+ All Categories
Home > Documents > Bio Surfs

Bio Surfs

Date post: 07-Jul-2018
Category:
Upload: jessica-king
View: 217 times
Download: 0 times
Share this document with a friend

of 24

Transcript
  • 8/18/2019 Bio Surfs

    1/24

    http://www.iisc.ernet.in/currsci/jul10/articles19.htm

    Microbial production of biosurfactants and their importance

    N. G. K. Karanth, P. G. Deo and N. K. Veenanadig*

    Pesticide Residue Abatement Lab, Food Protectants and Infestation Control Department, Central Food Technological Research Institute,

    Mysore !" "#$, India

    %Department of &iochemistry, Indian Institute of 'cience, &angalore (" "#), India

    A large variet of microorganisms produce potent surface!active agents, biosurfactants, "hich var in their chemical properties and

    molecular si#e. $hile the lo" molecular "eight surfactants are often glcolipids, the high molecular "eight surfactants are generall

    either polanionic heteropolsaccharides containing covalentl!lin%ed hdrophobic side chains or comple&es containing both

    polsaccharides and proteins. 'he ield of the biosurfactant greatl depends on the nutritional environment of the gro"ing organism.

    'he enormous diversit of biosurfactants ma%es them an interesting group of materials for application in man areas such as

    agriculture, public health, food, health care, "aste utili#ation, and environmental pollution control such as in degradation of 

    hdrocarbons present in soil .

    &iosurfactants *&'+ are amphiphilic compounds produced on liing surfaces, mostly microbial cell surfaces, or 

    e-creted e-tracellularly and contain hydrophobic and hydrophilic moieties that reduce surface tension *'T+ and

    interfacial tensions bet.een indiidual molecules at the surface and interface, respectiely/ 'ince &' and

     bioemulsifiers both e-hibit emulsification properties, bioemulsifiers are often categori0ed .ith &', although

    emulsifiers may not lo.er surface tension/ A biosurfactant may hae one of the follo.ing structures1 mycolic acid,

    glycolipids, polysaccharide2lipid comple-, lipoprotein or lipopeptide, phospholipid, or the microbial cell surface

    itself/

    Considerable attention has been gien in the past to the production of surface3actie molecules of biological origin

     because of their potential utili0ation in food3processing#2$, pharmacology, and oil industry/ Although the type and

    amount of the microbial surfactants produced depend primarily on the producer organism, factors li4e carbon and

    nitrogen, trace elements, temperature, and aeration also affect their production by the organism/

    5ydrophobic pollutants present in petroleum hydrocarbons, and soil and .ater enironment re6uire solubili0ation

     before being degraded by microbial cells/ Minerali0ation is goerned by desorption of hydrocarbons from soil/

    'urfactants can increase the surface area of hydrophobic materials, such as pesticides in soil and .ater enironment,

    thereby increasing their .ater solubility/ 5ence, the presence of surfactants may increase microbial degradation of 

     pollutants/ 7se of biosurfactants for degradation of pesticides in soil and .ater enironment has gained importance

    only recently/ The identification and characteri0ation of biosurfactant produced by arious microorganisms hae

     been e-tensiely reie.ed82(/ Therefore, rather than describing the numerous types of biosurfactants and their 

     properties, this article emphasi0es the production of biosurfactants and their role in biodegradation of pesticides/

     

    Microbiology

    Microorganisms utili0e a ariety of organic compounds as the source of carbon and energy for their gro.th/ 9hen

    the carbon source is an insoluble substrate li4e a hydrocarbon *C x5 y+, microorganisms facilitate their diffusion into

    the cell by producing a ariety of substances, the biosurfactants/ 'ome bacteria and yeasts e-crete ionic surfactants

    .hich emulsify the C x5 y substrate in the gro.th medium/ 'ome e-amples of this group of &' are rhamnolipids

    1

  • 8/18/2019 Bio Surfs

    2/24

    .hich are produced by different  Pseudomonas  sp/!2##, or the sophorolipids .hich are produced by seeral

    Torulopsis sp/#)2#8/ 'ome other microorganisms are capable of changing the structure of their cell .all, .hich they

    achiee by synthesi0ing lipopolysaccharides or nonionic surfactants in their cell .all/ :-amples of this group are1

    Candida lipolytica  and C. tropicalis  .hich produce cell .all3bound lipopolysaccharides .hen gro.ing on n3

    al4anes#,#(; and  Rhodococcus erythropolis, and many Mycobacterium sp/ and Arthrobacter   sp/ .hich synthesi0e

    nonionic trehalose corynomycolates#8,#!2)$/ There are lipopolysaccharides, such as :mulsan, synthesi0ed by

     Acinetobacter   sp/)),)$, and lipoproteins or lipopeptides, such as 'urfactin and 'ubtilisin, produced by  Bacillus

     subtilis)82)(/

  • 8/18/2019 Bio Surfs

    3/24

    ?lycolipids are the most common types of &' *ref/ $)+/ The constituent mono3, di3, tri3 and tetrasaccharides include

    glucose, mannose, galactose, glucuronic acid, rhamnose, and galactose sulphate/ The fatty acid component usually

    has a composition similar to that of the phospholipids of the same microorganism/ The glycolipids can be

    categori0ed as1

    Trehalose lipids1 The serpentine gro.th seen in many members of the genus Mycobacterium is due to the presence

    of trehalose esters on the cell surface$$,$8/ Cord factors from different species of  Mycobacteria$$,$2$!,

    Corynebacteria$=, Nocardia, and Breibacteria differ in si0e and structure of the mycolic acid esters/

     

    !ophorolipids1 These are produced by different strains of the yeast, Torulopsis/ The sugar unit is the disaccharide

    sophorose .hich consists of t.o b 3#,)3lin4ed glucose units/ The ( and (@ hydro-y groups are generally acetylated/The sophorolipids reduce surface tensions bet.een indiidual molecules at the surface, although they are effectie

    emulsifying agents#$,$>,8"/ The sophorolipids of Torulopsis hae been reported to stimulate8#,8), inhibit8#,8$, and hae

    no effect= on gro.th of yeast on .ater3insoluble substrates/

     

    3

  • 8/18/2019 Bio Surfs

    4/24

     

     Rhamnolipids1 'ome  Pseudomonas sp/ produce large 6uantities of a glycolipid consisting of t.o molecules of 

    rhamnose and t.o molecules of b 3hydro-ydecanoic acid88,8/ 9hile the

  • 8/18/2019 Bio Surfs

    5/24

    en0ymes(!/

     

    !urfactin $subtilysin%1

  • 8/18/2019 Bio Surfs

    6/24

     

    ther Acinetobacter emulsifiers1 :-tracellular emulsifier production is .idespread in the genus Acinetobacter/ In

    one surey!, = to #( strains of  A. calcaoceticus produced high amounts of emulsifier follo.ing gro.th on ethanol

    medium!(,!!/ This e-tracellular fraction .as e-tremely actie in brea4ing *de3emulsifying+ 4erosene .ater emulsion

    stabili0ed by a mi-ture of T.een (" and 'pan ("/

     

     Polysaccharide"lipid complexes from yeast 1 The partially purified emulsifier, liposan, .as reported to contain about

    >E carbohydrate and E protein!=/ A C x5 y3degrading yeast, -ndomycopsis lipolytica M, produced an unstable

    al4ane3solubili0ing factor !>/ Torulopsis  petrophilum produced different types of surfactants depending on the gro.th

    medium$>/ ,=#,=)/

     

     Bioflocculant and emulcyan from the filamentous Cyanobacterium phormidium /"&1 The change in cell surface

    hydrophobicity of Cyanobacterium phormidium  .as correlated .ith the production of an emulsifying agent,

    emulcyan=/ The partially purified emulcyan has a M9 greater than #",""" Da and contains carbohydrate, protein

    and fatty acid esters/ Addition of emulcyan to adherent hydrophobic cells resulted in their becomeing hydrophilic

    6

  • 8/18/2019 Bio Surfs

    7/24

    and detach from he-adecane droplets or phenyl sepharose beads/

     

     Particulate surfactants

     -xtracellular esicles from Acinetobacter sp. 0(&"N 1  Acinetobacter sp/ .hen gro.n on he-adecane, accumulated

    e-tracellular esicles of )" to " mm diameter .ith a buoyant density of #/#= gcm$/ These esicles appear to play

    a role in the upta4e of al4anes by Acinetobacter sp/ 5

  • 8/18/2019 Bio Surfs

    8/24

     p5, and Ca, Mg, concentration in the ranges found in many oil reseriors/ Their production, on the other hand, in

    many cases improes .ith increased salinity/ Thus, they are the biosurfactants of choice for the ene0uelan oil

    industry and in the cosmetics, food, and pharmaceutical mar4ets/

    The nitrogen source can be an important 4ey to the regulation of &' synthesis/  Arthrobacter paraffineus ATCC

    #>= preferred ammonium to nitrate as inorganic nitrogen source for &' production/ 7rea also result in increased

    &' production=>/ A change in gro.th rate of the concerned microorganisms is often sufficient to result in oer 

     production of &' *ref/ )!+/ In some cases)8, addition of multialent cations to the culture medium can hae a

     positie effect on &' production/ &esides the regulation of &' by chemicals indicated aboe, some compounds li4e

    ethambutol)",>=, penicillin>>, chloramphenicol)$, and :DTA!>,#""  influenced the formation of interfacially actie

    compounds/ The regulation of &' production by these compounds is either through their effect on solubili0ation of 

    nonpolar hydrocarbon substrates or by increased production of .ater3soluble *polar+ substrates/ In some cases, &'

    synthesis is regulated by p5 and temperature/ For e-ample in rhamnolipid production by Pseudomonas sp/#"#,#"), in

    cellobioselipid formation by 2stilao maydis#"$, and in sophorolipid formation by Torulopsis bombicola8), p5

     played an important role, and in the case of  Arthrobacter paraffineus  ATCC #>= *ref/ #"8+,  Rhodococcus

    crythropolis#"#,#"), and  Pseudomonas sp/  D'M )=!8 *refs 8!, #")+ temperature .as important/ In all these cases

    ho.eer the yield of &' production .as temperature dependent/

     

    Applications of biosurfactants in pollution control

    The identification and characteri0ation of microbial surfactants produced by arious microorganisms hae been

    e-tensiely reie.ed(,==,#"2#"!/ Therefore rather than describing numeric types of M', it is proposed to e-amine

     potential applications of M'/

     Microbial enhanced oil recoery

    An area of considerable potential for &' application is microbial enhanced oil recoery *M:/ Clar4 et al.##", based on a computer search estimated that about )!E of oil reseroirs in 7'A are

    amenable to microbial gro.th and M:

  • 8/18/2019 Bio Surfs

    9/24

    glycolipid in irulent strains of Mycobacterium tuberculosis/ Haneda et al.##$ reported that granuloma formation and

    hemopoiesis could be induced by C$(2C8= mycolic acid3containing glycolipids from  Nocardia rubra.  &iolid

    e-tract *&:+, obtained as a byproduct during the production of fodder yeast, is a dar4 bro.n heay fluid .ith a

    characteristic odour and high interfacial actiity/ This product has many applications in agrochemistry, mineral

    flotation, and bitumen production and processing/ Potentially, the product may be used as an emulsifying and

    dispersing agent .hile formulating herbicides, pesticides, and gro.th regulator preparations/ Including

     phospholipids in formulations, facilitate penetration of actie substances into the plant tissues##8, ma4ing it possible

    to apply only ery lo. concentrations of the substances##/ The constituent fatty acids of biolipid e-tract hae

    antiphytoiral and antifungal actiities and therefore, can be applied in controlling plant diseases ##(/ These fatty

    acids also increase stress tolerance of plants, leading thereby to higher yields despite physiological drought##!/

     

     0ydrocarbon deradation in the soil enironment 

    C x5 y degradation in soil has been e-tensiely studied$#,>,##=2#))/ Degradation is dependent on presence in soil of 

    hydrocarbon3degrading species of microorganisms, hydrocarbon composition, o-ygen aailability, .ater,

    temperature, p5, and inorganic nutrients/ The physical state of C x5 y can also affect biodegradation/ Addition of 

    synthetic surfactants or M' resulted in increased mobility and solubility of C x5 y, .hich is essential for effectie

    microbial degradation#))/

    7se of M' in C x5 y degradation has produced ariable results/ In the .or4 of Lindley and 5eydeman#)$, the fungus

    Cladosporium resiuae, gro.n on al4ane mi-tures, produced e-tracellular fatty acids and phospholipids, mainly

    dodecanoic acid and phosphatidylcholine/ 'upplement of the gro.th medium .ith phosphatidylcholine enhanced

    the al4ane degradation rate by $"E/ Foght et al.#)8  reported that the emulsifier, :mulsan, stimulated aromatic

    minerali0ation by pure bacterial cultures, but inhibited the degradation process .hen mi-ed cultures .ere used/

  • 8/18/2019 Bio Surfs

    10/24

    additie effect on solubili0ation *8#/E+ .as obsered/  Pseudomonas ceparia AC ##"" produced an emulsifier that

    formed a stable suspension .ith ),8,3T, and also e-hibited some emulsifying actiity against chlorophenols #$$/

    Thus, this emulsifier can be used

    to enhance bacterial degradation of organochlorine compounds/

     0ydrocarbon deradation in a4uatic enironment 

    9hen oil is spilled in a6uatic enironment, the lighter hydrocarbon components olatili0e .hile the polar 

    hydrocarbon components dissole in .ater/ 5o.eer, because of lo. solubility * # ppm+ of oil, most of the oil

    components .ill remain on the .ater surface/ The primary means of hydrocarbon remoal are photoo-idation,

    eaporation, and microbial degradation/ 'ince C x5 y3degrading organisms are present in sea.ater, biodegradation

    may be one of the most efficient methods of remoing pollutants>, #$8/ 'urfactants enhance degradation by

    dispersing and emulsifying hydrocarbons/ Microorganisms that are able to degrade C x5 y hae been isolated from

    a6uatic enironment/ These microorganisms .hich e-hibit emulsifying actiity as .ell as the soil microorganisms

    .hich produced surfactants may be useful in a6uatic enironment/ Cha4rabarty #$(  reported that an emulsifier 

     produced by  P. aeruinosa '&$" .as able to 6uic4ly disperse oil into fine droplets; therefore it may be useful in

    remoing oil from contaminated beaches#$/ &' produced by oil3degrading bacteria may be useful in cleaning oiltan4s/ 9hen an oil tan4er compartment containing oily ballast .ater .as supplemented .ith urea and H )5P,=#/ The specific solubili0ation of C x5 y .as strongly inhibited by :DTA .hich .as oercome by e-cess

    CaJJ/ It .as concluded that specific solubili0ation of C x5 y is an important mechanism in the microbial upta4e of 

    C x5 y/

     

     Pesticide"specific biosurfactants

    Due to biodegradatie property of biosurfactants, they are ideally suited for enironmental applications, specially

    for remoal of the pesticidesKan important step in bioremediation/ 'urey of the literature reeals that application

    of biosurfactants in the field of pesticides is still in its infancy compared to the field of hydrocarbons/ In India, a

    number of laboratories hae initiated studies on &'/ 'ome of the earlier .or4s are by1 *i+ &anaree et al.#$$ on ),8,3

    tricholoacetic acid, *ii+ Patel and ?opinath on Fenthion#8), and *iii+ Anu Appaiah and Haranth#8$ on alpha 5C5/ ery

    recently reports on production of microbial &', based on preliminary studies by seeral groups, hae appeared in

     postersproceedings of symposia#882#8=/ The note.orthy feature being the increasing interest sho.n by the arious

    researchers on1 *i+ degradation of pesticides#8>2#), *ii+ production and e-ploitation of &' for the remoal of 

     pesticides from the enironment, and *iii+ postulates on the possible replacement of synthetic surfactants .ith the

     biosurfactants in the pesticide formulation and clean3up#$2#(/

    10

  • 8/18/2019 Bio Surfs

    11/24

     

     Biosurfactant and 0C0 deradation

    5e-a3chlorocyclohe-ane *5C5+ is still the highest ran4ing pesticide used in India and many other countries/

  • 8/18/2019 Bio Surfs

    12/24

    The &' acted by increasing the surface area of 5C5, .hich accelerated this transformation/ 5ence, it is eident that

    e-tracellular &' has a definite role in 5C5 degradation by CFTRI strain of Pseudomonas PtmJ. Production of &'

    for Fenthion, a li6iud

  • 8/18/2019 Bio Surfs

    13/24

    8,#(",#(#/ The current consumption rate and estimated demand pattern for synthetic surfactants are sho.n in

    13

  • 8/18/2019 Bio Surfs

    14/24

    Table 8/ Bumber of patents aailable on the subect are gien in Table /

    &' from some other bacterial ta-a may be of public health concern/ Methylrhamnolipids from  Pseudomonas

    aeroinosa hae cytoto-ic effects#($/ Lipopolyglycans from mycoplasmas sho. endoto-ic properties, potentially

    inducing procoagulant actiity in human leu4ocytes#(8/ The to-icity and antigenic properties of mycobacterial

    glycolipids, produced by pathogenic mycobacteria such as  M. aium"intracellure,  M. scrofulaceum,  and  M.

     fortulitum, .hich are habitats of .ater polluted .ith industrial and domestic residues, are .ell 4no.n #(,#((/ The

    aried uses of &' also imply scope for M', and the need to strengthen the research in this emerging area/

     

    #/ Ramana, H/ / and Haranth, B/ ?/ H/, /. Microbial. Biotechnol., #>==, $, ((2(>/

    )/ Ramana, H/ / and Haranth, B/ ?/ H/, /. Chem. Technol. Biotechnol., #>=>, 8, )8>2)!/

    $/ Ramana, H/ / and Haranth, B/ ?/ H/, Biotechnol. 5ett., #>=>, ##, 8$!288)/

    8/ Lin, '/ C/, /. Chem. Tech. Biotechnol /, #>>(, ((, #">2#)"/

    / Desai, G/ D/, /. !ci. 3nd. Res/, #>=!, 8(, 88"288>/

    (/ Par4inson, M/, Biotechnol. Ad., #>=, $, (2=$/

    !/ ?uerra3'antos, L/, Happeli, =8, 8=, $"#2$"/

    =/ 5auser, ?/ and Harnos4y, M/ L/, /. Bacteriol /, #>8, (=, (82(8/

    >/ ?uerra3'antos, L/, Happeli, =(, )8, 88$288=/

    #"/ 5auser, ?/ and Harnos4y, M/ L/, /. Biol. Chem., #>=, )$$, )=!2)>#/

    ##/ &urger, M/ M/, ?laser, L/ and &urton/ R/ M/, /. Biol. Chem/, #>($, )$=, )>2)(")/

    #)/ Cutler, A/ G/ and Light, R/ G/, /. Biol. Chem/, #>!>, )8, #>882#>"/

    #$/ Cooper, D/ ?/ and Paddoc4, D/ A/, Appl. -niron. Microbiol /, #>=$, 8(, #8)(2#8)>/

    #8/ 'pencer, G/ F/ T/, 'pencer, D/ M/ and Tulloch, A/ P/, -conomic Microbioloy, Academic Press Inc/, Be. or4, #>!>, ol/ $, pp/ )$2 

    8"/

    #/ =#, #>, )#!2)$!/

    #!/ Ristau, :/ and 9anger, F/, Biotech. 5ett. #>=$, , >2#""/

    #=/ Hretschmer, A/, &oc4, 5/ and 9agner, F/, Appl. -niron. Microbiol., #>=), 88, =(82=!"/

    #>/ Rapp, P/, &oc4, 5/, 9ray, / and 9agner, F/, /. Gen. Microbiol /, #>!>, ##, 8>2"$/

    14

  • 8/18/2019 Bio Surfs

    15/24

    )"/ Hilburn, G/ D/ and Ta4ayama, H/, Antimicrob. Aents Chemother /, #>=#, )", 8"#28"8/

    )#/ 'u0u4i, T/, Tana4a, H/, Matsubara, I/ and Hinoshita, '/, Aric. Biol. Chem/, #>(=, $$, #(#>2#()!/

    ))/ Rosenberg, :/, Perry, A/, ?ibson, D/ T/ and ?utnic4, D/ L/, Appl. -niron. Microbiol /, #>!>, $!, 8")28"=/

    )$/ Rubino.it0, C/, ?utnic4, D/ L/ and Rosenberg, :/, /. Bacteriol., #>=), #), #)(2#$)/

    )8/ Cooper, D/ ?,, Naic, G/ :/ and Denis, C/, /. Am. il  Chem. !oc/, #>=#, =, !!2="/

    )/ Ha4inuma, A/, 5ori, M/, Isono, M/, Tamura, ?/ and Anima, H/, Aric. Biol. Chem., #>(>, $$, >!$2>!(/

    )(/ Arima, H/, Ha4inuma, A/ and Tamura, ?/, Biochem. Biophys. Res. Commun/, #>(=, $#, 8==28>8/

    )!/ Hretshmer, A/, &loc4, 5/ and 9ager, F/, Appl. -niron. Microbiol., #>=), 88, =(82=!"/

    )=/ MacDonald, C/ R/, Cooper, D/ ?/ and Naic, G/ :/, Appl. -niron. Microbiol /, #>=#, 8#, ##!2#)$/

    )>/ Hnoche, 5/ 9/ and 'hiely, G/ M/, /. Biol. Chem/, #>!), )8!, #!"2#!=/

    $"/ Tahara, /, Hameda, M/, amada, / and Hondo, H/, Aric. Biol. Chem/, #>!(, 8", )8$2)88/

    $#/ 9il4inson, '/ G/ and ?albraith, L/, -ur. /. Biochem/, #>!, ), $$#2$8$/

    $)/ 'ha., B/, Bacteriol. Re., #>!", $8, $(2$!!/

    $$/ Asselineau, C/ and Asselineau, G/, Pro. Chem. #ats 5ipids, #>!=, #(, >2>>/

    $8/ &loc4, 5/, /. -xp. Med /, #>", >#, #>!2)""/

    $/ &ar4sdale, L/ and Him, H/ '/, Bacteriol. Re/, #>!!, 8#, )#!2)$"/

    $(/ &rady, R/ (8, $$, !2!=/

    $!/ 9ong, M/ / 5/, 'tec4, P/ A/ and ?ray, ?/ R/, /. Biol. Chem/, #>!>, )8, !$82!8"/

    $=/ Loneda, T/, Lederer, :/ and Ro0onis, G/ , Chem. Phys. 5ipids, #>!", 8, $!2$!=/

    $>/ Cooper, D/ ?/ and Paddoc4, D/ A/, Appl. -niron. Microbiol / #>=8, 8!, #!$2#!(/

    8"/ Inoue, '/ and Ito, '/, Biotechnol. 5ett /, #>=), 8, $2=/

    8#/ Ito, '/ and Inoue, '/, Appl. -niron. Microbiol /, #>=), 8!, #!$2#!(/

    8)/ ?obbert, 7/, Lang, '/ and 9agner, F/, Biotechnol. 5ett /, #>=8, (, ))2)$"/

    8$/ Ito, ', Hinta, M/ and Inoue, '/, Aric. Biol. Chem., #>=", 88, )))#2)))8/

    88/ :d.ards, G/ R/ and 5ayashi , G/ A/, Arch. Biochem. Biophys,/ #>(, ###, 8#28)#/

    15

  • 8/18/2019 Bio Surfs

    16/24

    8/ Garis, F/ ?/ and Gohnson, M/ G/, /. Am. Chem. !oc., #>8>, !# 8#)828#)(/

    8(/ 5isatsu4a, H/, Ba4ahara, T/, 'ano, B/ and amada, H/, Aric. Biol. Chem/, #>!#, $, (=(2(>)/

    8!/ 9agner, F/, &ehrendt, /, Hretschmer, A/, Lang, '/ and 'yldat4, C/, in Microbial -nhanced il Recoery, Pen.ell Publishers, Tulsa,

    =$, p/ /

    8=/ Lang, '/, ?ilbon, A/, 'yldat4, C/ and 9agner, F/, in !urfactants in !olution *eds Mittal, H/ L/ and Lindman, &/+, Plenum Press, Be.

    or4, #>=8, pp/ #$(/

    8>/ Rehn, 5/ G/ and Reiff, I/, Ad. Biochem. -n., #>=#, #>, #!2)#(/

    "/ Hretschmer, A/, &loc4, 5/ and 9agner, F/, Appl. -niron. Microbiol., #>=), 88, =(82=!"/

    #/ Ma4ula, R/ A/, Loo4.ood, P/ G/ and Finnerty, 9/ R/, /. Bacteriol., #>!, #)#, )"2)8/

    )/ Ma4ula, R/ A/ and Finnerty, 9/ R/, /. Bacteriol /, #>!), ##), $>=28"!/

    $/ achon, /, Mc?arrity, G/ T/, &reuil, C/, Armstrong, G/ &/ and Hushner, D/ G/, Can. /. Microbiol /, #>=), )=, (("2(((/

    8/ 5ug, 5/, &lanch, 9/ and Fiechter, A/, Biotechnol. Bioen /, #>!8, #(, >(2>(=/

    / Thorpe, R/ F/ and Ratlege, C/, /. Gen. Microbiol., #>!), !), ##2#=/

    (/ Mishina, M/, Isurgi, M/, Tana4a, A/ and Fu4ui, '/, Aric. Biol. Chem., #>!!, 8#, #!2)"/

    !/ Happeli, !>, #8", !"!2!#)/

    =/ &eeba, G/ L/ and 7mbrell , 9/ 9/, /. Bacteriol /, #>!#, #"=, (#)2(#8/

    >/ Marahiel, M/, Danders, 9/, Hrause, M/ and Hlein4auf, 5/, -ur. /. Biochem., #>!>, >>, 8>2)/

    ("/ Piret, G/ M/ and Demain, A/ L/, Arch. Microbiol /, #>=), #$$, $=/

    (#/ Rosenberg, M/ and Rosenberg, :/, /. Bacteriol /, #>=#, #8=, #2!/

    ()/ Danders, 9/, Marahiel, M/ A/, Hrause, M/, Hosul, B/, Hato, T/, I0ymiya, B/ and Hlein4auf, B/,  Antimicrob. Aents Chemother /, #>=),

    )), !=2!>=/

    ($/ Pache, 9/, Chapman, D/ and 5illaby, R/, Biochim. Biophys. Acta, #>!), ), $=2$(8/

    (8/ 'holt0, H/ F/, 'oloene, B/ A/, Hotelni4oa, A/ /, 'ne0h4oa,

    L/ ?/ and Miroshi4oa, A/ I/, #-B!. 5ett /, #>!, =, #8#2#88/

    (/ Irano, / T/, G/ 9iley, Be. or4, #>!!, p/ $"!/

    ((/ Paulus, 5/, in Antibiotics *eds ?ottlieb, D/ and 'ha., P/ 9/+, 'pringer2erlag, &erlin, #>(!, ol/ ), pp/ )82)!"/

    (!/ &ala4rishnan, R/, Haur, '/, ?oel, A/ H/, Padmaathi, '/ and Gayaraman, H/, Arch. Biochem. Biophys/, #>=", )"", 828=/

    (=/ &ernheimer, A/ 9/ and Aigad, L/ '/, /. Gen. Microbiol /, #>!", (#, $(#2$(>/

    16

  • 8/18/2019 Bio Surfs

    17/24

    (>/ Nafriri, D/, Rosenberg, :/ and Mirelman, D/, Antimicrob. Aents Chemother /, #>=#, #>, $8>2$#/

    !"/ Rosenberg, M/ and Hellberg, Ad. Microb. -col., #>=, >, $$2$>$/

    !#/ Reisfeld, A/, Rosenberg, :/ and ?utnic4, D/, Appl. -niron. Microbiol /, #>!), )8, $($2$(=/

    !)/ ?utnic4, D/ L/ and Rosenberg, :/, Annu. Re. Microbiol /, #>!!, $#, $!>2$>(/

    !$/ Haplan, B/ and Rosenberg, :/, Appl. -niron. Microbiol /, #>=), 88, #$$2#$8#/

    !8/ Taylor, 9/ 5/ and Guni, :/, /. Bacteriol /, #>(#, =#, (==2(>$/

    !/ 'ar, '/ and Rosenberg, :/, Curr. Microbiol., #>=$, >, $">2$#8/

    !(/ Beufeld, R/ G/, Naic, G/ :/ and ?erson, D/ F/, Appl. -niron. Microbiol /, #>=", $>, ##2#!/

    !!/ Beufeld, R/ G/ and Naic, G/ :/, Biotechnol. Bioen /, #>=8, )(, ##"=2###$/

    !=/ Happeli and Fiechter, /. Bacteriol /, #>!!, #$#, >#!2>)#/

    !>/ Reddy, P/ ?/, 'ingh, 5/ D/, Roy, P/ H/ and &aruah, G/ B/, Biotechnol. Bioen /, #>=), )8, #)8#2#)(>/

    ="/ 5isatsu4a, H/, Ba4ahara, T/ and amada, H/, Aric. Biol / Chem/, #>!), $(, #$(#2#$(>/

    =#/ Reddy, P/ ?/, 'ingh, 5/ D/, Pathan4, M/ ?/, &hagat, '/ D/ and &aruah, B/, Biotechnol. Bioen., #>=$, ), $=!28"#/

    =)/ Cameotra, '/ '/ and 'ingh, 5/ D/, /. #erment. Bioen., #>>", (>, $8#2$88/

    =$/ Fattom, A/ and 'hilo, M/, #-M! Microbiol. -co/, #>=, #, #2=/

    =8/ Happeli, =", )), 8>2"$/

    =/ Fattom, A/ and 'hilo, M/, Appl. -niron. Micobiol /, #>=8, 8!, #$2#8=/

    =(/ Helleberg, '/ and 'tenstrom, T/ A/, /. Gen. Microbiol /, #>=", ##(, 8#!28)$/

    =!/ Bor4rans, &/, in Adances in Microbial -coloy *ed/ Ale-ander, M/+, Plenum Press, Be. or4, #>=", pp/ #/

    ==/ Rad.an, '/ '/ and 'or4hoh, B/ A/, Ad. Appl. Microbiol /, #>>$, $>, )>2>"/

    =>/ Duna4, N/, Cooper, D/ ?/ and Hosaric, B/, Pen.ell &oo4s, Tulsa, =$, pp/ ((2!)/

    >"/ Naic, G/ :/ and 'teffens, CRC Crit. Re. Biotechnol /, #>=8, #, =!2#"!/

    >#/ ?uerra3'antos, L/ 5/, Happeli, =(, )8, 88$288=/

    >)/ Desai, P/, Curr. !ci., #>==, !, ""2"#/

    >$/ 'inger, M/ :/, in Microbes and il Recoery *ed/ Naic, G/ :/ and Donaldson, :/ C/+, &ioresource Publications, :# Paso, Te-as, #>=,

     pp/ #>2$=/

    17

  • 8/18/2019 Bio Surfs

    18/24

    >8/ 5aferberger, D/, 5ommel, R/, Claus, R/ and Hleber, 5/ P/, Ad. Biochem. -n.6biotechnol /, #>=(, $$, $2>$/

    >/ Atlas, R/ M/, Microbiol. Re/, #>=#, 8, #="2)">/

    >(/ Margaritis, A/, Naic, G/ :/ and ?erson, D/ F/, Biotechnol. Bioen., #>!>, )#, ###2##()/

    >!/ Ratledge, C/, in Biotechnoloy *eds Rehm, 5/ G/ and Reed, ?/+, erlag Chemie, 9einheim, #>=(, pp/ #=2)#$/

    >=/ 'yldat4, C/, Matuloic, 7/ and 9agner, F/, Biotechforum, #>=8, #, $2(/

    >>/ 5orne, D/ and Tomas0, A/, /. Bacteriol /, #>!>, #$!, ##="2##=8/

    #""/ Roy, P/ H/, 'ingh, 5/ D/, &hagat, '/ D/ and &aruah, G/ B/, Biotechnol. Bioen /, #>!>, )#, >2>!8/

    #"#/ 9agner, F/, Him, G3'/, Li, N3/, Mar.ede, ?/, Matuloic, 7/, Ristau, :/ and 'yldat4, C/, Abstract, in $rd :uropean Congress of 

    &iotechnology, erlag Chemie, 9einheim, #>=8, ol/ #, pp/ $2=/

    #")/ Ristau, :/ and 9agner, F/, Discussion Paper, 'ection 8/$, I7PAC Congress, Holin, FR?, #>=$/

    #"$/ Fraut0, &/, 9agner, F/, Biotech. 5ett , #>=(, =, !!2!("/

    #"8/ Duna4, N/, Cooper, D/ ?/ and Hosaric, B/, Biotechnol. Bioen., #>=), )8, #(2#!/

    #"/ ?utnic4, D/ L/ and Minas, 9/, Biochem. !oc. Trans/, #>=!, #, ))'2$'/

    #"(/ Cooper, D/ ?/, Biosurfactant , Microbiol. !ci/, #>=(, $, #82#8>/

    #"!/ Hosaric, B/, Cairns, 9/ L/ and ?ray Beil, C/ C/, !urfactant !cience !eries, Marcel De44er Inc, Be. or4, #>=!, ol/ ), pp/ #2)#/

    #"=/ Lei, G/ D/, Regnier, A/ P/, ance, I/ and 'mith, A/ D/, 3nt. Bioresources / /, #>=, #, $$(/

    #">/ Post, F/ G/ and Al35aran, F/ A/, !ystem. Appl. Microbiol /, #>==, ##, >!2#"#/

    ##"/ Clar4, G/ &/, Munnec4e, D/ M/ and Genneman, ?/ :/, *e. 3nd. Microbiol., #>=#, )), (>2!"#/

    ###/ &ro.n, M/ G/, Moses, /, Robinson, G/ P/ and 'pringham, D/ ?/, CRC Crit. Re. Biotechnol., #>=, $, #>2#>!/

    ##)/ Daffe, M/, Lacae, C/, Laneelle, M/, ?illois, M/ and Laneele, ?/, -ur. /. Biochem. #>==, #!), !>2=8/

    ##$/ Haneda, H/, 'umi, /, Hurano, F/, Hato, / and ano, I/, 3nfect. 3mmun., #>=(, 8, =(>2=!#/

    ##8/ 5ol0, &/, Gesunde Pflan7 /, #>=, $!, 8!#28!/

    ##/ 'iedel, 5/, 'teglich, R/, oight, &/, Mueller, G/ and Lehmann, L/, Biol. Rundsch/, #>>", )=, =!2>#/

    ##(/ oigt, &/, Mueller, 5/ and 'chuster, ?/, Acta Biotechnol., #>=, , $#$2$#!/

    ##!/ &ergmann, 5/, oight, &/, 'eidel, 5/ and Meisgeier, ?/, Acta Biotechnol., #>=!, !, )"#2)"(/

    ##=/ Atlas, R/ M/, ceanus, #>>$, $(, !#2=#/

    18

  • 8/18/2019 Bio Surfs

    19/24

    ##>/ &artha, R/, Microbial -coloy, #>=(, #), #2#(#/

    #)"/ ?ibson, D/ T/, Microbial *eradation of ranic Compounds, Marcel De44er Inc/, Be. or4, #>=8/

    #)#/ Leahy, G/ ?/ and Col.ell, R/ R/, Microbiol. Re/, #>>", 8, $"2$#/

    #))/ Morgan, P/ and 9at4inson, R/ G/, CRC Crit. Re. Biotechnol /, #>=>, =, $"2$$$/

    #)$/ Lindley, B/ D/ and 5eydemann, M/ T/, Appl. Microbiol. Biotechnol., #>=(, )$, $=82$==/

    #)8/ Foght, G/ M/, ?utnic4, D/ L/ and 9estla4e, D/ 9/ '/, Appl. -niron. Microbiol /, #>=>, , $(28)

    #)/ =>, $#, =)2=(/

    #)(/ >", $), 8=28=>/

    #)!/ Hroos, 5/, Domestic and International, Atlanta, #>=>/

    #)=/ :llis, 9/ D/, Payne, G/ R/ and Monabb, ?/ D/, Treatment of Contaminant 'oils .ith A6ueous 'urfactants, 7nited 'tates :nironmental

    Protection Agency, =/

    #)>/ :hrlich, ?/ ?/, 'chroeder, R/ A/ and Martin, P/, Microbial Populations in a Get3Fuel Contaminated A6uifer at Tustin, California, 7'

    ?eological 'urey Report, #>=, pp/ =/

    #$"/ ?rula, :/ A/, Russell, 5/ 5/, &ryant, D/, Henaga, M/ and 5art, M/, in Proceedins of the &89) 3nternatinal Conference on Microbial 

     -nhancement of il Recoery *eds Donaldson, :/ C/ and Clar4, G/ &/+, 7' Department of :nergy, &artlesille, =$, p/ 8$/

    #$#/ La Riiere, G/ 9/ M/, /. Microbiol. !erol /, #>, #, #2=/

    #$)/ &erg, ?/, 'eech, A/ ?/, Lee, 5/ and Treors, G/ T/, /. -niron. !ci. 0ealth, #>>", A), !$2!(8/

    #$$/ &aneree, '/, Duttagupta, '/ and Cha4rabarty, A/ M/, Arch. Microbiol., #>=$, #$, ##"2##8/

    #$8/ Col.ell, R/ R/ and 9al4er, G/ D/, CRC Crit. Re. Microbiol /, #>!!, , 8)$288/

    #$/ 5arey, '/, :lashili, I/, aldes, G/ G/, Hamely, D/ and Cha4rabarty, A/ M/, Biotechnoloy, #>>", =, ))=2)$"/

    #$(/ Cha4rabarty, A/ M/, Trends Biotechnol., #>=, $, $)2$=/

    #$!/ Rosenberg, :/, :nglander, :/, 5oro.it0, A/ and ?utnic4, D/, in 3mpact of the 2se of Microoranisms on the A4uatic -nironment  *eds

    &our6uin, A/ 9/ et al /+, 7'A, :PA Report (("2$2!2""#, #>!, p/ #!/

    #$=/ Finnerty, 9/ R/ and 'inger, M/ M/, *e. 3nd. Microbiol., #>=8, ), $##2$8"/

    #$>/ Naic, G/ :/, 'upplisson, &/ and oles4y, &/, -niron. !ci. Technol., #>!8, =, ((82((=/

    #8"/ &asta, B/, Chem. -n.,#>=$, >", )"2))/

    #8#/ ?utnic4, D/ L/, 'habtai , /, in  Biosurfactants and Biotechnoloy *eds Hosaric, B/, Cairns, 9/ L/ and ?ray Beil, C/ C/+, Marcel

    De44er, Be. or4, #>=!, ol/ ), pp/ )##2)8(/

    19

  • 8/18/2019 Bio Surfs

    20/24

    #8)/ Patel, M/ B/ and ?opinathan, H/ P/, Appl. -niron. Microbiol /, #>=(, ), #))82#))(/

    #8$/ Anu Appaiah, H/ A/ and Haranth, B/ ?/ H/, Biotechnol. 5ett., #>>#, #$, $!#2$!8/

    #88/ Ramesha, B/, Athiya Afshana, Parathi, Anu Appaiah, H/ A/ and Haranth, B/ ?/ H/, Proceedings of the 'ymposium on Releance of 

    &iotechnology in Industry, 82 March, Cochin 7niersity of 'cience and Technology, Cochin, #>>, pp/ )!2)=/

    #8/ Parathi, A/, Marium Mathe., Anu Appaiah, H/ A/ and Haranth,

     B/ ?/ H/, Proceedings of the 'ymposium on Releance of &iotechnology in Industry, 82 March, Cochin 7niersity of 'cience and

    Technology, Cochin, #>>, p/ )!/

    #8(/ eenanadig, B/ H/, Anu Appaiah, H/ A/ and Haranth, B/ ?/ H/, Proceedings of the 'ymposium on Releance of &iotechnology in

    Industry, 82 March, Cochin 7niersity of 'cience and Technology, Cochin, #>>, p/ )=/

    #8!/ eenanadig, B/ H/ and Haranth, B/ ?/ H/, Proceedings of Annual Conference of Association of Microbiology, IIT Chennai, 82(

    December, Chennai, #>>(, p/#"!/

    #8=/ eenanadig, B/ H/ and Haranth, B/ ?/ H/, Proceedings of Annual Meetings of 'ociety of &iochemist *India+, Andhra 7niersity,

    ))2)8 December, isha4apatnam, #>>!, p/ #!!/

    #8>/ Biranan A.asti and Ash.ani Humar, Proceedings of Annual Meetings of 'ociety of &iochemist *India+, Andhra 7niersity,

    ))2)8 December, isha4apatnam, #>>!, p/ 8$/

    #"/ 'asthrulu, ?/ &/ R/, 'rinias/ P/, Raagopal, '/ / and Reddi,

    T/ ?/, Proceedings of Annual Meetings of 'ociety of &iochemist *India+, Andhra 7niersity, ))2)8 December, isha4apatnam, #>>!, p/ 8=/

    ##/ 'rinias, ?/ &/ R/, 'aathrulu, Raagopal, '/ / and Reddi, T/ ?/,

    Proceedings of Annual Meetings of 'ociety of &iochemist *India+, Andhra 7niersity, ))2)8 December, isha4apatnam, #>>!, p/ 8>/

    #)/ Hamanalli, C/ and Binne4ar, 5/ N/, Proceedings of Annual Meetings of 'ociety of &iochemist *India+, Andhra 7niersity, ))2)8

    December, isha4apatnam, #>>!, p/ 8$/

    #$/ Hachhol0, T/ and 'chlingman, M/, in Biosurfactants and Biotechnoloy, Marcel De44er Inc/, Be. or4, #>=!, #=$2)#"/

    #8/ Patel, M/ B/, Ph D thesis, Indian Institute of 'cience, &angalore, #>==/

    #/ an Dy4e, M/ I/, Lee, 5/ and Treors, G/ T/, Biotech. Ad., #>>#, >, )8#2))/

    #(/ Anu Appaiah, H/ A/, Ph D thesis, 7niersity of Mysore, Mysore, #>>)/

    #!/ Ramesha, B/, Ph D thesis, 7niersity of Mysore, Mysore, #>>(/

    #=/ Doris, M/ '/, Ramesha, B/ and Haranth, B/ ?/ H/, Proceedings of the Bational 'eminar on Adances in 'eed 'cience and Technology,

    7niersity of Mysore, Mysore, India, #>>", p/ $(=/

    #>/ Anu Appaiah and Haranth, B/ ?/ H/, 5ett. Appl. Microbiol., #>>, )#, (2(!/

    #("/ ?eorgiou, Lin, '/ C/ and 'harma, M/ M/, Biotechnoloy, #>>), #", ("2(/

    #(#/ Prince, R/ C/, Crit. Re. Microbiol /, #>>$, #>, )#!2)8)/

    #()/ Anis.orth, Chem. -n Ne1s, #>>", (=, )28=/

    20

  • 8/18/2019 Bio Surfs

    21/24

    #($/ 5irayama, T/ and Hato, I/, #-B! 5ett., #>>", #$>, =#2=/

    #(8/ Miragliotta, ?/, &arone, ?/, Monno, R/ A/, Fumarola, D/ and 'mith, P/ F/, /. Clin. Microbiol /, #>=!, ), #)>2#)>!/

    #(/ Gardine, I/, 'canlan, McBeil, M/ and &ennan, P/ G/, Anal. Chem/, #>=>, (#, 8#(28))/

    #((/ Cardoso, C/ L/ and Fitho, P/ P/ ?/, Re. Microbiol., #>!>, #", >2(/

    ACHB

  • 8/18/2019 Bio Surfs

    22/24

    Cellulose is the most common organic compound and biopolymer on :arth/ About $$ percent of all plant matter is

    cellulose/ The cellulose content of cotton is >" percent, .hile .oodSs is " percent/ O!

    ontents

    # &iopolymers s 'ynthetic polymers

    • ) Conentions and nomenclature 

    o )/# Polypeptides

    o )/) Bucleic acids

    o )/$ 'ugars

    • $ 'tructural characteri0ation

    8 &iopolymers as materials 

    o 8/# :nironmental impacts

    • 'ee also

    • ( References

    • ! :-ternal lin4s

    Biopolymers "s #ynthetic polymers

    A maor defining difference bet.een biopolmers and other polymers can be found in their structures/ All polymersare made of repetitie units called monomers/ &iopolymers often hae a .ell3defined structure, though this is not a

    defining characteristic *e-ample1 lignocellulose+1 The e-act chemical composition and the se6uence in .hich these

    units are arranged is called the primary structure, in the case of proteins/ Many biopolymers spontaneously fold into

    characteristic compact shapes *see also  protein folding as .ell as secondary structure and tertiary structure+, .hich

    determine their biological functions and depend in a complicated .ay on their primary structures/ 'tructural biology

    is the study of the structural properties of the biopolymers/ In contrast most snthetic polmers hae much simpler 

    and more random *or stochastic+ structures/ This fact leads to a molecular mass distribution that is missing in

     biopolymers/ In fact, as their synthesis is controlled by a template directed process in most in io systems all

     biopolymers of a type *say one specific protein+ are all ali4e1 they all contain the similar se6uences and numbers of 

    monomers and thus all hae the same mass/ This phenomenon is called monodispersity  in contrast to the

     polydispersity encountered in synthetic polymers/ As a result biopolymers hae a polydispersity inde- of #/ O=

    on"entions an$ nomenclature

    %olypepti$es

    The conention for a polypeptide is to list its constituent amino acid residues as they occur from the amino terminus

    to the carbo-ylic acid terminus/ The amino acid residues are al.ays oined by peptide bonds/ Protein, though used

    collo6uially to refer to any polypeptide, refers to larger or fully functional forms and can consist of seeral

    22

    https://en.wikipedia.org/wiki/Cellulosehttps://en.wikipedia.org/wiki/Biopolymer#cite_note-7https://en.wikipedia.org/wiki/Biopolymer#Biopolymers_vs_Synthetic_polymershttps://en.wikipedia.org/wiki/Biopolymer#Conventions_and_nomenclaturehttps://en.wikipedia.org/wiki/Biopolymer#Conventions_and_nomenclaturehttps://en.wikipedia.org/wiki/Biopolymer#Polypeptideshttps://en.wikipedia.org/wiki/Biopolymer#Nucleic_acidshttps://en.wikipedia.org/wiki/Biopolymer#Sugarshttps://en.wikipedia.org/wiki/Biopolymer#Structural_characterizationhttps://en.wikipedia.org/wiki/Biopolymer#Biopolymers_as_materialshttps://en.wikipedia.org/wiki/Biopolymer#Biopolymers_as_materialshttps://en.wikipedia.org/wiki/Biopolymer#Environmental_impactshttps://en.wikipedia.org/wiki/Biopolymer#See_alsohttps://en.wikipedia.org/wiki/Biopolymer#Referenceshttps://en.wikipedia.org/wiki/Biopolymer#External_linkshttps://en.wikipedia.org/wiki/Monomerhttps://en.wikipedia.org/wiki/Monomerhttps://en.wikipedia.org/wiki/Lignocellulosehttps://en.wikipedia.org/wiki/Lignocellulosehttps://en.wikipedia.org/wiki/Primary_structurehttps://en.wikipedia.org/wiki/Primary_structurehttps://en.wikipedia.org/wiki/Protein_foldinghttps://en.wikipedia.org/wiki/Secondary_structurehttps://en.wikipedia.org/wiki/Tertiary_structurehttps://en.wikipedia.org/wiki/Tertiary_structurehttps://en.wikipedia.org/wiki/Structural_biologyhttps://en.wikipedia.org/wiki/Monodispersityhttps://en.wikipedia.org/wiki/Monodispersityhttps://en.wikipedia.org/wiki/Polydispersityhttps://en.wikipedia.org/wiki/Polydispersity_indexhttps://en.wikipedia.org/wiki/Biopolymer#cite_note-8https://en.wikipedia.org/wiki/Polypeptidehttps://en.wikipedia.org/wiki/Peptide_bondhttps://en.wikipedia.org/wiki/Peptide_bondhttps://en.wikipedia.org/wiki/Proteinhttps://en.wikipedia.org/wiki/Proteinhttps://en.wikipedia.org/wiki/Cellulosehttps://en.wikipedia.org/wiki/Biopolymer#cite_note-7https://en.wikipedia.org/wiki/Biopolymer#Biopolymers_vs_Synthetic_polymershttps://en.wikipedia.org/wiki/Biopolymer#Conventions_and_nomenclaturehttps://en.wikipedia.org/wiki/Biopolymer#Polypeptideshttps://en.wikipedia.org/wiki/Biopolymer#Nucleic_acidshttps://en.wikipedia.org/wiki/Biopolymer#Sugarshttps://en.wikipedia.org/wiki/Biopolymer#Structural_characterizationhttps://en.wikipedia.org/wiki/Biopolymer#Biopolymers_as_materialshttps://en.wikipedia.org/wiki/Biopolymer#Environmental_impactshttps://en.wikipedia.org/wiki/Biopolymer#See_alsohttps://en.wikipedia.org/wiki/Biopolymer#Referenceshttps://en.wikipedia.org/wiki/Biopolymer#External_linkshttps://en.wikipedia.org/wiki/Monomerhttps://en.wikipedia.org/wiki/Lignocellulosehttps://en.wikipedia.org/wiki/Primary_structurehttps://en.wikipedia.org/wiki/Protein_foldinghttps://en.wikipedia.org/wiki/Secondary_structurehttps://en.wikipedia.org/wiki/Tertiary_structurehttps://en.wikipedia.org/wiki/Structural_biologyhttps://en.wikipedia.org/wiki/Monodispersityhttps://en.wikipedia.org/wiki/Polydispersityhttps://en.wikipedia.org/wiki/Polydispersity_indexhttps://en.wikipedia.org/wiki/Biopolymer#cite_note-8https://en.wikipedia.org/wiki/Polypeptidehttps://en.wikipedia.org/wiki/Peptide_bondhttps://en.wikipedia.org/wiki/Protein

  • 8/18/2019 Bio Surfs

    23/24

     polypeptide chains as .ell as single chains/ Proteins can also be modified to include non3peptide components, such

    as saccharide chains and lipids/

    &ucleic aci$s

    The conention for a nucleic acid se6uence is to list the nucleotides as they occur from the S end to the $S end of the

     polymer chain, .here S and $S refer to the numbering of carbons around the ribose ring .hich participate in forming

    the phosphate diester lin4ages of the chain/ 'uch a se6uence is called the primary structure of the biopolymer/

    #u'ars

    'ugar3based biopolymers are often difficult .ith regards to conention/ 'ugar polymers can be linear or branched

    and are typically oined .ith glycosidic bonds/ The e-act placement of the lin4age can ary, and the orientation of 

    the lin4ing functional groups is also important, resulting in U3 and V3glycosidic bonds .ith numbering definitie of 

    the lin4ing carbonsS location in the ring/ In addition, many saccharide units can undergo arious chemical

    modification, such as amination, and can een form parts of other molecules, such as glycoproteins/

    #tructural characteri(ation

    There are a number of  biophysical  techni6ues for determining se6uence information/ Protein se6uence  can be

    determined by :dman degradation, in .hich the B3terminal residues are hydroly0ed from the chain one at a time,

    deriati0ed, and then identified/ Mass spectrometer   techni6ues can also be used/ Bucleic acid se6uence can be

    determined using gel  electrophoresis  and capillary electrophoresis/ Lastly, mechanical properties of these

     biopolymers can often be measured using optical t.ee0ers  or atomic force microscopy/  Dual polarisation

    interferometry  can be used to measure the conformational changes or self3assembly of these materials .hen

    stimulated by p5, temperature, ionic strength or other binding partners/

    Biopolymers as materials

    'ome biopolymers3 such as *PLA+, naturally occurring 0ein, and  poly3$3hydro-ybutyrate can be used as plastics,replacing the need for polystyrene or polyethylene based plastics/

    'ome plastics are no. referred to as being SdegradableS, So-y3degradableS or S73degradableS/ This means that they

     brea4 do.n .hen e-posed to light or air, but these plastics are still primarily *as much as >= per cent+ oil3based and

    are not currently certified as SbiodegradableS under the :uropean 7nion directie on Pac4aging and Pac4aging 9aste

    *>8():C+/ &iopolymers .ill brea4 do.n, and some are suitable for domestic composting/O>

    &iopolymers *also called rene.able polymers+ are produced from  biomass  for use in the pac4aging industry/

    &iomass comes from crops such as sugar beet, potatoes or .heat1 .hen used to produce biopolymers, these are

    classified as non food crops/ These can be conerted in the follo.ing path.ays1

    'ugar beet W ?lyconic acid W Polyglyconic acid

    'tarch W *fermentation+ W Lactic acid W Polylactic acid *PLA+

    &iomass W *fermentation+ W &ioethanol W :thene W Polyethylene

    Many types of pac4aging can be made from biopolymers1 food trays, blo.n starch pellets for shipping fragile goods,

    thin films for .rapping/

    23

    https://en.wikipedia.org/wiki/Saccharidehttps://en.wikipedia.org/wiki/Lipidhttps://en.wikipedia.org/wiki/Lipidhttps://en.wikipedia.org/wiki/Polymer_chainhttps://en.wikipedia.org/wiki/Polymer_chainhttps://en.wikipedia.org/wiki/Glycosidic_bondhttps://en.wikipedia.org/wiki/Glycosidic_bondhttps://en.wikipedia.org/wiki/Aminationhttps://en.wikipedia.org/wiki/Glycoproteinhttps://en.wikipedia.org/wiki/Glycoproteinhttps://en.wikipedia.org/wiki/Biophysicshttps://en.wikipedia.org/wiki/Biophysicshttps://en.wikipedia.org/wiki/Peptide_sequencehttps://en.wikipedia.org/wiki/Peptide_sequencehttps://en.wikipedia.org/wiki/Edman_degradationhttps://en.wikipedia.org/wiki/Edman_degradationhttps://en.wikipedia.org/wiki/Spectrometerhttps://en.wikipedia.org/wiki/Electrophoresishttps://en.wikipedia.org/wiki/Electrophoresishttps://en.wikipedia.org/wiki/Optical_tweezershttps://en.wikipedia.org/wiki/Atomic_force_microscopyhttps://en.wikipedia.org/wiki/Atomic_force_microscopyhttps://en.wikipedia.org/wiki/Dual_polarisation_interferometryhttps://en.wikipedia.org/wiki/Dual_polarisation_interferometryhttps://en.wikipedia.org/wiki/Dual_polarisation_interferometryhttps://en.wikipedia.org/wiki/Zeinhttps://en.wikipedia.org/wiki/Poly-3-hydroxybutyratehttps://en.wikipedia.org/wiki/Poly-3-hydroxybutyratehttps://en.wikipedia.org/wiki/Polystyrenehttps://en.wikipedia.org/wiki/Polyethylenehttps://en.wikipedia.org/wiki/Oilhttps://en.wikipedia.org/wiki/European_Union_directivehttps://en.wikipedia.org/wiki/Compostinghttps://en.wikipedia.org/wiki/Compostinghttps://en.wikipedia.org/wiki/Biopolymer#cite_note-nnfcc-9https://en.wikipedia.org/wiki/Biomasshttps://en.wikipedia.org/wiki/Non_food_cropshttps://en.wikipedia.org/wiki/Lactic_acidhttps://en.wikipedia.org/wiki/Lactic_acidhttps://en.wikipedia.org/wiki/Polylactic_acidhttps://en.wikipedia.org/wiki/Polylactic_acidhttps://en.wikipedia.org/wiki/Polylactic_acidhttps://en.wikipedia.org/wiki/Biomasshttps://en.wikipedia.org/wiki/Biomasshttps://en.wikipedia.org/wiki/Bioethanolhttps://en.wikipedia.org/wiki/Bioethanolhttps://en.wikipedia.org/wiki/Bioethanolhttps://en.wikipedia.org/wiki/Ethenehttps://en.wikipedia.org/wiki/Polyethylenehttps://en.wikipedia.org/wiki/Polyethylenehttps://en.wikipedia.org/wiki/Saccharidehttps://en.wikipedia.org/wiki/Lipidhttps://en.wikipedia.org/wiki/Polymer_chainhttps://en.wikipedia.org/wiki/Glycosidic_bondhttps://en.wikipedia.org/wiki/Aminationhttps://en.wikipedia.org/wiki/Glycoproteinhttps://en.wikipedia.org/wiki/Biophysicshttps://en.wikipedia.org/wiki/Peptide_sequencehttps://en.wikipedia.org/wiki/Edman_degradationhttps://en.wikipedia.org/wiki/Spectrometerhttps://en.wikipedia.org/wiki/Electrophoresishttps://en.wikipedia.org/wiki/Optical_tweezershttps://en.wikipedia.org/wiki/Atomic_force_microscopyhttps://en.wikipedia.org/wiki/Dual_polarisation_interferometryhttps://en.wikipedia.org/wiki/Dual_polarisation_interferometryhttps://en.wikipedia.org/wiki/Zeinhttps://en.wikipedia.org/wiki/Poly-3-hydroxybutyratehttps://en.wikipedia.org/wiki/Polystyrenehttps://en.wikipedia.org/wiki/Polyethylenehttps://en.wikipedia.org/wiki/Oilhttps://en.wikipedia.org/wiki/European_Union_directivehttps://en.wikipedia.org/wiki/Compostinghttps://en.wikipedia.org/wiki/Biopolymer#cite_note-nnfcc-9https://en.wikipedia.org/wiki/Biomasshttps://en.wikipedia.org/wiki/Non_food_cropshttps://en.wikipedia.org/wiki/Lactic_acidhttps://en.wikipedia.org/wiki/Polylactic_acidhttps://en.wikipedia.org/wiki/Biomasshttps://en.wikipedia.org/wiki/Bioethanolhttps://en.wikipedia.org/wiki/Ethenehttps://en.wikipedia.org/wiki/Polyethylene

  • 8/18/2019 Bio Surfs

    24/24

    )n"ironmental impacts

    &iopolymers can be sustainable, carbon neutral and are al.ays rene.able, because they are made from plant

    materials .hich can be gro.n indefinitely/ These plant materials come from agricultural non food crops/ Therefore,

    the use of biopolymers .ould create a sustainable  industry/ In contrast, the feedstoc4s for polymers deried from

     petrochemicals .ill eentually deplete/ In addition, biopolymers hae the potential to cut carbon emissions  and

    reduce C"E .ithin si- months/ &iopolymers

    that do this can be mar4ed .ith a ScompostableS symbol, under :uropean 'tandard :B #$8$) *)"""+/ Pac4aging

    mar4ed .ith this symbol can be put into industrial composting processes and .ill brea4 do.n .ithin si- months or 

    less/ An e-ample of a compostable polymer is PLA film under )"Xm thic41 films .hich are thic4er than that do not

    6ualify as compostable, een though they are biodegradable/ O#" In :urope there is a home composting standard and

    associated logo that enables consumers to identify and dispose of pac4aging in their compost heap/ O>

    #/

      Mohanty, A/H/, et al/, Natural ibers, (iopolmers, and (iocomposites *CRC Press, )""+

    Chandra, R/, and Rustgi, R/, &iodegradable Polymers, Progress in Polymer 'cience, ol/ )$, p/ #)!$ *#>>=+

    Meyers, M/A/, et al/, &iological Materials1 'tructure Y Mechanical Properties, Progress in Materials 'cience, ol/ $, p/

    # *)""=+

    Humar, A/, et al/, 'mart Polymers1 Physical Forms Y &ioengineering Applications, Progress in Polymer 'cience, ol/

    $), p/#)" *)""!+

    Alan D/ MacBaught, Andre. R/ 9il4inson, ed/ *#>>!+/ Compendium of Chemical Terminoloy: 32PAC 

     Recommendations $the ;Gold Boo


Recommended