+ All Categories
Home > Documents > Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark :...

Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark :...

Date post: 02-Jan-2016
Category:
Upload: jocelin-parsons
View: 225 times
Download: 5 times
Share this document with a friend
Popular Tags:
76
Biochemical Networks erature: tor&Schimmel: Biophysical Chemistry m Läuger Stark : Physikalische Chemie und Biophysik t: Computational Analysis of Biochemical Systems
Transcript
Page 1: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Biochemical Networks

Literature:Cantor&Schimmel: Biophysical ChemistryAdam Läuger Stark : Physikalische Chemie und BiophysikVoit: Computational Analysis of Biochemical Systems

Page 2: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Modelling Biochemical Networks

Literature:

Voit: Computational Analysis of Biochemical SystemsAdam Läuger Stark : Physikalische Chemie und BiophysikBreckow : Biophysik

Cooperative EnzymesInhibition, RegulationKinetic RatesSynergistic SystemsParameter Estimations

Page 3: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.
Page 4: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Modelling of Biochemical networks

Page 5: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.
Page 6: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Open Systems

Source

Drain

Eq.(1)

Page 7: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Closed Systems

There are no Energy and mass fluxes in a closed system. The system relaxes to a steady state SY

Eq.(1) reduces to:

Be

and

hence

and

R: Boundary conditon

The steady state depends on the starting conditions! There is no possibility of regulation in a closed System!

Page 8: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Disturbing a closed system

(e.g. adding some kind of agents)

closed system

state variable

stat

e va

riabl

e

Page 9: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Kinetics

For values different to equilibrium:

and

and mass conservation

hence

with the relaxation rate

Page 10: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Kinetics of first order

starting rate:

steady state

Page 11: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Vocabluary: Order of reaction:

Reaction of 1. Order

Reaction of 2. Order

Page 12: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

two coupled reactions

Relaxation in two phases!

Page 13: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

General, monomolecular Reaction scheme of open systems

Reaction steps with intermediates

Solution

constant factors dumping constants

Page 14: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Autokatalysis, Voltera-Lotka Systems

The differential equation without feedback is :

The autocatalytic step introduces a nonlinearity

und

Page 15: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Extra from the lab: Crosskatlytic systems

show the AHA-Simulator

Page 16: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Ergebnis?

Page 17: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Experimental Methods for Kinetics measurement:

Time dependent measurement of concentration (Pressure, Absorbtion, electric resistance....)

Mixure experimentsContious flow, stop flow

Relaxation methods, (e.g. tempjumps)

Page 18: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Stopped flow method

Principle of stop-flow methods

Page 19: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Relaxation time spectroscopy

Page 20: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

PNAS, November (2009)

Ingmar Schön, Hubert Krammer & Dieter Braun

Hybridisation Kinetics is different inside cells

Page 21: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

experimental setup

Page 22: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

quantum efficiency

illumination

periodic illuminationphase-locked relative to perturbation

0° 90° 180° 270°

collect fluorescence by slow CCD(low-pass filtering)

lock-in detection scheme

fit with transfer functionfor a first-order reaction

Page 23: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

approach

goal: measure reaction kinetics in vivo

principle: perturbe equilibrium and analyze relaxationdetection: fluorescence resonance energy transfer (FRET)

Page 24: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

DNA probe

RhG |5’-C AGG TTA CTA TCG TAT T C-3’

ROX |5’-C AAT ACG ATA GTA ACC T C-3’

C = L-enantiomeric cytosin

Page 25: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

DNA probe

Page 26: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

hybridization kinetics in a single living cell

Page 27: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

different kinetics in subcellular compartments

Page 28: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

dependence on concentration

calibrationbrightness of confocal image vs. DNA concentration

Page 29: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

dependence on concentration

calibrationbrightness of confocal image vs. DNA concentration

Page 30: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

comparison in vitro vs. in vivo

… faster Hybridization in vivo!

Page 31: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

However 12bp probe…

… is slower: Binding with Proteins !

Page 32: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Molecular Crowding is no significant for short DNA

Trivial molecular crowding:excluded volume enhances local concentration, however both for 12 & 16 mer => Not found

Length dependent, specific interactions:- Catalytic speed up of Hybridization- Slowing by specific binding => Less free concentration and slower kinetics

Page 33: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

The principle of detailed balance

In a more complex system (e.g. a cyclic system) once can think of reactions with dx/dt=0, which are thermodynamically allowed, but enable a permanent flux of material.

The equilibrium condition is valid for all subreactions of the System : „Equilibrium is way-independent“Prinziple of detailed balance(Prinziple of microscopic reversibility)

Page 34: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Michaelis-Menten Kinetics

Enzyme-catalysed Reactions have a Enzyme-Substrate complex as active intermediate

Page 35: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Katalyzes the Hydrolysis of

Ph-optimun is alcalic

Page 36: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Structural Properties of Alkaline Phospatase: -2 Subunits with 1 catalytic subunit each-Ser-102 binds transient covalent to the Phosphate during activity-2 Zn2+ Ions in the catalytic subunit are essential-1 Mg2+ Ion binds allosteric and increases catalytic activity-Glycoproteine-Membrane Proteinelocated on the outside of the cell membrane through covalently bound lipid

Page 37: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Model reaction for approvement

Page 38: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

The Kinetics of chemical reactions

and the role of Activation energy

Enzymes lower the energy

barrier

Page 39: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Lower activation energies lead to higher reaction rates, since the fraction of molecules with enough energy to pass the barrier is

increased

Energy distribution of

molecules

The Kinetics of chemical reactions

and their velocity

Page 40: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

The Kinetics of enzymatic reactions

1)The more substrate, the faster Kinetics, but...2) ..the higher occupated fraction, the more difficulties for new substrate molecules to find a new enzyme3) Maximal reaction speed is reached, as soon as all

Enzymes available are occupied by substrate

Page 41: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Solution of the Michaelis-Menton rate equations

To solve the equations, three assumptions are made: Creation and degeneration of complex [ES] are in a steady state, for the condition [E]<<[S]

We observe the early phase, where [P]<<[S]There is lot more substrate as is used[S]=[S

o]= constant

Page 42: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

How educated is the assumtion of a stationary intermediate state?

Numeric simulation with 5 intermediate states

Page 43: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Enzyme Kinetics in quasi-stationary regime

The concentration of enzymes [E] is limited by the altogether amount of

Enzyme [E0], hence [E]=[E

0]-[E

S].That leads to:

Together with

it follows the solution

Michalelis-Menton-constantMichalelis-Menton-Rate Maximal rate

Page 44: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Michalelis-Menton-constantMichalelis-Menton-Rate Maximal rate

Enzyme Kinetics in quasi-stationary regieme

Page 45: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Experimental measurement of maximal reaction speed

Plotting the reaction speed against the substrate concentration reveals a saturation curve that converges against an upper Limit

The half-maximum-speed is reached, if half of all Enzymes are occupied with substrate.

Page 46: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Reaction speed, affinity and Michaelis-Menden-Constant

The better a substate binds to an enzyme, the lower is the necessary concentration of substrate to bind half of all enzyme molecules

Page 47: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Reaction speed, affinity and Michaelis-Menden-Constant

The better a substate binds to an enzyme, the lower is the necessary concentration of substrate to bind half of all enzyme molecules

Kd is the substrate-concentration

at which the hal-maximum speed is reached.

Kd is therefore a concentration

with the dimesions of mol/L Kd

Page 48: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

The Lineweaver-Burk Diagramjust another way of plotting...

In a MichaeDiagram it is kind of hard to measure V

max

precisely.Therefore it ilis-Menten Diagram it s also not possible to measure V

max/2 and the K

d-

value precisely

Page 49: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

The Lineweaver-Burk Diagramjust another way of plotting...

In a Lineweaver-Burk diagram the reciprocal 1/V and 1/S is plotted instead of V and S. Then the intersection with the x-axis has the value of -1/K

d

Page 50: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.
Page 51: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.
Page 52: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.
Page 53: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.
Page 54: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.
Page 55: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.
Page 56: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.
Page 57: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.
Page 58: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Biological Regulation via Enzyme inhibition

Page 59: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Effects of noncompetitive inhibition

Page 60: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Non-competitive inhibition

Page 61: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Competitive Inhibition

Inhibitor competes withsubstrate for binding toenzymeExample 1: most drugsExample 2: Product inhibition

Problem :Die kompetitive Hemmung hat unzureichende Regeleigenschaften

Page 62: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Multiside binding and the effect of Cooperativity

„Switch-off function“

Sollwert

rate is dependent on inhibitory substance

An enzyme with more then one binding site for an inhibitor allowas a sharp regulation

Page 63: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Cooperativity of allosteric Enzymes

Michaelis-Menten-Kinetiks(n=1)

Hill equation

The Hill-coefficient is extracted from experimental data by a logarithmic plot of v(s) (Hill Plot)

Page 64: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Das Operon-Regelsystem nach Monod:Beispiel allosterischer Kontrolle

G: Genprodukt (z.B. Enzym, das Bildung von P aus Substrat St katalysiert)

Für die Komplexbildung von Produkt P mit Konzentration yP und dem regulatorische Gen R wird eine kooperative Rückkopplung angesetzt

Page 65: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Autokatalysis, Voltera-Lotka Systems

The differential equation without feedback is :

The autocatalytic step introduces a nonlinearity

und

Page 66: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Predator-Prey-System

Page 67: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

In nonlinear systems more then one steady state can appear. Diskriminative Switch

Formation of inactive complexes between two partners

Page 68: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Relationships (Shiraishi-Savageau, 1992)

Homogeneous3D reactions-> pos. integers

Kinetic orders= weighted averages ofmore elementary ko´s (Alves-Savageau, 2000)

Page 69: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Modelling of biochemical networks

Quelle: Stelling, Curr.Op.MicroBio 2004

Page 70: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Metabolische Netzwerke

Metabolische Netzwerke sind durch eine Netzwerktopologie (pathway) und biochemische Ratengleichungen beschrieben.

S-Systeme : einfache nichtlineare Näherung mit numerischen Vorteilen

Elementare Fluss Moden Analyse : Stoichiometrisches Fliessgleichgewicht

Computergestützte Analyse

Page 71: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Metabolic Netzwworks

Metabolic networks are described with help of an network topology (pathways and biochemical rate constants

S-Systeme : simple, nonlinear approximation with numeric benefits

Elementar flux modes : Stoichiometric Balance of fluxes

Computonal Analysis

Page 72: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

S-Systemes

• Produktansatz for influx and outflux Vi+ and Vi

-.

dXi/dt = V+-V-=αi ∏j=1n+m Xj

gij - βi ∏j=1n+m Xj

hij

αi and βi : rate constans

- gij and hij : cinetic exponents

– Xi : concentrations of all the metabolites that are involved in the network

Page 73: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Why do S-Systems work ?

Educated assumtion :

* Analytic Steady-State-solution * Maths is simple* Arbitrary Systems of Differential equations can be translated into S-Systems.* Parameter estimation is possible

Benefits:

Most biochemical Systems are in a quasistatic state, the dynamics of sytem regulation is slow compared with the dynamics of the system itself. S-Systems are a extension around a steady stateBiochemical Systems are robust. Functionality is more or less independent of concentration

Page 74: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

aus Torres: Pathway Analysis

Page 75: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Order of Kinetics from experimental data

Page 76: Biochemical Networks Literature: Cantor&Schimmel: Biophysical Chemistry Adam Läuger Stark : Physikalische Chemie und Biophysik Voit: Computational Analysis.

Stociometric Matrix:flux analysis


Recommended