K. Combust. Flame,13:237–252, 1969.

[66] W. A. Fiveland and A. S. Jamaluddin. Three-Dimensional Spec-tral Radiative Heat Transfer Solutions by the Discrete Ordinates

Bib-6 c© Fluent Inc. November 28, 2001

Page 7: Biblio cfd

BIBLIOGRAPHY

Method. HTD Vol. 106, Heat Transfer Phenomena in Radiation,Combustion and Fires, pp. 43–48, 1989.

[67] T. H. Fletcher and D. R. Hardesty. Compilation of Sandia coaldevolatilization data: Milestone report. Sandia Report SAND92-8209, 1992.

[68] T. H. Fletcher and A. R. Kerstein. Chemical percolation model fordevolatilization: 3. Direct use of 13C NMR data to predict effectsof coal type. Energy and Fuels, 6:414, 1992.

[69] T. H. Fletcher, A. R. Kerstein, R. J. Pugmire, and D. M. Grant.Chemical percolation model for devolatilization: 2. Temperatureand heating rate effects on product yields. Energy and Fuels, 4:54,1990.

[70] W. L. Flower, R. K. Hanson, and C. H. Kruger. In 15th Symp.(Int’l.) on Combustion, page 823. The Combustion Institute, 1975.

[71] S. Fu, B. E. Launder, and M. A. Leschziner. Modeling StronglySwirling Recirculating Jet Flow with Reynolds-Stress TransportClosures. In Sixth Symposium on Turbulent Shear Flows, Toulouse,France, 1987.

[72] B. A. Galperin and S. A. Orszag. Large Eddy Simulation of Com-plex Engineering and Geophysical Flows. Cambridge UniversityPress, 1993.

[73] J. Garside and M. R. Al-Dibouni. Velocity-Voidage Relationshipsfor Fluidization and Sedimentation. I & EC Process Des. Dev.,16:206–214, 1977.

[74] N. E. Gibbs, W. G. Poole, Jr., and P. K. Stockmeyer. An algorithmfor reducing the bandwidth and profile of a sparse matrix. SIAMJ. Numer. Anal., 13:236–250, 1976.

[75] M. M. Gibson and B. E. Launder. Ground Effects on PressureFluctuations in the Atmospheric Boundary Layer. J. Fluid Mech.,86:491–511, 1978.

c© Fluent Inc. November 28, 2001 Bib-7

Page 8: Biblio cfd

BIBLIOGRAPHY

[76] D. Gidaspow, R. Bezburuah, and J. Ding. Hydrodynamics of Cir-culating Fluidized Beds, Kinetic Theory Approach. In FluidizationVII, Proceedings of the 7th Engineering Foundation Conference onFluidization, pages 75–82, 1992.

[77] R.G. Gilbert, K. Luther, and J. Troe. Ber. Bunsenges. Phys.Chem., 87, 1983.

[78] M. Giles. Non-Reflecting Boundary Conditions for the Euler Equa-tions. Technical Report TR 88-1-1988, Computational Fluid Dy-namics Laboratory, Massachusetts Institute of Technology, Cam-bridge, MA.

[79] J. Gottgens, F. Mauss, and N. Peters. Analytic Approximationsof Burning Velocities and Flame Thicknesses of Lean Hydrogen,Methane, Ethylene, Ethane, Acetylene and Propane Flames. InTwenty-Fourth Symposium (Int.) on Combustion, pages 129–135,Pittsburgh, 1992.

[80] I. R. Gran and B. F. Magnussen. A numerical study of a bluff-bodystabilized diffusion flame. part 2. influence of combustion model-ing and finite-rate chemistry. Combustion Science and Technology,119:191, 1996.

[81] D. M. Grant, R. J. Pugmire, T. H. Fletcher, and A. R. Kerstein.Chemical percolation model of coal devolatilization using percola-tion lattice statistics. Energy and Fuels, 3:175, 1989.

[82] P. M. Gresho, R. L. Lee, and R. L. Sani. On the Time-DependentSolution of the Incompressible Navier-Stokes Equations in Two andThree Dimensions. In Recent Advances in Numerical Methods inFluids. Pineridge Press, Swansea, U.K., 1980.

[83] W.L. Grosshandler. RADCAL: A Narrow-Band Model for Radia-tion Calculations in a Combustion Environment. Technical ReportNIST Technical Note 1402, NIST, 1993.

[84] W. W. Hagerty and J. F. Shea. A Study of the Stability of PlaneFluid Sheets. Journal of Applied Mechanics, 22:509, 1955.

Bib-8 c© Fluent Inc. November 28, 2001

Page 9: Biblio cfd

BIBLIOGRAPHY

[85] A. Haider and O. Levenspiel. Drag Coefficient and Terminal Ve-locity of Spherical and Nonspherical Particles. Powder Technology,58:63–70, 1989.

[86] Z. Han, S. Perrish, P. V. Farrell, and R. D. Reitz. Modeling At-omization Processes of Pressure-Swirl Hollow-Cone Fuel Sprays.Atomization and Sprays, 7(6):663–684, Nov.-Dec. 1997.

[87] G. Hand, M. Missaghi, M. Pourkashanian, and A. Williams. Ex-perimental Studies and Computer Modelling of Nitrogen Oxidesin a Cylindrical Furnace. In Proceedings of the Ninth MembersConference, volume 2. IFRF Doc No K21/g/30, 1989.

[88] R. K. Hanson and S. Salimian. Survey of Rate Constants in H/N/OSystems. In W. C. Gardiner, editor, Combustion Chemistry, page361, 1984.

[89] R. A. W. M. Henkes and C. J. Hoogendoorn. Scaling of the Turbu-lent Natural Convection Flow in a Heated Square Cavity. Trans.of the ASME, 116:400–408, May 1994.

[90] R. A. W. M. Henkes, F. F. van der Flugt, and C. J. Hoogendoorn.Natural Convection Flow in a Square Cavity Calculated with Low-Reynolds-Number Turbulence Models. Int. J. Heat Mass Transfer,34:1543–1557, 1991.

[91] J.O. Hinze. Turbulence. McGraw-Hill Publishing Co., New York,1975.

[92] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird. Molecular Theoryof Gases and Liquids. John Wiley & Sons, New York, 1954.

[93] C. W. Hirt and B. D. Nichols. Volume of Fluid (VOF) Method forthe Dynamics of Free Boundaries. J. Comput. Phys., 39:201–225,1981.

[94] T. J. Houser, M. Hull, R. Alway, and T. Biftu. Int. Journal ofChem. Kinet., 12:579, 1980.

[95] P. Huang, P. Bradshaw, and T. Coakley. Skin Friction and VelocityProfile Family for Compressible Turbulent Boundary Layers. AIAAJournal, 31(9):1600–1604, September 1993.

c© Fluent Inc. November 28, 2001 Bib-9

Page 10: Biblio cfd

BIBLIOGRAPHY

[96] B. R. Hutchinson and G. D. Raithby. A Multigrid Method Basedon the Additive Correction Strategy. Numerical Heat Transfer,9:511–537, 1986.

[97] R. I. Issa. Solution of Implicitly Discretized Fluid Flow Equationsby Operator Splitting. J. Comput. Phys., 62:40–65, 1986.

[98] G. W. Jackson and D. F. James. The Permeability of FibrousPorous Media. Canadian Journal of Chem. Eng., 64(3):364–374,June 1986.

[99] S. Jain. Three-Dimensional Simulation of Turbulent Particle Dis-persion. PhD thesis, University of Utah, Utah, 1995.

[100] A. Jameson. Solution of the Euler Equations for Two DimensionalTransonic Flow by a Multigrid Method. MAE Report 1613, Prince-ton University, June 1983.

[101] A. Jameson, W. Schmidt, and E. Turkel. Numerical Solution of theEuler Equations by Finite Volume Methods Using Runge-KuttaTime-Stepping Schemes. Technical Report AIAA-81-1259, AIAA14th Fluid and Plasma Dynamics Conference, Palo Alto, Califor-nia, June 1981.

[102] J. Janicka and W. Kollmann. A Two-Variable Formulation for theTreatment of Chemical Reactions in Turbulent H2-Air DiffusionFlames. In 17th Symp. (Int’l.) on Combustion. The CombustionInstitute, 1978.

[103] J. Janicka and W. Kollmann. A Numerical Study of OscillatingFlow Around a Circular Cylinder. Combustion and Flame, 44:319–336, 1982.

[104] C. Jayatilleke. The Influence of Prandtl Number and SurfaceRoughness on the Resistance of the Laminar Sublayer to Momen-tum and Heat Transfer. Prog. Heat Mass Transfer, 1:193–321,1969.

[105] W. P. Jones and J. H. Whitelaw. Calculation Methods for ReactingTurbulent Flows: A Review. Combust. Flame, 48:1–26, 1982.

Bib-10 c© Fluent Inc. November 28, 2001

Page 11: Biblio cfd

BIBLIOGRAPHY

[106] T. Jongen. Simulation and Modeling of Turbulent IncompressibleFlows. PhD thesis, EPF Lausanne, Lausanne, Switzerland, 1992.

[107] T. Just and S. Kelm. Die Industry, 38:76, 1986.

[108] B. Kader. Temperature and Concentration Profiles in Fully Tur-bulent Boundary Layers. Int. J. Heat Mass Transfer, 24(9):1541–1544, 1993.

[109] K. C. Karki and S. V. Patankar. Pressure-Based Calculation Pro-cedure for Viscous Flows at All Speeds in Arbitrary Configurations.AIAA Journal, 27:1167–1174, 1989.

[110] G. Karypis and V. Kumar. METIS - A Software Package for Par-titioning Unstructured Graphs, Partitioning Meshes, and Com-puting Fill-Reducing Orderings of Sparse Matrices, Version 3.0.Manual, University of Minnesota and Army HPC Research Cen-ter, 1997.

[111] W. M. Kays. Turbulent Prandtl Number - Where Are We? J.Heat Transfer, 116:284–295, 1994.

[112] R.J. Kee, F.M. Rupley, and J.A. Miller. CHEMKIN II: A FortranChemical Kinetics Package for the Analysis of Gas-Phase ChemicalKinetics. Technical Report SAND 89-8009, Sandia National Labs,1989.

[113] I. M. Khan and G. Greeves. A Method for Calculating the Forma-tion and Combustion of Soot in Diesel Engines. In N. H. Afgan andJ. M. Beer, editors, Heat Transfer in Flames, chapter 25. Scripta,Washington DC, 1974.

[114] J.S. Kim and F.A. Williams. Extinction of Diffusion Flames withNon-Unity Lewis Number. Eng. Math, 31:101–118, 1997.

[115] S.-E. Kim and D. Choudhury. A Near-Wall Treatment Using WallFunctions Sensitized to Pressure Gradient. In ASME FED Vol.217, Separated and Complex Flows. ASME, 1995.

[116] S.-E. Kim, D. Choudhury, and B. Patel. Computations of Com-plex Turbulent Flows Using the Commercial Code FLUENT. In

c© Fluent Inc. November 28, 2001 Bib-11

Page 12: Biblio cfd

BIBLIOGRAPHY

Proceedings of the ICASE/LaRC/AFOSR Symposium on Model-ing Complex Turbulent Flows, Hampton, Virginia, 1997.

[117] H. Kobayashi, J. B. Howard, and A. F. Sarofim. Coal Devolatiliza-tion at High Temperatures. In 16th Symp. (Int’l.) on Combustion.The Combustion Institute, 1976.

[118] S. C. Kong, Z. Han, and R. D. Reitz. The Development and Ap-plication of a Diesel Ignition and Combustion Model for Multidi-mensional Engine Simulation. SAE 872089, SAE, 1995.

[119] A. Kubota, H. Kato, and H. Yamaguchi. A New Modelling ofCavitating Flows: A Numerical Study of Unsteady Cavitation ona Hydrofoil Section. J. Fluid Mech., 240:59–96, 1992.

[120] K. K. Y. Kuo. Principles of Combustion. John Wiley and Sons,New York, 1986.

[121] V. R. Kuznetsov and V. A. Sabelnikov. Turbulence and Combus-tion, 1990.

[122] H. Lamb. Hydrodynamics, Sixth Edition. Dover Publications, NewYork, 1945.

[123] M. E. Larsen and J. R. Howell. Least Squares Smoothing of DirectExchange Areas in Zonal Analysis. J. Heat Transfer, 108:239–242,1986.

[124] B. E. Launder. Second-Moment Closure and Its Use in ModelingTurbulent Industrial Flows. International Journal for NumericalMethods in Fluids, 9:963–985, 1989.

[125] B. E. Launder. Second-Moment Closure: Present... and Future?Inter. J. Heat Fluid Flow, 10(4):282–300, 1989.

[126] B. E. Launder, G. J. Reece, and W. Rodi. Progress in the Devel-opment of a Reynolds-Stress Turbulence Closure. J. Fluid Mech.,68(3):537–566, April 1975.

[127] B. E. Launder and N. Shima. Second-Moment Closure for theNear-Wall Sublayer: Development and Application. AIAA Jour-nal, 27(10):1319–1325, 1989.

Bib-12 c© Fluent Inc. November 28, 2001

Page 13: Biblio cfd

BIBLIOGRAPHY

[128] B. E. Launder and D. B. Spalding. Lectures in Mathematical Mod-els of Turbulence. Academic Press, London, England, 1972.

[129] B. E. Launder and D. B. Spalding. The Numerical Computationof Turbulent Flows. Computer Methods in Applied Mechanics andEngineering, 3:269–289, 1974.

[130] N. M. Laurendeau. Heterogeneous Kinetics of Coal Char Gasifica-tion and Combustion. Prog. Energy Comb. Sci., 4:221–270, 1978.

[131] J. L. Lebowitz. Exact Solution of Generalized Percus-Yevick Equa-tion for a Mixture of Hard Spheres. The Phy. Rev., 133(4A):A895–A899, 1964.

[132] A. H. Lefebvre. Atomization and Sprays. Hemisphere PublishingCorporation, 1989.

[133] B. P. Leonard and S. Mokhtari. ULTRA-SHARP Nonoscilla-tory Convection Schemes for High-Speed Steady MultidimensionalFlow. NASA TM 1-2568 (ICOMP-90-12), NASA Lewis ResearchCenter, 1990.

[134] J. M. Levy, L. K. Chen, A. F. Sarofim, and J. M. Beer. NO/CharReactions at Pulverized Coal Flame Conditions. In 18th Symp.(Int’l.) on Combustion. The Combustion Institute, 1981.

[135] A. Li and G. Ahmadi. Dispersion and Deposition of SphericalParticles from Point Sources in a Turbulent Channel Flow. AerosolScience and Technology, 16:209–226, 1992.

[136] X. Li and R. S. Tankin. On the Temporal Instability of a Two-Dimensional Viscous Liquid Sheet. Journal of Fluid Mechanics,226:425, 1991.

[137] A. K. Lichtarowicz, R. K. Duggins, and E. Markland. DischargeCoefficients for Incompressible Non-Cavitating Flow ThroughLong Orifices. Journal of Mechanical Engineering Science, 7:2,1965.

c© Fluent Inc. November 28, 2001 Bib-13

Page 14: Biblio cfd

BIBLIOGRAPHY

[138] F. S. Lien and M. A. Leschziner. Assessment of TurbulentTransport Models Including Non-Linear RNG Eddy-Viscosity For-mulation and Second-Moment Closure. Computers and Fluids,23(8):983–1004, 1994.

[139] D. K. Lilly. On the Application of the Eddy Viscosity Concept inthe Inertial Subrange of Turbulence. NCAR Manuscript 123, 1966.

[140] F. Lindemann. Trans. Faraday Soc., 7, 1922.

[141] R. J. Litchford and S.M. Jeng. Efficient Statistical TransportModel for Turbulent Particle Dispersion in Sprays. AIAA Journal,29:1443, 1991.

[142] A. B. Liu, D. Mather, and R. D. Reitz. Modeling the Effects ofDrop Drag and Breakup on Fuel Sprays. SAE Technical Paper930072, SAE, 1993.

[143] F. C. Lockwood, S. M. A. Rizvi, and N. G. Shah. Comparative Pre-dictive Experience of Coal Firing. In Proceedings Inst. MechanicalEngns., volume 200, pages 79–87.

[144] F. C. Lockwood and C. A. Romo-Millanes. Mathematical Mod-elling of Fuel - NO Emissions From PF Burners. J. Int. Energy,65:144–152, September 1992.

[145] C. K. K. Lun, S. B. Savage, D. J. Jeffrey, and N. Chepurniy. KineticTheories for Granular Flow: Inelastic Particles in Couette Flowand Slightly Inelastic Particles in a General Flow Field. J. FluidMech., 140:223–256, 1984.

[146] J. Y. Luo, R. I. Issa, and A. D. Gosman. Prediction of Impeller-Induced Flows in Mixing Vessels Using Multiple Frames of Refer-ence. In IChemE Symposium Series, number 136, pages 549–556,1994.

[147] A. E. Lutz, R. J. Kee, J. F. Grcar, and F. M. Rupley. OPPDIF:A FORTRAN Program for Computing Opposed-Flow DiffusionFlames. Sandia National Laboratories Report SAND96-8243, 1997.

Bib-14 c© Fluent Inc. November 28, 2001

Page 15: Biblio cfd

BIBLIOGRAPHY

[148] B. F. Magnussen. On the Structure of Turbulence and a General-ized Eddy Dissipation Concept for Chemical Reaction in TurbulentFlow. Nineteeth AIAA Meeting, St. Louis, 1981.

[149] B. F. Magnussen and B. H. Hjertager. On mathematical modelsof turbulent combustion with special emphasis on soot formationand combustion. In 16th Symp. (Int’l.) on Combustion. The Com-bustion Institute, 1976.

[150] M. Manninen, V. Taivassalo, and S. Kallio. On the mixture modelfor multiphase flow. VTT Publications 288, Technical ResearchCentre of Finland, 1996.

[151] B. J. McBride, S. Gordon, and M. A. Reno. Coefficients for Cal-culating Thermodynamic and Transport Properties of IndividualSpecies. NASA TM-4513, October 1993.

[152] H. A. McGee. Molecular Engineering. McGraw-Hill, New York,1991.

[153] F. R. Menter. Two-Equation Eddy-Viscosity Turbulence Modelsfor Engineering Applications. AIAA Journal, 32(8):1598–1605, Au-gust 1994.

[154] H. J. Merk. The Macroscopic Equations for Simultaneous Heatand Mass Transfer in Isotropic, Continuous and Closed Systems.Appl. Sci. Res., 8:73–99, 1958.

[155] R. Merz, J. Kruckels, J. Mayer, and H. Stetter. Computation ofThree Dimensional Viscous Transonic Turbine Stage Flow Includ-ing Tip Clearance Effects. ASME 95-GT-76, 1995.

[156] J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D.Smooke, and R. J. Kee. In 20th Symp. (Int’l.) on Combustion,page 673. The Combustion Institute, 1985.

[157] J. A. Miller and G. A. Fisk. Chemical and Engineering News, 31,1987.

[158] M. Missaghi. Mathematical Modelling of Chemical Sources in Tur-bulent Combustion. PhD thesis, The University of Leeds, England,1987.

c© Fluent Inc. November 28, 2001 Bib-15

Page 16: Biblio cfd

BIBLIOGRAPHY

[159] M. Missaghi, M. Pourkashanian, A. Williams, and L. Yap. InProceedings of American Flame Days Conference, USA, 1990.

[160] M. F. Modest. The Weighted-Sum-of-Gray-Gases Model for Arbi-trary Solution Methods in Radiative Transfer. J. Heat Transfer,113:650–656, 1991.

[161] M. F. Modest. Radiative Heat Transfer. Series in MechanicalEngineering. McGraw Hill, 1993.

[162] J. P. Monat, R. K. Hanson, and C. H. Kruger. In 17th Symp.(Int’l.) on Combustion, page 543. The Combustion Institute, 1979.

[163] S. A. Morsi and A. J. Alexander. An Investigation of Particle Tra-jectories in Two-Phase Flow Systems. J. Fluid Mech., 55(2):193–208, September 26 1972.

[164] C. M. Muller, H. Breitbach, and N. Peters. Partially PremixedTurbulent Flame Propagation in Jet Flames. Technical report,25th Symposium (Int) on Combustion, The Combustion Institute,1994.

[165] J. Y. Murthy and S. R. Mathur. A Finite Volume Method ForRadiative Heat Transfer Using Unstructured Meshes. AIAA-98-0860, January 1998.

[166] W. H. Nurick. Orifice Cavitation and Its Effects on Spray Mixing.Journal of Fluids Engineering, page 98, 1976.

[167] S. Ogawa, A. Umemura, and N. Oshima. On the Equation of FullyFluidized Granular Materials. J. Appl. Math. Phys., 31:483, 1980.

[168] P. J. O’Rourke. Collective Drop Effects on Vaporizing LiquidSprays. PhD thesis, Princeton University, Princeton, New Jersey,1981.

[169] P.J. O’Rourke and A. A. Amsden. The TAB Method for Numer-ical Calculation of Spray Droplet Breakup. SAE Technical Paper872089, SAE, 1987.

Bib-16 c© Fluent Inc. November 28, 2001

Page 17: Biblio cfd

BIBLIOGRAPHY

[170] H. Ounis, G. Ahmadi, and J. B. McLaughlin. Brownian Diffusionof Submicrometer Particles in the Viscous Sublayer. Journal ofColloid and Interface Science, 143(1):266–277, 1991.

[171] M. N. Ozisik. Radiative Transfer and Interactions with Conductionand Convection. Wiley, New York, 1973.

[172] S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Hemi-sphere, Washington, D.C., 1980.

[173] S. V. Patankar, C. H. Liu, and E. M. Sparrow. Fully DevelopedFlow and Heat Transfer in Ducts Having Streamwise-Periodic Vari-ations of Cross-Sectional Area. ASME J. of Heat Transfer, 99:180–186, 1977.

[174] T. Peeters. Numerical Modeling of Turbulence Natural-Gas Diffu-sion Flames. PhD thesis, Delft Technical University, Delft, TheNetherlands, 1995.

[175] R. H. Perry, D. W. Gree, and J. O. Maloney. Perry’s ChemicalEngineers’ Handbook. McGraw Hill, New York, 6th edition, 1984.

[176] N. Peters. Laminar Diffusion Flamelet Models in Non PremixedCombustion. Prog. Energy Combust. Sci., 10:319–339, 1984.

[177] N. Peters. Laminar Flamelet Concepts in Turbulent Combustion.In 21st Symp. (Int’l.) on Combustion, pages 1231–1250. The Com-bustion Institute, 1986.

[178] N. Peters and S. Donnerhack. In 18th Symp. (Int’l.) on Combus-tion, page 33. The Combustion Institute, 1981.

[179] N. Peters and B. Rogg. Reduced Kinetic Mechanisms for Applica-tions in Combustion Systems. In Lecture Notes in Physics, volumem15. Springer-Verlag, 1992.

[180] K. K. Pillai. The Influence of Coal Type on Devolatilization andCombustion in Fluidized Beds. J. Inst. Energy, page 142, 1981.

[181] H. Pitsch, H. Barths, and N. Peters. Three-Dimensional Modelingof NOx and Soot Formation in DI-Diesel Engines Using Detailed

c© Fluent Inc. November 28, 2001 Bib-17

Page 18: Biblio cfd

BIBLIOGRAPHY

Chemistry Based on the Interactive Flamelet Approach. SAE Pa-per 962057, 1996.

[182] H. Pitsch and N. Peters. A Consistent Flamelet Formulation forNon-Premixed Combustion Considering Differential Diffusion Ef-fects. Combust. Flame, 114:26–40, 1998.

[183] G. D. Raithby and E. H. Chui. A Finite-Volume Method for Pre-dicting a Radiant Heat Transfer in Enclosures with ParticipatingMedia. J. Heat Transfer, 112:415–423, 1990.

[184] W. E. Ranz. Some Experiments on Orifice Sprays. CanadianJournal of Chemical Engineering, page 175, 1958.

[185] W. E. Ranz and W. R. Marshall, Jr. Evaporation from Drops,Part I. Chem. Eng. Prog., 48(3):141–146, March 1952.

[186] W. E. Ranz and W. R. Marshall, Jr. Evaporation from Drops,Part II. Chem. Eng. Prog., 48(4):173–180, April 1952.

[187] R. D. Reitz. Mechanisms of Breakup of Round Liquid Jets. TheEncyclopedia of Fluid Mechanics, ed. N. Cheremisnoff, 3:223–249,1986.

[188] R. D. Reitz. Mechanisms of Atomization Processes in High-Pressure Vaporizing Sprays. Atomization and Spray Technology,3:309–337, 1987.

[189] R. D. Reitz and F. V. Bracco. Mechanism of Atomization of aLiquid Jet. Phys. Fluids., 26(10), 1982.

[190] W. C. Reynolds. Thermodynamic Properties in SI: Graphs, Tables,and Computational Equations for 40 Substances. Department ofMechanical Engineering, Stanford University, 1979.

[191] W. C. Reynolds. Fundamentals of turbulence for turbulence mod-eling and simulation. Lecture Notes for Von Karman InstituteAgard Report No. 755, 1987.

[192] C. M. Rhie and W. L. Chow. Numerical Study of the TurbulentFlow Past an Airfoil with Trailing Edge Separation. AIAA Journal,21(11):1525–1532, November 1983.

Bib-18 c© Fluent Inc. November 28, 2001

Page 19: Biblio cfd

BIBLIOGRAPHY

[193] J. R. Richardson and W. N. Zaki. Sedimentation and Fluidization:Part I. Trans. Inst. Chem. Eng., 32:35–53, 1954.

[194] P. L. Roe. Characteristic based schemes for the Euler equations.Annual Review of Fluid Mechanics, 18:337–365, 1986.

[195] J. W. Rose and J. R. Cooper, editors. Technical Data on Fuels.Wiley, 7th edition, 1977.

[196] P. G. Saffman. The Lift on a Small Sphere in a Slow Shear Flow.J. Fluid Mech., 22:385–400, 1965.

[197] S. Sarkar and L. Balakrishnan. Application of a Reynolds-StressTurbulence Model to the Compressible Shear Layer. ICASE Report90-18, NASA CR 182002, 1990.

[198] A. Saxer. A Numerical Analysis of a 3D Inviscid Stator/Rotor In-teraction Using Non-Reflecting Boundary Conditions. PhD thesis,Massachusetts Institute of Technology, Cambridge, Massachusetts,March 1992.

[199] S. S. Sazhin. An Approximation for the Absorption Coefficient ofSoot in a Radiating Gas. Manuscript, Fluent Europe, Ltd., 1994.

[200] D. G. Schaeffer. Instability in the Evolution Equations DescribingIncompressible Granular Flow. J. Diff. Eq., 66:19–50, 1987.

[201] R. W. Schefer, M. Namazian, and J. Kelly. In Combustion ResearchFacility News, volume 3, number 4. Sandia, 1991.

[202] L. Schiller and Z. Naumann. Z. Ver. Deutsch. Ing., 77:318, 1935.

[203] H. Schlichting. Boundary-Layer Theory. McGraw-Hill, New York,1979.

[204] D. P. Schmidt and M. L. Corradini. Analytical Prediction of theExit Flow of Cavitating Orifices. Atomization and Sprays, 7:6,1997.

[205] D. P. Schmidt, M. L. Corradini, and C. J. Rutland. A Two-Dimensional, Non-Equilibrium Model of Flashing Nozzle Flow. In3rd ASME/JSME Joint Fluids Engineering Conference, 1999.

c© Fluent Inc. November 28, 2001 Bib-19

Page 20: Biblio cfd

BIBLIOGRAPHY

[206] D. P. Schmidt, I. Nouar, P. K. Senecal, C. J. Rutland, J. K. Martin,and R. D. Reitz. Pressure-Swirl Atomization in the Near Field.SAE Paper 01-0496, SAE, 1999.

[207] P. K. Senecal, D. P. Schmidt, I. Nouar, C. J. Rutland, and R. D.Reitz. Modeling High Speed Viscous Liquid Sheet Atomization.International Journal of Multiphase Flow, in press.

[208] N. G. Shah. A New Method of Computation of Radiant Heat Trans-fer in Combustion Chambers. PhD thesis, Imperial College of Sci-ence and Technology, London, England, 1979.

[209] T.-H. Shih, W. W. Liou, A. Shabbir, and J. Zhu. A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows -Model Development and Validation. Computers Fluids, 24(3):227–238, 1995.

[210] R. Siegel and J. R. Howell. Thermal Radiation Heat Transfer.Hemisphere Publishing Corporation, Washington D.C., 1992.

[211] R. Siegel and C. M. Spuckler. Effect of Refractive Index and Diffuseor Specular Boundaries on a Radiating Isothermal Layer. J. HeatTransfer, 116:787–790, 1994.

[212] C. Simonin and P. L. Viollet. Predictions of an Oxygen DropletPulverization in a Compressible Subsonic Coflowing HydrogenFlow. Numerical Methods for Multiphase Flows, FED91:65–82,1990.

[213] Y. R. Sivathanu and G. M. Faeth. Generalized State Relationshipsfor Scalar Properties in Non-Premixed Hydrocarbon/Air Flames.Combust. Flame, 82:211–230, 1990.

[214] J. Smagorinsky. General Circulation Experiments with the Primi-tive Equations. I. The Basic Experiment. Month. Wea. Rev., 91:99–164, 1963.

[215] Smith and Van Winkle. Am. Inst. Chem. Eng. J., 4:266–268, 1958.

[216] I. W. Smith. Comb. Flame, 17:421, 1971.

Bib-20 c© Fluent Inc. November 28, 2001

Page 21: Biblio cfd

BIBLIOGRAPHY

[217] I. W. Smith. The Intrinsic Reactivity of Carbons to Oxygen. Fuel,57:409–414, 1978.

[218] I. W. Smith. The Combustion Rates of Coal Chars: A Review. In19th Symp. (Int’l.) on Combustion, pages 1045–1065. The Com-bustion Institute, 1982.

[219] T. F. Smith, Z. F. Shen, and J. N. Friedman. Evaluation of Co-efficients for the Weighted Sum of Gray Gases Model. J. HeatTransfer, 104:602–608, 1982.

[220] M. D. Smooke. Reduced Kinetic Mechanisms and Asymptotic Ap-proximations for Methane-Air Flames. In Lecture Notes in Physics,volume 384. Springer-Verlag, 1991.

[221] M. D. Smooke, I. K. Puri, and K. Seshadri. A comparison Be-tween Numerical Calculations and Experimental Measurements ofthe Structure of a Counterflow Diffusion Flame Burning DilutedMethane in Diluted Air. In 21st Symp. (Int’l.) on Combustion,pages 1783–1792. The Combustion Institute, 1986.

[222] L. D. Smoot and P. J. Smith. NOx Pollutant Formation in a Tur-bulent Coal System. In Coal Combustion and Gasification, page373, Plenum, Plenum, NY, 1985.

[223] G. G. De Soete. Overall Reaction Rates of NO and N2 Formationfrom Fuel Nitrogen. In 15th Symp. (Int’l.) on Combustion, page1093. The Combustion Institute, 1975.

[224] M. S. Solum, R. J. Pugmire, and D. M. Grant. Energy and Fuels,3:187, 1989.

[225] C. Soteriou, R. Andrews, and M. Smith. Direct Injection DieselSprays and the Effect of Cavitation and Hydraulic Flip on Atom-ization. SAE Paper 950080, SAE, 1995.

[226] P. Spalart and S. Allmaras. A one-equation turbulence model foraerodynamic flows. Technical Report AIAA-92-0439, AmericanInstitute of Aeronautics and Astronautics, 1992.

c© Fluent Inc. November 28, 2001 Bib-21

Page 22: Biblio cfd

BIBLIOGRAPHY

[227] D. B. Spalding. Mixing and chemical reaction in steady con-fined turbulent flames. In 13th Symp. (Int’l.) on Combustion. TheCombustion Institute, 1970.

[228] C. G. Speziale, S. Sarkar, and T. B. Gatski. Modelling thePressure-Strain Correlation of Turbulence: An Invariant Dynami-cal Systems Approach. J. Fluid Mech., 227:245–272, 1991.

[229] H. B. Squire. Investigation of the Instability of a Moving LiquidFilm. British Journal of Applied Physics, 4:167, 1953.

[230] P.H. Steward, C.W. Larson, and D. Golden. Combustion andFlame, 75, 1989.

[231] K. Sutton and P. A. Gnoffo. Multi-component Diffusion with Ap-plication to Computational Aerothermodynamics. AIAA Paper98-2575, AIAA, 1998.

[232] C. R. Swaminathan and V. R. Voller. A General Enthalpy Methodfor Modeling Solidification Processes. Metallurgical TransactionsB, 23B:651–664, October 1992.

[233] M. Syamlal. The Particle-Particle Drag Term in a Multiparti-cle Model of Fluidization. National Technical Information Service,Springfield, VA, 1987. DOE/MC/21353-2373, NTIS/DE87006500.

[234] M. Syamlal and T. J. O’Brien. Computer Simulation of Bubblesin a Fluidized Bed. AIChE Symp. Series, 85:22–31, 1989.

[235] M. Syamlal, W. Rogers, and O’Brien T. J. MFIX Documentation:Volume 1, Theory Guide. National Technical Information Service,Springfield, VA, 1993. DOE/METC-9411004, NTIS/DE9400087.

[236] W. Tabakoff and T. Wakeman. Measured particle rebound char-acteristics useful for erosion prediction. ASME paper 82-GT-170,1982.

[237] L. Talbot et al. Thermophoresis of Particles in a Heated BoundaryLayer. J. Fluid Mech., 101(4):737–758, 1980.

[238] R. I. Tanner. Engineering Rheology. Clarendon Press, Oxford, rev.edition, 1988.

Bib-22 c© Fluent Inc. November 28, 2001

Page 23: Biblio cfd

BIBLIOGRAPHY

[239] G. I. Taylor. The Shape and Acceleration of a Drop in a HighSpeed Air Stream. Technical report, In the Scientific Papers of G.I. Taylor, ed., G. K. Batchelor, 1963.

[240] P. B. Taylor and P. J. Foster. Some Gray Weighting Coefficientsfor CO2-H2O-Soot Mixtures. Int. J. Heat Transfer, 18:1331–1332,1974.

[241] R. Taylor and R. Krishna. Multicomponent Mass Transfer. Wiley,New York, 1993.

[242] P. A. Tesner, T. D. Snegiriova, and V. G. Knorre. Kinetics ofDispersed Carbon Formation. Combust. Flame, 17:253–260, 1971.

[243] J. P. Vandoormaal and G. D. Raithby. Enhancements of the SIM-PLE Method for Predicting Incompressible Fluid Flows. Numer.Heat Transfer, 7:147–163, 1984.

[244] S. A. Vasquez and V. A. Ivanov. A Phase Coupled Method forSolving Multiphase Problems on Unstructured Meshes. In Pro-ceedings of ASME FEDSM’00: ASME 2000 Fluids EngineeringDivision Summer Meeting, Boston, June 2000.

[245] S. Venkateswaran, J. M. Weiss, and C. L. Merkle. PropulsionRelated Flowfields Using the Preconditioned Navier-Stokes Equa-tions. Technical Report AIAA-92-3437, AIAA/ASME/SAE/ASEE28th Joint Propulsion Conference, Nashville, TN, July 1992.

[246] J. R. Viegas, M. W. Rubesin, and C. C. Horstman. On the Useof Wall Functions as Boundary Conditions for Two-DimensionalSeparated Compressible Flows. Technical Report AIAA-85-0180,AIAA 23rd Aerospace Sciences Meeting, Reno, Nevada, 1985.

[247] V. R. Voller. Modeling Solidification Processes. Technical report,Mathematical Modeling of Metals Processing Operations Confer-ence, American Metallurgical Society, Palm Desert, CA, 1987.

[248] V. R. Voller, A. D. Brent, and K. J. Reid. A Computational Mod-eling Framework for the Analysis of Metallurgical SolidificationProcess and Phenomena. Technical report, Conference for Solidi-fication Processing, Ranmoor House, Sheffield, September 1987.

c© Fluent Inc. November 28, 2001 Bib-23

Page 24: Biblio cfd

BIBLIOGRAPHY

[249] V. R. Voller and C. Prakash. A Fixed-Grid Numerical Model-ing Methodology for Convection-Diffusion Mushy Region Phase-Change Problems. Int. J. Heat Mass Transfer, 30:1709–1720, 1987.

[250] V. R. Voller and C. R. Swaminathan. Generalized Source-BasedMethod for Solidification Phase Change. Numer. Heat Transfer B,19(2):175–189, 1991.

[251] K. S. Vorres. User’s handbook for the Argonne premium coal sam-ple bank. Argonne National Laboratory, supported by DOE con-tract W-31-109-ENG-38, September 1989. Also K. S. Vorres, ACSDiv. Fuel Chem. preprint, 32:4, 1987.

[252] Rose J. W. and Cooper J. R. Technical Data on Fuel. ScottishAcademic Press, Edinburgh, 1977.

[253] H. Wagner. Soot Formation in Combustion. In 17th Symp. (Int’l.)on Combustion, pages 3–19. The Combustion Institute, 1979.

[254] L. P. Wang. On the Dispersion of Heavy Particles by TurbulentMotion. PhD thesis, Washington State University, 1990.

[255] J. Warnatz. NOx Formation in High Temperature Processes. Uni-versity of Stuttgart, Germany.

[256] G. P. Warren, W. K. Anderson, J. L. Thomas, and S. L. Krist.Grid convergence for adaptive methods. Technical Report AIAA-91-1592, American Institute of Aeronautics and Astronautics,AIAA 10th Computational Fluid Dynamics Conference, Honolulu,Hawaii, June 1991.

[257] C. Weber. Zum Zerfall eines Flussigkeitsstrahles. ZAMM, 11:136–154, 1931.

[258] J. M. Weiss. Calculations of Reacting Flowfield Involving StiffChemical Kinetics. AIAA-99-3369, January 1999.

[259] J. M. Weiss, J. P. Maruszewski, and W. A. Smith. Implicit Solutionof the Navier-Stokes Equations on Unstructured Meshes. TechnicalReport AIAA-97-2103, 13th AIAA CFD Conference, Snowmass,CO, July 1997.

Bib-24 c© Fluent Inc. November 28, 2001

Page 25: Biblio cfd

BIBLIOGRAPHY

[260] J. M. Weiss, J. P. Maruszewski, and W. A. Smith. Implicit So-lution of Preconditioned Navier-Stokes Equations Using AlgebraicMultigrid. AIAA Journal, 37(1):29–36, 1999.

[261] J. M. Weiss and W. A. Smith. Preconditioning Applied to Variableand Constant Density Flows. AIAA Journal, 33(11):2050–2057,November 1995.

[262] C.-Y. Wen and Y. H. Yu. Mechanics of Fluidization. Chem. Eng.Prog. Symp. Series, 62:100–111, 1966.

[263] C. Westbrook and F. Dryer. Simplified Reaction Mechanisms forOxidation of Hydrocarbon Fuels in Flames. Comb. Sci. Tech,27:31–43, 1981.

[264] C. Westbrook and F. Dryer. Chemical Kinetic Modelling of Hy-drocarbon Combustion. Prog. Energy Comb. Sci., page 1, 1984.

[265] A. A. Westenberg. Comb. Sci. Tech., 4:59, 1971.

[266] F. White and G. Christoph. A Simple New Analysis of Compress-ible Turbulent Skin Friction Under Arbitrary Conditions. Techni-cal Report AFFDL-TR-70-133, February 1971.

[267] D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries,Inc., La Canada, California, 1998.

[268] F. A. Williams. Turbulent Mixing in Nonreactive and ReactiveFlows. Plenum Press, New York, 1975.

[269] M. Wolfstein. The Velocity and Temperature Distribution of One-Dimensional Flow with Turbulence Augmentation and PressureGradient. Int. J. Heat Mass Transfer, 12:301–318, 1969.

[270] P.-K. Wu, L.-K. Tseng, and G. M. Faeth. Primary Breakup inGas/Liquid Mixing Layers for Turbulent Liquids. Atomization andSprays, 2:295–317, 1995.

[271] A. Yakhot, S. A. Orszag, V. Yakhot, and M. Israeli. Renormal-ization Group Formulation of Large-Eddy Simulation. Journal ofScientific Computing, 4:139–158, 1989.

c© Fluent Inc. November 28, 2001 Bib-25

Page 26: Biblio cfd

BIBLIOGRAPHY

[272] V. Yakhot and S. A. Orszag. Renormalization Group Analysisof Turbulence: I. Basic Theory. Journal of Scientific Computing,1(1):1–51, 1986.

[273] D. L. Youngs. Time-Dependent Multi-Material Flow with LargeFluid Distortion. In K. W. Morton and M. J. Baines, editors,Numerical Methods for Fluid Dynamics. Academic Press, 1982.

[274] Q. Zhou and M. A. Leschziner. Technical report, 8th TurbulentShear Flows Symp., Munich, 1991.

[275] V. Zimont. Gas Premixed Combustion at High Turbulence. Tur-bulent Flame Closure Model Combustion Model. ExperimentalThermal and Fluid Science, 21:179–186, 2000.

[276] V. Zimont, W. Polifke, M. Bettelini, and W. Weisenstein. An Ef-ficient Computational Model for Premixed Turbulent Combustionat High Reynolds Numbers Based on a Turbulent Flame SpeedClosure. J. of Gas Turbines Power, 120:526–532, 1998.

[277] V. L. Zimont, F. Biagioli, and K. J. Syed. Modelling Turbu-lent Premixed Combustion in the Intermediate Steady PropagationRegime. Progress in Computational Fluid Dynamics, 1(1):14–28,2001.

[278] V. L. Zimont and A. N. Lipatnikov. A Numerical Model of Pre-mixed Turbulent Combustion of Gases. Chem. Phys. Report,14(7):993–1025, 1995.

Bib-26 c© Fluent Inc. November 28, 2001


Recommended