+ All Categories
Home > Documents > Binary Reaction Spectroscopy from A=100-200

Binary Reaction Spectroscopy from A=100-200

Date post: 22-Jan-2016
Category:
Upload: annona
View: 30 times
Download: 0 times
Share this document with a friend
Description:
Binary Reaction Spectroscopy from A=100-200. Paddy Regan Dept. of Physics, University of Surrey, Guildford, GU2 7XH, UK e-mail: [email protected]. Problems with neutron-rich spectroscopy ? Production (RIBs, fission, binary reactions). Small cross-sections, need high efficiencies. - PowerPoint PPT Presentation
Popular Tags:
46
Binary Reaction Spectroscopy from A=100-200 Paddy Regan Dept. of Physics, University of Surrey, Guildford, GU2 7XH, UK e-mail: [email protected]
Transcript
Page 1: Binary Reaction Spectroscopy from A=100-200

Binary Reaction Spectroscopy from A=100-200 Paddy Regan

Dept. of Physics, University of Surrey,

Guildford, GU2 7XH, UK

e-mail: [email protected]

Page 2: Binary Reaction Spectroscopy from A=100-200

Problems with neutron-rich spectroscopy ?

• Production (RIBs, fission, binary reactions).– Small cross-sections, need high efficiencies.

• Identification (N,Z)– lots of products, need clean id or ‘tags’ (e.g. isomers)

• Population in (Ex,I) plane (reaction selection)– need to know spin/excitation energy range of products

Page 3: Binary Reaction Spectroscopy from A=100-200

2)12( L

Modified from Introductory Nuclear Physics, Hodgson, Gadioli and Gadioli Erba, Oxford Press (2000) p509

Aim? To perform high-spin physics in stable and neutron rich nuclei. Problem: Fusion makes proton-rich nuclei.Solutions? (a)fragmentation (b) binary collisions/multi-nucleon transfer

See eg.Bock et al., Nukleonika 22 (1977) p529 Broda et al. Phys. Rev Lett. 74 (1995) p868Juutinen et al. Phys. Lett. 386B (1996) p80Wheldon et al. Phys. Lett. 425B (1998) p239 Cocks et al. J. Phys. G26 (2000) p23Krolas et al. Acta. Phys. Pol. B27 (1996) p493Asztalos et al. Phys. Rev. C60 (1999) 044307

CCMMAX

MAX

TB

TLF

VER

L

LAA

L

2

2

31

2

1

1

7

2

:limit Rolling

Page 4: Binary Reaction Spectroscopy from A=100-200

Can not use fusion-evaporation reactions to study high-spin states (and thus vibrational-rotational transitions, alignments etc.) in beta-stable and neutron-rich systems.

Use deep-inelastic reactions.

Z

N

Ebeam ~15-20% above Coulomb barrier

beam

target

(i) (ii) (iii)

Page 5: Binary Reaction Spectroscopy from A=100-200

-1

cos1

by calculated then is correctionDoppler The

coscoscoscossinsinsinsin)cos(

where

)cos(r.r

by given is angleray -fragment/ the

k )cos( , j )sin()sin( ,i )cos()sin(

k, and j i, rsunit vectoCartesian For

2

2,1'

2121212112

122121

1,2

EE

rr

rzryrx

z

x

y

Page 6: Binary Reaction Spectroscopy from A=100-200
Page 7: Binary Reaction Spectroscopy from A=100-200

198Pt +136Xe, 850 MeV

Page 8: Binary Reaction Spectroscopy from A=100-200
Page 9: Binary Reaction Spectroscopy from A=100-200

8+ dominated by Coulex in 198Pt. High-spin isomers kill prompt DIC

Page 10: Binary Reaction Spectroscopy from A=100-200
Page 11: Binary Reaction Spectroscopy from A=100-200
Page 12: Binary Reaction Spectroscopy from A=100-200

100Mo + 136Xe @ 750 MeVGAMMASPHERE + CHICO

TLFs

BLFs

elastics

Page 13: Binary Reaction Spectroscopy from A=100-200
Page 14: Binary Reaction Spectroscopy from A=100-200

TLFs

BLFs

elastics

Page 15: Binary Reaction Spectroscopy from A=100-200

Wilczynski Plot

Page 16: Binary Reaction Spectroscopy from A=100-200

Isomer gating very useful in DIC experiments. Test with known case…..

Page 17: Binary Reaction Spectroscopy from A=100-200
Page 18: Binary Reaction Spectroscopy from A=100-200
Page 19: Binary Reaction Spectroscopy from A=100-200
Page 20: Binary Reaction Spectroscopy from A=100-200

Pt+Xe Mo+Xe

Page 21: Binary Reaction Spectroscopy from A=100-200
Page 22: Binary Reaction Spectroscopy from A=100-200
Page 23: Binary Reaction Spectroscopy from A=100-200

max

3

1blfmax

3

1tlf

max

3/13/1

0

221

max

1

172

1

172

fragments. twoebetween th mom. ang. relative the

and , intosplit is limit, mode rolling In the

25.12

cosec1.4

where, approach,closest of distance by thegiven is

max. issection -cross DIC the whereangle The

. and 219.0

is mom. ang. peripheral max. y theclassicall-Semi

l

AA

ll

AA

l

lll

fmAAEeZZ

d

d

grazing

AAAA

VERl

B

T

T

B

blftlf

TBgraz

k

TB

TBCMCM

Page 24: Binary Reaction Spectroscopy from A=100-200
Page 25: Binary Reaction Spectroscopy from A=100-200

0

10

20

30

40

50

%>Ecoul

Ltlf (roll)

v/c graz tlf

Linear(%>Ecoul)

0

10

20

30

40

50

60

620 648 677 705 733 761 790E_beam (MeV)

blf_graz

tlf_graz

lmax/10

Kinematics and angular mom. input calcs (assumes ‘rolling mode’) for 136Xe beam on 100Mo target.

Estimate ~ 25hbar in TLFfor ~25% above Coul. barrier. For Eb(136Xe)~750 MeV, in labblf~30o and tlf~50o.

100Mo +136Xe (beam) DIC calcs.

Page 26: Binary Reaction Spectroscopy from A=100-200

Future plans? High spins (SD at I~25) in 99,100Mo. (cf. 136Xe beam with 208Pb and 238U (fission prob)

0

5

10

15

20

25

30

35

40

45

50

620 648 677 705 733 761 790

%>EcoulLtlf (roll)v/c graz (tlf)Linear (%>Ecoul)

Page 27: Binary Reaction Spectroscopy from A=100-200

Podolyak et al. Phys. Lett. 491B (2000) 225

Page 28: Binary Reaction Spectroscopy from A=100-200

New isomer in 195Os confirmed ‘in-beam’ CHICO+GAMMASPHERE

Dobon, Wheldon, Regan et al.,

Page 29: Binary Reaction Spectroscopy from A=100-200

beam-like fragment isomers.

Page 30: Binary Reaction Spectroscopy from A=100-200

Target-like fragment isomers

Page 31: Binary Reaction Spectroscopy from A=100-200
Page 32: Binary Reaction Spectroscopy from A=100-200
Page 33: Binary Reaction Spectroscopy from A=100-200
Page 34: Binary Reaction Spectroscopy from A=100-200
Page 35: Binary Reaction Spectroscopy from A=100-200
Page 36: Binary Reaction Spectroscopy from A=100-200

Identification of new isomeric state in 136Ba, N=80 isotone.

Page 37: Binary Reaction Spectroscopy from A=100-200
Page 38: Binary Reaction Spectroscopy from A=100-200

N=80 isotonic chain, 10+ isomersQ. Why does Ex(10+) increase while E(2+) decreases ?

Page 39: Binary Reaction Spectroscopy from A=100-200

Structure of 8+ appears to change from 134Xe -> 136Ba ?

Page 40: Binary Reaction Spectroscopy from A=100-200

1565 keV gate2+->0+ in 86Kr

Double gate on 143 and 298 keV in 188W.

432 keV6+ in 188W

82Se+192Os GaSp backed target data (Podolyak, Mohammadi, DeAngelis et al.)

Page 41: Binary Reaction Spectroscopy from A=100-200

many thanks to......• Jose Javier Valiente Dobon (Pt)+ Arata Yamamoto (Mo) Zsolt Podolyak, Saeed

Mohammadi, Chris Pearson, Scott Langdown, Karin Andgren (Surrey). Furong Xu (Bejing).

• Carl Wheldon (Surrey -> GSI) Spokesperson for 136Xe+198Pt.• CHICO + GAMMASPHERE Experiments

– Rochester (Chin-Yen Wu, Doug Cline, Adam Hayes, Hui Hua, Ray Teng et al.,) – LBNL (Augusto Macchiavelli, Paul Fallon, I-Yang Lee, Mario Cromaz)– Manchester. (John Smith, Sean Freeman, Ravi Chakrawarthy) – Daresbury (Dave Warner), – Paisley (Bob Chapman, Xiaoying Liang)

• Vibrator-Rotator (E-GOS) plots, Con Beausang, Rick Casten, Victor Zamfir, Jing-Ye Zhang.

Page 42: Binary Reaction Spectroscopy from A=100-200

NUSTAR’05International Conference on

NUclear STructure, Astrophysics and Reactions

The University of Surrey, Guildford, UK

5-8 January 2005

Page 43: Binary Reaction Spectroscopy from A=100-200
Page 44: Binary Reaction Spectroscopy from A=100-200
Page 45: Binary Reaction Spectroscopy from A=100-200
Page 46: Binary Reaction Spectroscopy from A=100-200

See strong lines in 84,86Kr (binary partners of 190,188W). Identify first three states in 188W. GaSp 82Se+192Os (backed target) GaSp, Podolyak, Mohammadi et al.,


Recommended