+ All Categories
Home > Documents > Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the...

Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the...

Date post: 10-Aug-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
55
1 Biodiversity Research and Innovation in Antarctica and the 1 Southern Ocean 2 2020 3 Paul Oldham and Jasmine Kindness 1 4 Abstract 5 This article examines biodiversity research and innovation in Antarctica and the Southern 6 Ocean based on a review of 150,401 scientific articles and 29,690 patent families for 7 Antarctic species. The paper exploits the growing availability of open access databases, 8 such as the Lens and Microsoft Academic Graph, along with taxonomic data from the Global 9 Biodiversity Information Facility (GBIF) to explore the scientific and patent literature for 10 the Antarctic at scale. The paper identifies the main contours of scientific research in 11 Antarctica before exploring commercially oriented biodiversity research and development 12 in the scientific literature and patent publications. The paper argues that biodiversity is not 13 a free good and must be paid for. Ways forward in debates on commercial research and 14 development in Antarctica can be found through increasing attention to the valuation of 15 ecosystem services, new approaches to natural capital accounting and payment for 16 ecosystem services that would bring the Antarctic, and the Antarctic Treaty System, into 17 the wider fold of work on the economics of biodiversity. Economics based approaches can 18 be criticised for reducing biodiversity to monetary exchange values at the expense of 19 recognition of the wider values of biodiversity and its services. However, approaches 20 grounded in the economics of biodiversity provide a transparent framework for 21 approaching commercial activity in the Antarctic and introducing requirements for 22 investments in the conservation of Antarctic biodiversity by those who seek to profit from 23 it. 24 25 1 Paul Oldham holds a PhD in anthropology from the London School of Economics and is an Industrial Fellow at the Manchester Institute of Innovation Research, Alliance Manchester Business School, Manchester University. He was Adjunct Senior Fellow at the Institute for Advanced Study of Sustainability, United Nations University at the time of the research. Jasmine Kindness holds an honours degree in anthropology from the London School of Economics and is an MSc Student in the Humanities and Social Sciences Department at Oxford Brookes University. The research was funded under the Biospolar Project, Research Council of Norway (RCN project number 257631/E10) . The authors thank Dr. Andrew Marsh for assistance in interpreting industrial chemistry based patent documents discussed in this paper. . CC-BY 4.0 International license available under a was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made The copyright holder for this preprint (which this version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849 doi: bioRxiv preprint
Transcript
Page 1: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

1

Biodiversity Research and Innovation in Antarctica and the 1

Southern Ocean 2

20203

PaulOldhamandJasmineKindness14

Abstract 5

ThisarticleexaminesbiodiversityresearchandinnovationinAntarcticaandtheSouthern6Oceanbasedonareviewof150,401scientificarticlesand29,690patentfamiliesfor7Antarcticspecies.Thepaperexploitsthegrowingavailabilityofopenaccessdatabases,8suchastheLensandMicrosoftAcademicGraph,alongwithtaxonomicdatafromtheGlobal9BiodiversityInformationFacility(GBIF)toexplorethescientificandpatentliteraturefor10theAntarcticatscale.Thepaperidentifiesthemaincontoursofscientificresearchin11Antarcticabeforeexploringcommerciallyorientedbiodiversityresearchanddevelopment12inthescientificliteratureandpatentpublications.Thepaperarguesthatbiodiversityisnot13afreegoodandmustbepaidfor.Waysforwardindebatesoncommercialresearchand14developmentinAntarcticacanbefoundthroughincreasingattentiontothevaluationof15ecosystemservices,newapproachestonaturalcapitalaccountingandpaymentfor16ecosystemservicesthatwouldbringtheAntarctic,andtheAntarcticTreatySystem,into17thewiderfoldofworkontheeconomicsofbiodiversity.Economicsbasedapproachescan18becriticisedforreducingbiodiversitytomonetaryexchangevaluesattheexpenseof19recognitionofthewidervaluesofbiodiversityanditsservices.However,approaches20groundedintheeconomicsofbiodiversityprovideatransparentframeworkfor21approachingcommercialactivityintheAntarcticandintroducingrequirementsfor22investmentsintheconservationofAntarcticbiodiversitybythosewhoseektoprofitfrom23it.24

25

1PaulOldhamholdsaPhDinanthropologyfromtheLondonSchoolofEconomicsandisanIndustrialFellowattheManchesterInstituteofInnovationResearch,AllianceManchesterBusinessSchool,ManchesterUniversity.HewasAdjunctSeniorFellowattheInstituteforAdvancedStudyofSustainability,UnitedNationsUniversityatthetimeoftheresearch.JasmineKindnessholdsanhonoursdegreeinanthropologyfromtheLondonSchoolofEconomicsandisanMScStudentintheHumanitiesandSocialSciencesDepartmentatOxfordBrookesUniversity.TheresearchwasfundedundertheBiospolarProject,ResearchCouncilofNorway(RCNprojectnumber257631/E10).TheauthorsthankDr.AndrewMarshforassistanceininterpretingindustrialchemistrybasedpatentdocumentsdiscussedinthispaper.

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 2: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

2

Introduction 26

Thisarticleexaminesthescientificandpatentlandscapeforbiodiversitybasedresearch27andinnovationinAntarcticaandtheSouthernOcean.Thearticleisbasedonareviewof28150,401scientificarticlesand29,690patentfamiliesthatmakereferencetotheAntarctic29orSouthernOceanintheopenaccessLensdatabaseofscientificandpatentliterature.30

TheAntarcticregionisanimportantfocusofscientificresearchinthecontextofthe31biodiversityandclimatechangecrisis[1].Theimpactsofclimatechangeonterrestrialand32marinebiodiversitymaybebothpositiveandnegative,withparticularconcernemerging33overnon-nativespeciesinterrestrialAntarcticaandenvironmentalwarmingandocean34acidificationinthemarineenvironment[1].CommercialactivityinAntarcticaincludes35tourismandtheharvestingofmarinegeneticresourcessuchasAntarctickrilland36Antarctictoothfish[2–4].Theregionhasalsobeenafocusforbioprospectingorresearch37onthepotentiallyusefulpropertiesofAntarcticbiodiversityforthedevelopmentofnew38andusefulproducts[5–10].Theemergenceofcommerciallyorientedresearchand39developmenthasledtoincreaseddebatesaroundthegovernanceofresearchactivity,40ethicsandbenefit-sharing.Debatesonthegovernanceofresearchandbenefit-sharing41mirrordebatesonaccesstogeneticresourcesandbenefit-sharingundertheUnited42NationsConventiononBiologicalDiversityanditsNagoyaProtocol,andrelatedpolicy43processessuchasnegotiationsonanewtreatyonmarinebiodiversityinareasbeyond44nationaljurisdictionundertheUnitedNationsLawoftheSea.From2005onwards45bioprospectinghasappearedontheagendaoftheAntarcticTreatyConsultativeMeeting46(ATCM)ofContractingandConsultativePartiestotheAntarcticTreatySystem(ATS).The47AntarcticTreatySystemconsistsofasetofagreementsthataimtoensurethatthe48Antarcticisa“naturalreserve,devotedtopeaceandscience”forthebenefitofhumankind.49However,todate,activityundertheAntarcticTreatySystemwithrespectto50bioprospectinghasbeenlimitedtoinformationgatheringbytheScientificCommitteeon51AntarcticResearch(SCAR).52

Theaimofthisarticleistwofold.First,weimprovetheevidencebasefordebatesonthe53governanceofresearchinAntarcticaandtheSouthernOceanbymakingdatasetsof54scientificandpatentliteratureandtaxonomicdataabouttheAntarcticpubliclyavailable55throughtheOpenScienceFramework.Thedatasetsareintendedtocontributeto56methodologicaldevelopmentinareassuchscientometricsandmachinelearningbased57approachestonaturallanguageprocessing[11–13,13–16].2Wearguethatfurther58methodologicaldevelopmentisdesirable,includingbydataproviders,inordertoaddress59weaknessesindatacoverageanddataquality.60

Second,weexaminethemainfeaturesofthescientificandpatentlandscapesforAntarctica61andtheSouthernOceanwithafocusonbiodiversitybasedinnovation.Thepaperargues62thateffortstoaddresscommercialresearchanddevelopmentcouldusefullybeapproached63

2AvailablethroughtheBiospolarAntarcticLiteratureandPatentsrepositoryathttps://osf.io/py6ve/

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 3: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

3

inthewidercontextoftheecosystemservicesprovidedbyAntarcticbiodiversity[17–19].64Thiscouldbeextendedtotheapplicationofnaturalcapitalaccounting,presentlybeing65incorporatedintoSystemsofNationalAccounting(SNAs),totheAntarctic[20].Theriseof66ecosystemservicesandnaturalcapitalaccountingisgroundedinincreasingrecognition67withintheeconomicscommunitythatbiodiversityandtheservicesitprovidesarenotfree68andmustbepaidfor.Ifweacceptthatbiodiversityisnotafreegoodandthateveryone69must,proportionatetotheirmeans,paysomethingweareabletoaskotherquestions,such70as:howmuch,bywhom,inwhatformandtowhatends?Thispaperdoesnotaimto71answerthesequestionsbutcontributestotheevidencebasefordeliberationonthe72opportunitiestoaddressissuesoffairness,equityandbenefit-sharingforbiodiversity73basedresearchanddevelopmentinAntarcticaandtheSouthernOcean.74

Methods 75

Thispaperisacontributionfromanthropologyanddatasciencethatcombinesanalysisof76thescientificandpatentliteraturewithtaxonomicdatafromtheGlobalBiodiversity77InformationFacility(GBIF)onAntarcticbiodiversity.Themethodconsistsoffivemain78steps:79

1. Capturingtherawuniverseofscientificandpatentpublicationsmakingreferenceto80AntarcticaandtheSouthernOceaninmultiplelanguagesusingtheLensopenaccess81databasehttps://www.lens.org/;82

2. Identifyingandcleaningauthor,organisation,inventorandpatentapplicantnames83andlinkingwithgeospatialdatasourcesusingMicrosoftAcademicGraph(MAG)data84tables(January2019release)fromMicrosoftAcademic[21];i85

3. Textminingthescientificliteratureandpatentliteraturefortaxonomicnameswitha86focusonspeciesnamesandalimitedsetofcommonnamesbasedondatafromthe87GlobalNamesIndex(GNI)andGBIF;88

4. Refiningthedatatofocusonscientificliteratureandpatentdatacontaininga89verifiableAntarcticspeciesusingacleanedversionofAntarcticcountrycodeAQdata90fromGBIF;91

5. TextminingtheresultsforAntarcticplacesnameswithaparticularfocusonpatent92datausingdatafromtheSCARCompositeGazetteerofAntarctica(CGA)andthe93GeonamesdatabaseofAntarctica(AQ)countrycodeplacenames.94

Thestepsaboveinvolvedanumberofelementsandissuesofinteresttothedatascience95communitythatcanbesummarisedasfollows.96

OpenaccessdatabasessuchastheLensfromCambiaandtheQueenslandUniversityof97Technologymakeitpossibletosearchfordatainmultiplelanguagesandtoamorelimited98degreetosearchthefulltextsofscientificpublicationsandpatentdocuments.Basedona99setofexperimentalteststhefollowingmulti-languagequerywasdevelopedtocapturethe100availableuniverseofpublicationsaboutAntarcticaandtheSouthernOceaninmultiple101languages.102

103

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 4: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

4

104

Antarctic* OR “Southern Ocean” OR “South Pole” OR “alqarat alqatabiat aljanubia” OR Antarctique OR Antarktida 105OR Antarktidë OR Antarktik OR Antarktika OR Antarktikí OR antarktis OR Antarktis OR Antarktisz OR Antarktyda OR 106Antartaice OR Antártica OR antártida OR Antártida OR Antàrtida OR Antartide OR Antartika OR Antartikako OR 107Jacaylku OR “Nam Cực” OR “namgeug daelyug” OR Suðurskautslandið OR Ανταρκτική OR Антарктида OR 108Антарктик OR Антарктика OR Антарктикийн OR Антарктикот OR Антарктыда 109

TheLensScholarlydatabaseaggregatesdatafromanumberofdifferentsourcesincluding110MicrosoftAcademicGraph(MAG),Crossref(formetadata),PubMedformedicallyfocused111literatureandCORE(core.ac.uk)foropenaccessfulltexts.Theavailablefieldsofsearch112varyacrossdatasourceswithallexceptforCOREbeingconfinedtometadatafieldssuchas113title,abstract,keywords,affiliations,authorsetc.Table1summarisestherawsearch114resultsfromthedifferentsources.115

Table 1: Antarctic Paper Counts by Type

name papers

papers 150401

microsoft academic graph 135150

metadata 122886

CORE full texts only 27515

pubmed 16053

pubmed central 2754

Note:

Metadata refers to Antarctic search terms in titles, abstracts, keywords, fields of study and MeSH terms.

InconsideringtherawdatainTable1itisimportanttonotetwopoints.First,thatthe116analysisinthispaperislimitedtothe135,150papersfromMicrosoftAcademicGraph.The117reasonforthisisthattheLensdoesnotdirectlyprovideaccesstoaffiliationdatabutitis118possibletoretrievethisdatausingthefreelyavailableMicrosoftAcademicGraphdatabase119tables.Second,caseswheretheAntarcticsearchqueryonlyappearedinCOREfulltexts120meritmoredetailedinvestigationinfutureresearch.Exceptwheretheyappearin121MicrosoftAcademicGraphthesetextsareexcludedfromthequantitativeanalysisbelow.122

TheresultsofthesearchincludeanydocumentthatreferencesAntarctica,theSouthern123OceanortheSouthPoleanywhereinmetadata(includingauthoraffiliationsand124

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 5: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

5

bibliographicreferences)ortheavailablefulltextsfromCORE.Thiswillinevitablyinclude125sourcesofobjectivenoise,suchasreferencestotheSouthPoleofMarsorTitanor126negationssuchas“exceptAntarctica”,andsubjectivenoisesuchastheexplorationofthe127roleAntarcticaplaysinthehumanimaginationinliteraryorculturalstudiesthatmaynot128beofinteresttosomereaders.Aconventionalapproachtodealingwithnoisein129bibliometrics/scientometricsistoattempttoexcludeitatsource.However,weadopteda130differentapproachinformedbythepossibilitiesoftheriseofmachinelearningapproaches131tonaturallanguageprocessingandtheirfutureapplicationtopolarresearch.132

MachinelearningbasedapproachestoNaturalLanguageProcessing(NLP)involvetraining133modelstoengageinprobabilisticclassificationoftextsandnamedentityrecognition134(e.g.placenames,speciesnames).Atthetimeofwritingpopularlibrariesincludekeras,135fasttext,scikit-learnandspaCy(amongothers).Thekeyconditionfortrainingmodelsisthe136availabilityofpreferablylargevolumesoflabelledtextsforuseintraining,testingand137evaluatingmodels.Viewedfromthisperspective,rawdatathatincludesnoisethatisclose138tothesubjectmatter(e.g.theSouthPoleofTitanor“everywhereexceptAntarctica”)is139valuable.Ratherthanexcludingnoiseatsourcewethereforeadoptedtheapproachof140leavingthedataasisandaddinglogicalTRUE/FALSEcolumnstotherawdatatableas141labelledfilters.Thefiltersarebasedontextminingofpublicationmetadata(titles,142abstracts,authorkeywords,fieldsofstudy,MeSH(medicalsubjectheadingterms).Table2143displaysthefilters.144

Table 2: Paper Counts by Subject (metadata only)

name papers

climate 37015

taxonomic name 25662

biodiversity 25233

southern ocean 12939

antarctic species 12768

arctic 10965

mammal 8365

planets 4579

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 6: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

6

Table 2: Paper Counts by Subject (metadata only)

name papers

birds 3758

candida antarctica 3751

krill 3127

seal 2848

penguin 2559

whale 1688

acidification 652

innovation 195

ecosystem services 122

bioprospecting 99

Note:

Counts of terms appearing in paper metadata including titles, abstracts, keywords, fields of study and MeSH terms.

145

Theaimofthefiltersistoallowausertorestrictthedatatoareasofinterest.Forexample,146‘taxonomicname’isafilterforrecordscontainingauninomialorbinomialspeciesname147while‘antarcticspecies’referstospeciesthatoccurinAntarcticavalidatedinthe148taxonomicdatawithanAntarcticlocation.149

Inthesecondstep,datafromtheLenswasfederatedwithMicrosoftAcademicGraphfrom150MicrosoftAcademic(January2019,release).MicrosoftAcademicGraphisbasedondata151fromtheBingsearchengineandismadeavailablefreeofchargeasasetofdatatablesthat152containover200millionscientificrecords.FederationwasperformedusingaDatabricks153ApacheSparkclusteronMicrosoftAzurerunningRinRStudiowiththesparklyrand154

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 7: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

7

tidyversepackagesonthemasternode[21–24].Datafederationfocusedontablejoins155betweentheLensdataandaffiliationsandauthorstablesofMicrosoftAcademicGraph156usingthesharedidentifier(thepaperid).Thisyieldedanaffiliationtablewith5,021157identifiedorganisations(affiliationid)andanauthorstablewith244,778authors158(authorid).OneimportantandknownlimitationofMicrosoftAcademicGraphisthatthe159affiliationsdataisincomplete[11].Thus,69,805ofthepapersinthedatasetwererecorded160withanaffiliationidcorrespondingwith52%ofthe135,150papers.However,raw161affiliationdataisavailableintheauthorstableforthefullMAGdatabase.Weusedamulti-162stepprocessdescribedintheOSFrepositorytoimprovecoverageto99,794(74%)of163MicrosoftAcademicGraphdataforAntarctica.Themajorityoftheoutstanding34,249164papersweremadeupofbookchapters,booksandotherdatatypesthatnormallylack165affiliationdata(17,886).Asaconsequence,dataonaffiliationsisincompleteandmustbe166classifiedasindicativeratherthandefinitive.Whiletheseresultsmaygivethe167scientometricscommunityreasonforpauseinusingMicrosoftAcademicGraph,wewould168observethatinterrogatingtheseissuesprovidesabasisforfutureimprovementssuchas169retrospectivereindexingtopickupmissingdata.170

Withrespecttopatentdata,atthetimeoftheresearchtheLensincluded115,915,955171patentdocumentsfrom63,366,633families(publicationsgroupedontotheearliestpatent172filinginaset)from115countriesincludingregionalandinternationalpatentoffices.To173retrievepatentdatathesamequerywasperformedusingfulltextsearch(titles,abstracts,174descriptionandclaims).Thisyieldedarawcountof52,701documentsin25,463patent175familiesfromthesearchterms.TheLensisalsoimportantasasourceofpatentdatafor176innovationresearchbecauseitindexesscientificpublicationsthatarecitedbypatent177documents.Whenthesedocumentswereaddedthetotalcountofpatentfamiliesrosetoa178raw29,690families.3179

Patentdocumentsarecommonlyrepublishedmultipletimes.Thus,asingleapplication180mayberepublishedasapatentgrantorwithanadministrativesearchreportorcorrection.181Thesameapplicationmayalsobesubmittedtomultiplecountrieswhereitwillalsobe182republished.Thisintroducesradicalmultipliereffectsintopatentcounts.Thus,the29,690183patentfamiliesinourrawsetarelinkedto163,615laterpatentpublications(family184members).Tocontrolforthis,patentanalystscommonlyreducelinkeddocumentsinaset185or‘family’totheearliestfirstfiling(knownastheprioritydocument).Thisarticleusesthis186approach.Weaddeda“filingorder”filtertotheLenspatentdatathatreducestheoriginal18729,690Lenspatentfamilydocumentstothe26,120earliestfirstfilings.Finally,itis188importanttoemphasisethatpatentdata,byvirtueofaccesstothefulltext,istypically189noisierthansearchesofthemetadataforscientificliteraturewithtermssuchas“South190Pole”havingmultipleuses.191

TextminingofthescientificandpatentliteraturewasperformedinRusingthespacyr192packagethatprovidesaccesstothePythonspaCylibraryformachinelearningandNatural193LanguageProcessingandtheRtidytextpackage[25,26].Textminingfocusedonthe194

3Publiclyaccessibleat:https://www.lens.org/lens/collection/179814

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 8: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

8

identificationofbinomialanduninomialtaxonomicnamesintextsfollowedbythe195identificationofplacenames.Thiswasperformedbyextractingnounphrasesfromthe196titles,abstracts,keywords,fieldsofstudyandMeSHtermsforLensrecordsinthescientific197literature.Inthecaseofpatentdata,internalfulltextcollectionsfocusingontheUS,the198EuropeanPatentOfficeandtheinternationalPatentCooperationTreatywereusedtotext199minetheavailabletitles,abstracts,descriptionsandclaims.Toaddressmemoryissues200whenusingspaCywithspacyrweusedthetidytextpackagetoparsetextsintosentences,201twowordphrases(ngram2)andwords(ngram1).Itshouldbenotedthatapproaches202focusingonnounphrasesarepartlydependentonthelanguagemodel(English)usedfor203nounidentification.Wethereforeexpectroomforimprovementindatacaptureacross204multi-languagesources.205

Matchingwithtaxonomicnamesandplacenameswasperformedusingdictionarybased206approaches.Nounphraseswerematchedagainstadictionaryofjustover6million207binomialspeciesnamesoriginallyextractedfromtheGlobalNamesIndex(GNI)andits208webserviceathttp://gni.globalnames.org/[27].Thefulllistofbinomialswasderivedfrom209acopyoftheGlobalNamesIndexkindlyprovidedbyDavidRemsenandDmitryMozzherin210asleadingdevelopersofthewiderGlobalNamesArchitecture.Individualwords211(uninomials)werechosenformatchingwithentriesintheFamiliesofLivingOrganisms212(FALO)datasetfromGBIFthatconsistsofsingleoruninomialnamesforKingdoms,213(e.g.Animalia),Families(e.g.Ursidaeforthebearfamily)etc.[28,29].A2014specieslist214fromtheWorldRegisterofMarineSpecies(WoRMS)databasewasusedtoaddafilterfor215marinespeciesintheliteratureandpatentdatatables.Wewouldnotethatcareful216attentionisrequiredtoimprovementsintheclassificationofmarinespecies(e.g.to217distinguishbetweenterrestrialaquaticandmarineorganisms)inlaterupdatesofWoRMS218whenapproachingthisfilter.219

TherawresultsoftextminingwithdictionarieswerepassedtotheGBIFAPIusingthe220taxizepackagefromROpenScitoretrievethetaxonomichierarchy[30].Oneissuewhen221retrievingthetaxonomichierarchyforthousandsofspeciesisthatasinglespeciesname222maymatchtomultiplerecords(e.g.assynonymsorhomonyms).However,itisimpractical223tomanuallyreviewthousandsofresultswhenretrievingdata.Fortunately,thereturnfrom224taxizeincludesa‘multiplematches’columnthatidentifiesthesecases.Themultiple225matchesfilterisretainedinthetaxonomicdatatablestoallowtaxonomicspecialiststo226reviewand,asnecessary,refinethedata.227

Scientificandpatentpublicationsthatincludetaxonomicnamescommonlyinclude228multiplenames.Thisisparticularlytrueinpatentdocumentsandpresentsthechallenge229thataparticularorganismmayormaynotoccurorhavebeencollectedintheAntarctic.230GBIFmaintainsadatasetofoccurrencerecords(observations)withcountrycodeAQthat231inMay2019consistedof2,729,211occurrencerecords[31].However,atthattime,over1232millionoftherecordswererecordedatlatitude-91or-90revealingunlikelyandinvalid233records.Toaddressthis,thedatawasrestrictedtorecordscontainingatextentryfor234localityandaseconddatasetfor-60latitudeSouthwasgeneratedandcombined[32].To235addressnoisyrecordsamulti-stepprocedurewasadoptedinvolvingremovinginaccurate236coordinateswiththeROpenSciCoordinateCleanerpackageinR[33].Inthesecondstep,the237SCARCompositeGazetteerofAntarctica(CGA)of23,833names,wasusedtotextminethe238

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 9: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

9

localityfieldinGBIFdataandsingleoccurrencerecordsweremanuallyreviewedin239VantagePointfromSearchTechnologyInc.Inthethirdstep,singlespeciesoccurrence240recordsthatlackedlocalityinformationwereidentified.Inthefourthstep,afilterwas241addedforoccurrencessouthof-60degreeslatitudeasthedemarcationpointforthe242SouthernOceanandAntarctica.Inthefifthstep,aspeciesoccurrencecountwasadded243basedontheobservationthatlowspeciesoccurrencerecordsthatlacklocalityinformation244areoftennoise.Inasixthstep,afilterwasaddedforfossilrecordsbasedontheexisting245GBIF“basisofrecord”field.OccurrencerecordswithavalidatedAntarcticlocationinthe246localityfieldbecamethebasisforthe‘antarcticspecies’filterappliedacrossthedataset.247Theadditionofan‘occurrencecount’fieldallowthespeciesrelateddatatobe248progressivelyrestrictedtothosewithavalidatedAntarcticlocationinanorderedway.249

Asthissummaryofmethodologicalstepsmakesclear,thefederationofscientificliterature,250patentliteratureandtaxonomicdatainvolvesanumberofmethodologicalchallenges.Itis251alsoclearthatwhiletheriseofopenaccessdatabasesrevolutionisestheopportunitiesfor252thistypeofanalysisatscale,thereareavarietyoflimitationsinthedatasources.This253meansthattheanalysispresentedinthispaperisindicativeratherthandefinitive.254Nevertheless,highlightingtheselimitationspresentsopportunitiestoidentifyways255forwardinimprovingdatacoverageanddataqualitytoinformdecision-making.256

Results 257

Figure1displaysanoverviewoftherawdatasetfortheAntarcticsearchterms.InFigure2581Awecanimmediatelyobservethatafterasteepincreaseinthepapercounttoapeakin2592014of7,468publicationsthedatadisplaysadecliningtrend.However,inourviewthis260willreflectdataavailabilityissueswithMicrosoftAcademicGraphratherthananactual261declineinpublicationsreferencingAntarctica.Thereasonforthisisthatasteepdecline262fromaroundthesamepointisobservablefornon-Antarcticdata.Anexplanationofthis263issuecouldusefullybeaddedtotheMicrosoftAcademicGraphdocumentationtoimprove264certaintyforusers.265

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 10: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

10

266

Figure1:OverviewofScientificLiteratureforAntarctica267

MicrosoftAcademicGraphusesacombinationofdatafromWikipediaandmachine268learningtoidentifyandlabelpapersbysubjectscalled“FieldsofStudy”[34].Incontrast269withapproachessuchasClarivateAnalyticsWebofScience,thatcategorisejournalsrather270thanpapers,thisapproachallowsfortheuseofmultiplelabelsatdifferentlevelsofdetail271[34].272

IntheJanuary2019release,MAGFieldsofStudyconsistedof19topleveldisciplinesthat273aredisplayedinredinFigure1B.Theremainingfields,showninblue,arechildrenofthe274MAGdisciplines.Thus,inFigure1Boceanography,climatology,geomorphology,275atmosphericsciencesetc.areallchildrenofgeology.Incontrast,ecologyandbotanyare276childrenofbiology.Thesechildreninturnhavesub-childlabelsatvaryinglevelsofdetail277includinglimitedlabelsfortaxonomicclassification.Overall,thissignifiesthatpapersmay278bedividedintoverybroadfieldsandmayappearmultipletimesintherankingsatdifferent279levelsofdetail.280

Figure1Cdisplaystheavailabledataonthenumberofpapersperorganisation.Thedatais281countedbyaggregatingthepaperslinkedtoanorganisation(whichmayincludemultiple282

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 11: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

11

authorsfromthesameentity)andthencountingthedistinctpapers.Asnotedabove,it283shouldbeemphasisedthatthisdataisindicativeratherthandefinitive.Astheresolutionof284affiliationdataimproveswewouldexpectthenumbersandrelativepositionsof285organisationsintherankingstochange.Nevertheless,thedataisindicativeofsomeofthe286mostimportantorganisationsconductingresearchinvolvingtheAntarcticinrecent287decades.288

Researchersfrom134countriesappearedintherawpublicationdatarelatingtothe289Antarctic.However,rankingsareaffectedbytheavailabilityofaffiliationdata.Wecangain290aninitialideaofthegeographicdistributionoforganisationsinvolvedbymapping291organisationsinthedatathatalsoappearinthepublicdomainGlobalResearchIdentifier292Database(GRID)https://www.grid.ac/.TheGRIDdatabaseformspartofagrowingeffort293toharmoniseinstitutionalnamesforgeographicmappingandotherpurposes.Figure2294breaksoutthefulldatafromFigure1Canddisplaysamapofavailablegeographicdatafor295organisationspublishingresearchrelatingtoAntarcticaandisaccompaniedbyarankingof296countriesbasedonthenumberofdistinctpublicationsofalltypeslinkedtoAntarctica.297

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 12: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

12

298

Figure2:GeographicDistributionofResearchOrganisationsLinkedtoAntarctica299

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 13: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

13

Itisworthnotingthatsomecountrieswithorganisationswithasignificantpresencein300Antarcticresearchareprobablyunder-representedintheorganisationmapbecausetheir301dataisdistributedacrossmultipleorganisationswithnoavailablegeoreferencedata,302notablyRussia(with63organisations).303

Figure1D(above)displaystherankingsofpapersbyindividualauthors.Topranking304authors,basedpurelyonthenumberofpublishedpapersordatasetsappearingin305MicrosoftAcademicGraph,includemarinegeologistGerhardKuhnattheAlfredWegener306InstituteHelmholtzCentreforPolarandMarineResearch[35],terrestrialecologistPeter307ConveyattheBritishAntarcticSurvey[3,36],andgeophysicistKarstenGohlatthe308WegenerInstitute[37,38].Leadingwomenscientistsinthedatabypublicationcount309includegeophysicistGabrieleUenzelmann-NebenattheWegenerInstitute[39,40],marine310biologistKatrinLinseattheBritishAntarcticSurvey[41,42]andclimatescientistValerie311Masson-Delmotte[43,44].Insomecasesresearchersmaybeactiveinresearchand312publicationonbothAntarcticaandtheArcticaspartofwiderpolarresearch.313

ThisglobaloverviewofresearchreferencingtheAntarcticservestodemonstratethe314potentialoftoolssuchastheLensandMicrosoftAcademicGraphtoilluminateresearch315landscapesonthegloballevel.Atthesametime,dataontrends,affiliationsand316georeferencingexposestheneedforimprovementsindataqualityandcoverage.However,317whilerecognisingtheseconstraints,thisapproachalsosignificantlyexpandsouraccessto318dataonscientificpublicationsabouttheAntarctic.Inanimportantcontributionto319bibliometricanalysisJietal.2014publishedanalysisofresearchonpublicationsinthe320Antarcticbetween1993and2012usingasearchfortheAntarcticinWebofSciencethat321yielded36,238publications(aftertheexclusionofspeciescontainingantarcticainthe322name)[45].Incontrast,forthesameperiodMicrosoftAcademicGraphproduced71,804323distinctpaperswith79,647acrosstheLens.Theincreaseinpublicationdatawillreflecta324combinationofthechoiceofsearchterms,thewiderscopeofMicrosoftAcademicGraph,325thegrowingavailabilityofdatainmultiplelanguages(with46languagesrepresentedin326thedata),thegrowingavailabilityofmillionsofopenaccessfulltextsthroughCORE327(core.ac.uk),andthegrowingemphasisonopenaccessdatainscientificpolicies.328

Theincreasingavailabilityofpublicationdataatscalebringswithitaneedtofocuson329potentialsourcesofnoisebutalsoprovidesopportunitiestodrillintothedatainspecific330areasofinterest.ExistingbibliometricresearchontheAntarctichasfocusedonthe331explorationofhighlycitedresearch[46],theroleofresearchstationsinpromoting332collaborativeresearch[47],andmappingglacierresearchwithWebofScience[48].Asthis333suggests,publicationdataonAntarcticaprovidesrichopportunitiesfortheexplorationof334specificresearchthemes.WenowturntotheanalysisofresearchonAntarcticainvolving335biodiversityatthespecieslevelasabasisforexploringcommercialinterestinAntarctic336speciesinpatentdata.337

338

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 14: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

14

Biodiversity Research in Context 339

Asweobservedabove,theresearchprofilefortheAntarcticisdominatedbygeology,340climatologyandotherEarthSciencesubjects.Thisisreflectedinthetopcitedpublications341forAntarcticaincludingtopicssuchas:highresolutioninterpolatedclimatesurfacesfor342globallandareas[49],mixedeffectsmodellingofecologywithR[50],theIPPC4reporton343ClimateChange2007:Impacts,Adaptation,andVulnerability,globalanalysisofseasurface344temperatures[51],andtheclimateandatmospherichistoryofthepast420,000yearsfrom345theVostokicecore,Antarctica[52].346

AsweobservedinthediscussionofAntarcticfieldsofstudy,biologyisaprominentsubject347areathatisaccompaniedbyanumberoflargesubfieldssuchasecology,botanyand348biochemistry.Topcitedresearchinthefieldofbiologyincludesanewphylogeneticmethod349forcomparingmicrobialcommunitiesthatincludescomparisonofAntarcticandArctic350communities[53],theinfluenceoftemperatureonphytoplanktongrowth[54],sterol351markersformarineandterrigenousorganicmatter[55],analysisofthegenus352Nocardiopsis,includingdiscussionofNocardiopsisantarctica,asadistinctActinomycete353lineage[56],andfattyacidtrophicmarkersinthepelagicmarineenvironment[57].354

Themainfocusofthepresentresearchwasonidentifyingandextractingspecieslevel355informationfromresearchontheAntarcticusingtextmining.Asastartingpoint,research356onspeciescanbedividedintotwobroadcategories:a)directfieldresearchinvolving357Antarcticspecies,and;b)indirectorfollowonresearch,includingclassificationand358comparativeanalysis,andtheexplorationofthepropertiesoforganisms.359

Intotalweidentified1,819binomialspeciesnameswithrecordedoccurrencesinthe360scientificliteraturefortheAntarctic.Ofthese,1,666hadspecificlocalityinformation.In361thecaseofsomeanimalssuchaswhales,seals,penguins,andkrill,commonnames,362e.g.BluewhaleorAdeliepenguin,appearmorefrequentlyintheliteraturethantheirLatin363names.Toaddressthis,additionalcountswereperformedforthemajorgroupsincluding364bothcommonandtaxonomicnamesandmarkedintheaccompanyingdatatable.365InformationonapubliccollectionofbiodiversityliteratureforAntarcticaandtheSouthern366Oceanisprovidedinthesupplementarymaterial.367

Figure3displaysthedatarankedbyspeciesandthenumberofscientificpublicationsfor368the1,819species.369

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 15: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

15

370

Figure3:TopRankingSpeciesforAntarctica371

ThedatainFigure3revealstheprominenceofCandidaantarctica(acceptedname372Moesziomycesantarcticus)andkrill(Euphausiasuperba)outsidethemajorAntarctic373mammals.ThisreflectstheeconomicimportanceofCandidaantarcticaandtheecological374andeconomicimportanceofkrill.375

Wegainamoredetailedinsightintotheprominenceofspeciesacrossthemajorkingdoms376inthescientificliteratureinFigure4.Wewillnowbrieflysummarisesomeofthehighlights377oftheliteratureandbegintofocusinonresearchwithcommercialapplications.378

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 16: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

16

379

Figure4:TopRankingSpeciesforAntarcticabyKingdom380

ForanimalsonbothcommonandtaxonomicnamesAntarctickrillisamajorfocusofthe381literaturethatreflectssignificanteconomicinterestinoilextractionfromanabundant382speciesthatisrichinomega-3polyunsaturatedfattyacids[58–60].Muchoftheliterature383onAntarctickrilldetailsmethodsandsuccess-ratesinextractingproteins,fattyacids,384aminoacidsandlipidsfromthisspecies.Additionalworkhasfocusedonthesuitabilityof385krillspeciesasfeedinsalmonaquaculture[61,62].Thecombinationofclimatechangeand386commercialexploitationhasledtoworktomodeltheimpactsofanydeclineinAntarctic387krillbiomassonpredators[63].Antarctickrillarealsoafocusoftheecosystem-based388fisheriesmanagementapproachoftheCommissionfortheConservationofAntarctic389MarineLivingResources(CCAMLR)[64].Recentworkonkrillrevealsconcernthatwhile390ecosystemservicesintheSouthernOceanmayincreaseunderclimatechangethismay391occurattheexpenseofthedecouplingofecosystemprovisioningforendemicspecies[65].392Inotherwords,thefoodsupplyforendemicspeciesmaybedisruptedleadingtoaneedfor393specificmanagementofbiodiversity[65].394

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 17: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

17

TheAntarcticfurseal,Arctocephalusgazella,ahistoricfocusofthesealfurtrade,hasbeen395afocusofbasicresearchonforagingbehaviouranddietwithrecentresearchexamining396theimpactofhumanassociatedEscherichiacoliinpinnipedssuchasA.gazella[66–68].397

Incontrast,theEmeraldrockcod(Trematomusbernacchii)isafocusofinterestbecauseit398haslosttheabilitytoproduceheatshockproteinsinresponsetothermalstress,acapacity399onceregardedasuniversalamongstorganisms[69,70].Intotalweidentified382articles400forAntarcticfishincludingnotothenioids,suchasNototheniacoriicepsandmembersof401Trematomus,withcoldadaptationasasignificantfocusofresearch(seebelow).402

InthecaseofFungithedataisdominatedbyCandidaantarctica.Candidaantarcticaand403PseudozymaantarcticaaresynonymsfortheacceptednameMoesziomycesantarcticus.As404theliteratureisdominatedbytheuseofthesynonymCandidaantarcticawewillcontinue405withthatpractice.ThetypespecimenforCandidaantarcticawasoriginallycollectedfrom406sedimentat9metresdepthfromLakeVandainVictoriaLand,Antarctica(mycobank407specimenrecord19800).Lipasesfromthisspecieshavebeenusedforawiderangeof408purposes.B-componentlipasederivedfromthisyeasthasbeenfoundtobeasignificantly409robustlipase.Itishighlystereospecific,andhasbeenusedasabiocatalystinawidearray410ofchemicalreactions,withusesinbiotechnology,bioengineering,biochemistryand411biofuels.[71–75]CandidaantarcticalipaseBhasalsobeenfoundtobehighlyeffectivein412aidingthedissolutionofcarbohydrates[77]andfortheproductionofaminesandamides.413AsGotorFernandezet.al.2006explain“Simplicityofuse,lowcost,commercialavailability414andrecyclingpossibilitymakethislipaseanidealtoolforthesynthesisandresolutionofa415widerangeofnitrogenatedcompoundsthatcanbeusedfortheproductionof416pharmaceuticalsandinterestingmanufacturesintheindustrialsector.”[78].417

ThemostprominentbacteriaintheAntarcticliteratureistheubiquitousEscherichiacolior418E.coli.TheprominenceofE.coliintheAntarcticliteraturemainlyarisesfromitsuseasa419researchtool[79–81].ExamplesoftheuseofE.coliinAntarcticresearchincludea420dosimetertoevaluatethepenetrationofbiologicallyactiveultravioletradiationwithina421watercolumnbasedonthesensitivityofaparticularstrainofE.colitoultravioletradiation422[82].However,E.colialsoappearsinthetaxonomicrecordforAntarcticathroughrecords423fromDavisStation.Growinginterestintheimplicationsoftheincreasingpresenceof424humansinAntarcticaarereflectedinexplorationoftheimpactsofE.colistrainsinhuman425wasteupontheAntarcticenvironment[68,83].Asnotedabove,theimpactsofhuman426associatedE.colihavealsobecomeafocusofresearchinsealpopulations[68].Research427onthehealthofpenguinpopulationshasidentifiedantibioticresistantbacteriasuchasE.428coliinGentoopenguinbreedingareas[84].Thediscoveryofantibioticresistantstrainsof429E.coliinpenguinpopulationsimpliesthathumanactivitiesareresponsible[84].430

Pseudoalteromonashaloplanktis,recordedinthetaxonomicrecordatFreiMontalvaBase431onKingGeorgeIsland,appearsinover100publications.Themajorityofresearchtendsto432focusonthecapacityofthisspeciestoexistatcoldtemperatures[85–87].Beta-433galactosidasefromthisspecieshasbeenshowntooutperformothercommercialbeta-434galactosidasessuggestingthatthecold-adaptedbeta-galactosidasecouldbeusedto435hydrolyselactoseindairyproductsprocessedinrefrigeratedplants[88].Thebacterium436Oleispiraantarctica,recordedinthetaxonomicrecordatRoadBayintheRossSea,appears437

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 18: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

18

in18publications,twoofwhichhavereceived150ormorecitationssuggestingsignificant438interest.ThisinterestappearstoarisefromO.antarctica’shydrocarbondegrading439propertieswhichmaybebeneficialinthebioremediationofoilspills[89,90].440

Inthecaseofplants,Parnikozaetal.2011highlightthatDeschampsiaantarcticaand441ColobanthusquitensisaretheonlytwofloweringplantsthathavecolonizedtheMaritime442Antarctic[91].Aswewillseebelowtheyareofsignificantcommercialinterestin443connectionwithcoldresistance[92].Deschampsiaantarcticaappearsin250papersand444dominatesthedataonplants.ExistingresearchsuggeststhatDeschampsiaantarcticamay445beusefulasabioindicatorofclimatechangeinWesternAntarctica[93]whilemorerecent446workfocusesonthemechanismsthatallowittosurviveintheAntarcticenvironment[94]447andhowthesemechanismsfareinconditionsofwarmingtemperatures[95–97].448DifficultiesintheinterpretationofthetaxonomicrecordforAntarcticaarereflectedinthe449presenceoftheAustralianseagrassAmphibolisantarcticaintherawtaxonomicdatawhich450asfaraswecanestablish,despiteitsname,doesnothavearecordeddistributionin451AntarcticaortheSouthernOcean.452

Forchromists,singleandmulticellulareukaryotesincludingsomealgaeanddiatoms,453scientificattentionhasfocusedonPhaeocystisantarcticaandDurvillaeaantarctica(New454ZealandBullKelp).ThemarinephytoplanktonPhaeocystisantarcticahasbeenafocusof455analysisinconnectionwiththeformationofalgalbloomsandcarbonsequestrationinthe456SouthernOceanandtheirroleinthecarboncycle[98].Recentworkhasfocusedonissues457suchastheroleofironincolonyformationandtheimpactsofironlimitationandocean458acidificationonP.antarctica[99,100].Thisinturnislinkedwithwiderresearchonthe459implicationsofoceanacidificationfordiatomsandothermarineorganismsinAntarctica460[101].ResearchonP.antarcticaalsoinvolvedsimulationofironfertilizationthatcanbe461linkedtomodelsforgeoengineeringexperiments[102,103].462

DurvillaeaantarcticaappearstobequitewidelydistributedintheSouthernOceanand463countriessuchasNewZealandandChile.Researchonthisspeciesincludesworkonkelp464raftsintheSouthernOceanandsubantarctic,includingtheroleofkelpmatsinthe465dispersalofmarinebivalves[104,105].Morecommerciallyorientedresearchisreflectedin466workonthenutritionalcontentoftheedibleD.Antarctica[106].Theanaerobicdigestionof467thisspeciestoproducebiogashasalsobeenevaluatedasamethodforproducing468renewableenergy[107].Researchhasalsobeenconductedtoextractsolubleβ-1,3/1,6-D-469glucanfromthisspecies,whichhasbeenindicatedtohaveimmunostimulantproperties470[108].High-Malginateextractedfromthisspecies,whichhasalsobeenshowntohave471immunostimulatoryproperties,hasbeenusedinstudiestocreateadietarysupplementfor472feedingandweaningAtlanticcod[109].473

ProtozoanshavereceivedrelativelylittlescientificattentioninAntarcticresearchtodate.474DiaphanoecagrandisisolatedfromsalineAntarcticlakesandcoastalsitesinresearch475datingtotheearly1990shasreceivedthegreatestattentionsofar[110–112].Researchon476Bicostaspiniferadatingtotheearly1980sisalsolimitedbuthasfocusedonissuessuchas477seasonalvariationinabundance[113]withmorerecentworkreportingonthePolarstern478projectintheWeddellSea[114].Inrecentwork,Cryothecomonasarmigeraisbeingusedin479

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 19: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

19

worktodevelopabioassaytoinformwaterspecificguidelinestoaddresspollutionin480Antarctica[115–117].481

ResearchonArchaea,singlecelledmicroorganisms,inAntarcticaappearstobevery482limited(notshowninFigure4).ThemajorityofresearchhasfocusedonMethanococcoides483burtonii,withover30publications.However,anumberofthesepapershavebeen484relativelyhighlycitedsuchasworkongenomics,proteomicsandmembranelipidanalysis485inunderstandingmechanismsforcoldadaptation[118–120].Additionalworkhasalso486takenplaceonHalorubrumlacusprofundifocusingonaminoacidsubstitutionsincold487adaptedproteins[121].488

ViruseshaveverylimitedcoverageinGBIFdataandarethereforenotpickedupintext489miningwiththisdatasource.However,aswemightexpect,researchonvirusesappearsin490472publicationsforotherspeciesinthedata.ThisincludesvirusesinAntarcticlakes491[122],researchonvirusesandantibodiesinAntarcticseals[123,124],awiderreviewof492researchonvirusesincetaceans[125,126]andresearchonvirusesinpenguinpopulations493[127,128].494

Ourpurposeinthissectionhasbeentoprovideabriefoverviewofbiodiversityresearchin495AntarcticaandtheSouthernOceanandtobegintofocusonresearchactivitywithactualor496potentialcommercialvalue.Weturnnowtothegrowingbodyofliteratureon497bioprospecting,orbiologicalresearchwithacommercialfocus,intheAntarctic.498

The Bioprospecting Literature 499

Asignificantliteraturehasemergedthatmakesreferencetobioprospectingorbiological500prospectinginAntarctica,consistingofover90articles.Thesearticlesrangefromresearch501withaspecificfocusonidentifyingthepotentiallyusefulpropertiesofAntarcticorganisms502toconsiderationofthepolicyimplicationsofcommerciallyfocusedresearchand503developmentfortheAntarcticenvironmentandbenefit-sharing.504

ThemosthighlycitedarticleonbioprospectingintheAntarcticisa2013analysisoffungal505communitiesassociatedwithmacroalgaeinAntarcticawithpotentialbioactivecompounds506thathassofarreceived83citations[129,130].Otherresearchiscomparativeinnature,507suchascomparingsamplesofsoilbacteriafromaridBrazilianandAntarcticsoilsthatare508capableofdigestingcellulose[131,132].Stillotherworkfocusesonmethodological509developmentsuchasimprovedculturingfrommetagenomic(environmental)samples510fromcoldenvironments[133,134].Innovationinresearchmethodsforbioprospecting511researchalsoextendstotheuseofgenomeeditingtechniquesandsinglecellsequencing512fororganismsfromterrestrialandmarineecosystems[135,135,136].Workonmethods513andtechniquesfrequentlyreferstopolarregionsratherthannecessarilyinvolvingdirect514fieldresearch.Thisisalsoreflectedinreviewarticlesonissuessuchasfungifrom515terrestrialandmarineAntarcticenvironments[137].Recentliteratureonbioprospecting516thathasyettoattractsignificantcitationsincludesworkonenzymesfromfilamentous517fungi[138],Antarcticbacteriaasasourceofnovelantibiotics[10],andassourcesof518antimicrobial,antiparasiticandanticanceragents[139,140].Wewouldemphasisethatthe519literatureusingthetermbioprospectinghasnotincreaseddramaticallyovertheyears520

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 20: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

20

fromthefirstrecordin2002,withapeakof8publicationsintheavailabledatafor2018521andanaverageof4publicationsayearbetween2002and2018.Inourviewtheuseofthe522termbioprospectingwillprovetobeanunreliableindicatorforwhatwewouldpreferto523callcommerciallyorientedresearchanddevelopmentfocusingonthepotential524applicationsofthepropertiesofAntarcticorganisms.525

Bioprospectingalsobecameanincreasingfocusofpolicyresearchfromtheearly2000s526onwardsinconnectionwithpotentialmeasuresundertheAntarcticTreatySystem(ATS)527andissituatedinawideremergingliteratureonthegovernanceofareasbeyondnational528jurisdiction[141,142].Thisincludespotentiallegalandpolicymeasures[6,143].Theethics529ofcommercialexploitationofAntarcticaandSouthernOceanresourceshasalsorecently530emergedasanimportanttopicnotablyina2020specialissueofEthicsinScienceand531EnvironmentalPolitics[144–147].532

DebatesaboutbioprospectinginAntarcticahavebeencloselytiedupwithpatentactivity.533Intheeconomicsliteraturepatentactivityisusedasaproxyoutputindicatorforotherwise534invisibleinvestmentsinresearchanddevelopment[6,7,148].Thatis,thefilingofapatent535applicationisanoutcomeofunderlyingfinancialinvestmentsinresearchanddevelopment536[6,7,148].Incontrast,inwiderpolicydebatesonbiodiversity,thefilingofabiodiversity537basedpatentapplicationhasbecomeassociatedwiththeconceptofbiopiracy,or538misappropriation,ofgeneticresourcesfromcountriesandcommunitiesforcommercial539gainwithoutreturningbenefitstocountries,communitiesorbiodiversityconservation.We540nowturntotheavailabledataonpatentactivityforbiodiversityfromtheAntarctic.541

Patent Activity 542

WeidentifiedpatentactivityreferencingAntarcticausingthesearchstrategydescribed543aboveacrossthefulltextsofpatentdocumentsworldwide.Therawdatawasreducedto54429,690applicationsandthenfurtherreducedto26,120earliestfirstfilingsthatformthe545basisofpatentfamilies.Wethentextminedthedocumentsforanytypeofspeciesname546andreducedtheresultstothosewithaverifiableoccurrenceinAntarcticaortheSouthern547OceanintheavailabletaxonomicrecordfromGBIF.Weidentifiedatotalof3,907patent548applicationsand2,738firstfilingsthatcontainedaverifiableAntarcticspecies.Intotalwe549identified1,212speciesinthepatentdataofwhich354wereverifiableAntarcticspecies550basedonlocalityinformationinthetaxonomicrecord.551

InapproachingthisdatawewouldnotethatthedataonAntarcticspeciesthatformedthe552basisforthesearchwillinevitablybeincomplete.Asdiscussedbelow,wealsonotethatthe553appearanceofanAntarcticspeciesinapatentdocumentdoesnotnecessarilymeanthatan554elementofthatspeciesisclaimedbytheapplicants.Wewillbeginwithanoverviewofthe555patentdatacontainingAntarcticspeciesandthenprogressivelynarrowthefocusbefore556concludingwithexamplesofdirectcollectionofsamplesinAntarctica.557

Figure5displaysthecountsofspeciesappearinginthefulltextsofpatentdocumentsthat558areknowntooccurinAntarctica.559

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 21: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

21

560

Figure5:AntarcticSpeciesinPatentdocumentsRankedbyFirstFilings561

Figure5revealsthat,aswemightexpectfromthescientificliterature,thetopspeciesis562Candidaantarctica(acceptednameMoesziomycesantarcticus).Thisisfollowedbythe563ubiquitousE.coli.ThepresenceofwidespreadspeciessuchasE.coliwillinourviewreflect564theuseofthisorganismasatoolinbiotechnologyratherthanspecificstrainsfrom565Antarctica.Thiswillalsobetrueforotherwidelydistributedspeciesthathavebeen566recordedintheAntarctic.567

Oneimportantfeatureofpatentactivityisthataspeciesmaybementionedindifferent568sectionsofadocument.Asageneralrule,patentdocumentsthatmentionaspeciesinthe569title,abstractorclaimswillinsomefundamentalsenseinvolvethatspeciesinthe570invention,eitherasasourcefortheinvention,suchasalipase,orasatargetofthe571inventionsuchasapathogen.However,themaindensityofspeciesreferencesisfoundin572

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 22: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

22

thedescriptionsection.Figure6showsthebreakdownofspeciesnamesinthepatentdata573presentedinFigure5bydocumentsectionrankedonpatentclaims.4574

575

Figure6:AntarcticSpeciesinPatentDocumentsbySectionRankedonClaims576

AsFigure6revealsthemajorityofreferencestoaspeciesappearinthedescriptionsection577withtheremainderappearingintheclaims.578

Referencestospeciesmayappearinanapplicationforanumberofdifferentreasons:579

• Aspartoftheclaimedinvention(thespeciesismaterialtotheinvention);580• Aspartofexperimentsleadingtotheclaimedinvention;581• Asanactualorpotentialcomponentoringredientintheinvention,includinginclaims582

constructedonthegenus,family,phylumorhighertaxonomiclevels;583

4BecauseaspeciesnamemayappearinmultiplepartsofthesamedocumenttheoverallcountswillbehigherthanthetotalsinFigure5.

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 23: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

23

• Literaturecitations(seebelow);584• Passingreferences(e.g.“ineveryspeciesexcept…”,or“speciesxhasbeenusedtodo585

y”)andlonglists(notablyforviruses);586• AsDNAoraminoacidsequencesthatareeitherusedascomparativereference587

sequencesorclaimed.588

Inpractice,determiningwhetheraspeciesismaterialtoaclaimedinventionrequiresclose589attentiontoandinterpretationofthetexts.Inthediscussionbelowweprovideexamplesof590thedifferentreasonsthataspeciesmayappearinthetext.Figure7presentsanoverview591ofthe2,738firstfilings.592

593

Figure7:OverviewofPatentActivityinvolvingAntarcticOrganisms594

Figure5Arevealsarising,ifirregulartrendinfilings.Theapparentdeclineinfilingsin5952016willnormallyreflectadatalagtimeofatleasttwoyearsbetweenthefilingofapatent596applicationanditspublication.Whilearisingtrendisobservablefrom2000onwardsthe597overallnumberoffilings,peakingat220in2014,isrelativelymodest,particularlywhen598

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 24: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

24

outstandingissuessuchasnoiseintheformofspeciesrecordedintheAntarcticthatwere599notcollectedintheAntarcticaretakenintoconsideration.600

Figure5BpresentsdataonthemaintechnologyareasbasedonInternationalPatent601Classificationsubclassesandhasbeeneditedforreadability.Figure5Bsuggeststhatthe602Antarcticdataisdominatedbybiotechnologywithpharmaceuticalormedical603preparations,detergents,foods,biocidesandcosmeticsastheothermainproduct604categories.605

IntermsofthenumberoffirstfilingsthedataisclearlyledbyNovozymeswithother606companiesandresearchorganisationssomedistancebehind.Herewewouldobservethat607Novozymeshasalongstandingpolicyofincludinginformationonthegeographicoriginof608geneticmaterialinpatentapplications.Onbalance,thenumberoffilingsoverallandby609organisationisrelativelysmallandsubjecttosignificantyearlyvariation.610

Inpractice,theemergingpatentlandscapeforAntarcticacanbedividedintosixmain611segments:a)sequencedatab)Candidaantarctica,c)Antarctickrill,d)otherspecies612recordedintheAntarctic,e)citationsoftheAntarcticscientificliterature,f)referencesto613Antarcticplacenamesascollectionsites.Wenowaddresseachoftheseinturn.614

Digital Sequence Information 615

TheprominenceofbiotechnologyrelatedactivityissuggestedbythenumberofAntarctic616relatedfilingscontainingDNAoraminoacidsequences.Sequencedata,undertheplace617holderterm‘digitalsequenceinformation’orDSI,hasbecomeanincreasingfocusof618attentionininternationalpolicydebatesonaccessandbenefit-sharingforgenetic619resourcesinrecentyearsundertheConventiononBiologicalDiversityandarangeofother620policyprocesses[149–154].Inthecontextofdebatesonanewtreatyonmarine621biodiversityundertheUnitedNationsLawoftheSea,countsofgeneticsequencesinpatent622datahavehadasignificantimpactonpolicydebatesandhaveattractedsignificantpublicity623[155–158].624

Intotal928firstfilingscontainedaverifiableAntarcticspeciesandDNAandaminoacid625sequencedata.AftertheexclusionofrecordswheretheubiquitousE.coliwastheonly626speciesrecordedinadocumentwithasequencelisting,739firstfilingscontained627sequences.628

Inpractice,considerablecautionisrequiredininterpretingthesequencedatainpatent629documents.Existingresearchhasadoptedthenovelapproachofcumulatingcountsof630sequencesinpatentdocumentsthatarelinkedtomarinespeciesinpatentsequencedata631fromtheWorldIntellectualPropertyOrganization(WIPO)[155–158].Thisservesthe632purposeofdemonstratingtheincreasingpresenceofsequencesfrommarineorganismin633patentactivityandlinkstowiderquestionsaboutbenefit-sharing.However,theuseof634cumulativecountsmayinadvertentlydisguisetherealitythatunderlyingpatentfilings,635reflectingtheoutcomesofinvestmentsinresearchanddevelopment,maybemuchweaker636andmadeupofspikesofindividualdocumentscontaininglargenumbersofsequences637[157].Figure8displaysthreedifferentapproachestocountingsequencedata.638

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 25: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

25

639

Figure8:ApproachestoSequenceCountsforPatentActivityforAntarcticSpecies640

BeginningwithFigure8(1A)weobserveoveralltrendsinfirstfilingscontainingsequences641fordocumentsthatalsocontainanAntarcticspecies(aftertheexclusionofE.coli).Trends642infilingareclearlymodestoverthisperiodandpeakat95filingsin2014.Movingupto643Figure8(1B)wepresentcountsofthenumberofsequencesthatappearedindocumentsby644year.Thisrevealsclearspikesinactivitythatconsistofafilingin2004containing108,053645sequences,afilingin2006containing150,913sequencesandasetof7filingsin2015646containing78,771of80,602sequencesrecordedthatyear.Thesignificanceofthisbecomes647clearerwhenweconsiderFigure8(1C)whichdisplaysthecumulativesumovertime648leadingtoatotalof562,789sequences.Thismayreadilygiveanimpressionofsignificant649commercialinterestuntilwerecognisethat46%ofactivityovertheperiodismadeupof650twofilingsrisingto60%ofactivityacrossthe9filingsmentionedabove.Inshort,651cumulativetrendscanradicallyamplifyotherwiseweakunderlyingactivity.652

Itiscommonpracticeinpatentanalyticstofocusondocumentswhereasubjectofinterest653appearsinthetitles,abstractsorclaimsonthebasisthatthedocumentwillina654fundamentalwaybe‘about’thatsubject.Figure8(2)reproducestheapproachinFigure655

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 26: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

26

8(1)butrestrictsthedata,aftertheexclusionofE.coli,tofilingswhereanAntarcticspecies656appearsinthetitles,abstractsofclaims(TAC)ofafiling.Astheirregularityofthispattern657inFigure8(2A),andtheassociatedspikeinFigure8(2B),servetohighlight,whenviewed658fromthisperspectivecommercialinterestinAntarcticspecies,asreflectedinsequence659data,canbereasonablybedescribedasemergentratherthanintense.660

Aneedforcautioninapproachingsequencedatainpatentfilingsisalsoreflectedinthefact661that,asJeffersonet.al.2013haveablydemonstrated,sequencesmayappearinpatentdata662eitherbecausetheyarecomparativereferencesequences,orbecausetheyareclaimed663[159].However,disentanglingreferencedandclaimedsequencesrequiresclose664interpretationofpatentclaimsandrepresentsaweakareainexistingmethodsinpatent665analytics.ToolssuchasPatSeqfromtheLensareopeningupthepossibilityofgreater666rigourintheinterpretationofsequencedatainpatentdocuments.667

Inourview,cumulativecountsofsequencescanserveasausefulindicatorofgrowing668commercialinterestinbiodiversityinareassuchastheAntarcticbutshouldnotbeusedin669isolationfromconventionalcounts.Cumulativecountsareparticularlyusefulfor670amplifyinganotherwiseweaksignal.However,themethodshouldlogicallyonlybeusedin671conjunctionwithothercountsinordertoavoidgivingamisleadingimpressionofintense672commercialinterestingeneticresourceswheninpracticeactivityisweakoremergent.673Furthermore,anexclusivefocusonsequencedatainthecaseofmarinegeneticresources674hasoccurredattheexpenseofrecognitionthatthemajorityofpatentactivityfor675biodiversityandmarinebiodiversitydoesnotinvolvesequences[157,160].Thus,inthe676caseoftheAntarcticdatapresentedherethe928filingscontainingsequencesconstitute67734%ofthe2,738firstfilingscontaininganAntarcticspecies.Assuch,abroaderviewthat678accommodatesthefullspectrumofpatentactivityforbiodiversityisappropriate.679

680

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 27: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

27

Candida antarctica 681

Asnotedabove,thetypespecimenforCandidaantarctica(acceptednameMoesziomyces682antarcticus)wasoriginallycollectedfromsedimentinLakeVanda.Figure9displaysan683overviewoffilingactivityforCandidaantarctica.684

685

Figure9:OverviewofFirstFilingsforCandidaantarctica686

Candidaantarcticaisayeastspeciesthatisasourceofindustriallyimportantlipases.A687lipaseisanyenzymethatcatalysesthehydrolysisoffats.Theearliestfilingintheavailable688dataforC.antarcticacanbetracedto1986byNovozymesfortheEnzymaticSynthesisof689WaxesfocusingonMucormieheiandprovidingexamplesusingC.antarcticalinkedtoan690earlierfilinginDenmark[161].However,themosthighlycitedpatentdocumentisa1992691filingbyNovoNordisk,theoriginalparentofNovozymes,thatclaimsC.antarcticalipase692anditsvariantsincludinganumberofmodifiedaminoacidsequences[162].Fromthese693relativelyearlybeginningstheuseofCandidaantarcticalipasehasexpandedintoavariety694ofdifferentsectorsincludingmedical,detergents,fuelsandfoodstuffsforwhichwe695providebriefexamples.696

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 28: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

28

AswecanseeinFigure9Basignificantnumberofmedicalrelatedpatentapplications697involveC.antarctica.Thesedocumentstypicallytaketheformofreferencestotheactualor698potentialuseofthelipaseinmedicalcompositionsratherthanclaimstothelipaseitself.699Thus,NeosetechnologiesIncclaimaninventionthatrelatestomutantsofFibroblast700GrowthFactor(FGF),particularlyFGF-20andFGF-21,whichcontainnewlyintroducedN-701linkedorO-linkedglycosylationsite(s).Theapplicationalsodisclosespolynucleotide702codingsequencesforthemutants,expressioncassettescomprisingthecodingsequences703andcellsexpressingthemutants[163].Inasimilarway,RigelPharmaceuticalsIncdisclose7042,4-pyrimidinediaminecompoundshavingantiproliferativeactivity,compositions705comprisingthecompoundsandmethodsofusingthecompoundstoinhibitcellular706proliferationandtotreatproliferatediseasessuchastumorigeniccancers[164].Inour707viewthemajorityofmedicallyfocusedreferencesarelikelytoinvolvetheactualor708potentialuseofthelipaseratherthandirectclaimsinvolvingC.antarctica.However,more709directuseofthelipaseisreflectedinaUniversityofGeorgiaResearchFoundationIncfiling710describingnovelstructuredlipidsandtheiruseinmodulatingtotalcholesterollevels[165].711

Inthecaseofbiodiesel,WechtechBiotechCo.Ltdhaveappliedforamethodforenhancing712theactivityofanimmobilizedlipasetheyclaimisusefulinamethodofpreparingbiodiesel713bytransesterificationoftriglycerides[166].Inthecaseoffoodstuffs,AkerBiomarine714reportonnovelcompositionscontainingconjugatedlinoleicacidsthatareefficaciousas715animalfeedadditivesandhumandietarysupplementsthatuseC.antarcticalipaseinthe716esterificationprocess[167].SenomyxInchavereportedthatcertainnon-naturally717occurring,non-peptideamidecompoundsandamidederivativesareusefulflavourortaste718modifiersforfood,beverages,andothercomestibleororallyadministeredmedicinal719productsorcompositions[168].However,theC.antarcticaappearstobesimply720referencedinthisapplication.721

PatentactivityforC.antarcticaillustratesthepointthatspeciescanbesaidtoenjoycareers722insidethepatentsystem.Thesecareerstypicallystartwithfilingsonthediscoveryofa723usefulpropertyofanorganism,arefollowedbyclaimstovariantsofthatpropertyandthen724expandtotheactualorpotentialuseofthatelementinawiderrangeofclaimedinventions725andproducts.Astheusesofanelementofanorganismbecomeestablished,researchwill726alsotypicallyturntoidentifyingotherusefulpropertiesofanorganismandtheincreasing727pursuitofalternativesfromothersourcestocompetewiththoseelements.Overtime,the728bulkofactivityrelatestotheactualorpotentialuseoftheelementsofanorganismina729claimedinventionratherthandirectclaimstoelementsoftheorganism.Experience730suggeststhatthecareersofmanyspeciesinthepatentsystemfollowthistypeofpattern731andthiscanalsobeobservedinthecaseofAntarctickrill[160].732

733

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 29: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

29

Antarctic krill 734

AntarctickrillEuphausiasuperbahasbecomeanincreasingfocusforthedevelopmentof735commercialandconsumerproductsinvolvingkrilloilandtheuseofkrillinfeedfor736commercialaquaculture.PreviousworkbyFosteret.al.2011highlightedtheproliferation737ofpatentactivityacrosssectorsforkrillanditsimplicationsforpredictingtrendsinkrill738fishery[169].739

Acrossbothscientificandcommonnamesforkrillweidentified150firstfilingslinkedtoa740totalof1,193familymembersworldwide.Wewouldnotethatthisdataisconfinedto741filingsthatmakereferencetoEuphausiasuperbaorAntarctickrillwithintheAntarctic742patentdatasetanddoesnotconsiderwiderreferencesforthesimpletermkrillinpatent743documents(supplementarymaterial).Figure10displaysanoverviewofthedataonfirst744filingsforAntarctickrill.745

746

Figure10:Antarctickrill747

Figure10revealsthatwhilefirstfilingsinrelationtokrillarerelativelysmall,thereisa748distinctriseinfilingsreflectingwiderinterestincommercialresearchanddevelopment749usingkrill.Figure10focusesontheveryfirstfilingsofpatentapplications.Incontrast,750Figure11expandsthelandscapetofocusonallknownfollowonapplicationsandgrants751aroundtheworldthatform‘familymembers’ofthefirstfilings.752

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 30: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

30

753

Figure11:PatentFamilyMembersWorldwideforAntarcticKrill754

ComparisonbetweenFigure10andFigure11helpstoclarifythatasingleapplicationmay755leadtomultipleapplicationsandgrantsaroundtheworld.Applicantsmustpayfeesateach756stageoftheapplicationprocedureand,whererelevant,maintenancefeesforpatentgrants757ineachcountry.Followonfilingsthereforereflecttheimportanceoftheclaimedinventions758totheapplicantsinspecificmarkets.Thisdataalsodemonstratesthatarelativelysmall759numberoffilingscanhaveawiderglobalimpactasapplicantsseektoprotectand760commercialisetheirclaimedinventionsinmultiplemarkets.However,whileFigure11761showsasteeplyrisingtrendthenumbersarenotdramaticrelativetoactivityinthewider762patentsystem.763

InthecaseofAntarctickrillwearewitnessingacombinationofanincreasingnumberof764claimstoelementsofkrill,suchaskrilloil,andtheuseofkrillasanactualorpotential765ingredientinaclaimedinvention(suchasafoodstuff,animalfeedorcosmetic).Inpractice,766filingsrelatingtoAntarctickrillcanbetracedbacktothe1980sandthescientificliterature767onkrillhasplayedasignificantroleinpromotingcommercialresearchanddevelopment.768Thus,a1986articleon‘Supercriticalcarbondioxideextractionofoilsfromantarctickrill’769

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 31: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

31

byresearchersfromJapanhasbeencitedinthepatentliteratureover55times[170].770Claimedinventionscitingthisarticleincludetheextractionofpolarlipidsand771phosopholipidsfromkrill[171],andanewkrilloilcompositionwhichwasfoundtobe772usefulasananti-inflammatory,asananti-oxidantandforimprovinginsulinresistances773andbloodlipidprofiles[172].Wealsoobserveactivityforakrillextractaimedattreating774thrombosis[173]andamethodforusingkrilloiltotreatriskfactorsforcardiovascular,775metabolicandinflammatorydisorders[174]aswellastherapeuticphospholipid776compositionsfortreatingorpreventingawiderangeofdiseasessuchascardiovascular777andneurodegenerativediseases[175].Theuseofkrillaskrillmealinaquaculturehasalso778emergedasasignificantfocusofcommercialresearchanddevelopmentsuchaskrillmeal779products[176],aswellasmethodsformakingkrillmeal[177]andusingkrillmealasa780supplement[178,179].Recentapplicationsincludeapplicationsseekingtotacklethe781harmfuleffectsofoxidisedLDLcholesterol[180],andtoprovidenutritionalsupplements782[181]andnewlipids[182].783

Antarctic literature cited in patent documents 784

TheprominenceofCandidaantarctica,Antarctickrillandthesheerdiversityofspeciesthat785appearinpatentdocumentsthatmentionAntarcticacanmakeitdifficulttoassessactivity786forotherAntarcticspecies.However,theLensdatabasehaspioneeredeffortstolinkthe787scientificliteratureandcitingpatentdocuments.Thismeansthatitispossibletoidentify788andexplorecaseswhereAntarcticresearchiscitedinapatentdocument.789

ItisimportanttonotethatascientificpublicationonAntarcticbiodiversitymayappearina790patentdocumentforanumberofreasons.Insomecountries,suchastheUnitedStates,791applicantsarerequiredtodiscloseallpotentiallyrelevantpriorart(scientificpublications792andpatents)atthetimeofapplication.Thiscantaketheformofpassingreferencesthatare793notinrealityrelevanttotheclaimedinvention.Inothercases,literatureonAntarcticamay794formpartofawiderthematicset(suchasanti-freezeproteins)thatindirectlyinformsthe795claimedinvention.Inathirdcase,anelementofanAntarcticspeciesidentifiedinthe796literaturemaydirectlyformpartofacomposition,methodorprocess.Finally,inasmall797numberofcases,Antarcticresearchersarebothpublishingandapplyingforpatent798protectionforbiodiversitycomponentsarisingfromtheirresearch.Wenowbrieflyexplore799thisdata.800

ThearticleonAntarcticbiodiversitythathasreceivedthemostpatentcitations,withover80160citations,isareviewentitled“DevelopmentswithAntarcticmicroorganisms:culture802collections,bioactivityscreening,taxonomy,PUFAproductionandcold-adaptedenzymes”803[183].Patentapplicationscitingthisarticlehavefocussedontheproductionof804polyunsaturatedfattyacids(PUFAs)frombacterialmicroorganisms[184–187],including805theproductionofthePUFAomega-3[188].AfilingbyMartekBioscienceson806polyunsaturatedfattyacid(PUFA)polyketidesynthase(PKS)systemsusingShewanella807japonicaandShewanellaolleyanaalsostatesthatS.olleyanawassourcedfromthe808AustralianCollectionofAntarcticMicroorganisms(ACAM)asstrainnumber644.However,809theaccompanyingliteraturecitationforthesamplemakesclearthatthespecificsample810wasfromanestuaryfromAustralia[189].Assuch,whiletheAntarcticliteratureinforms811theclaimedinvention,thisisanexampleofindirectinfluence.812

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 32: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

32

AnarticleontheAntarcticnematode,Panagrolaimusdavidithatsurvivesintracellular813freezinghasreceived44literaturecitationsandiscitedin13patentfamilies[190].The814mosthighlycitedpatentfamiliesarefromZeltiqAestheticsIncandpertaintomethodsfor815coolingandtreatingsubcutaneouslipidrichcellssuchasadiposetissue[191,192],and816methodsforinterruptingorresumingtreatments[193,194].Thisisasecondexample817wheretheAntarcticliteratureindirectlyinformsorinspiresaclaimedinventionbecause818theinventionitselfisaphysicaldeviceforcoolingtissue.819

Patentclaimsinvolvingbiodiversitymaybeconstructedondifferenttaxonomiclevelssuch820asspecies,genus,familyandorder.Inthecaseoforderlevelclaims,a1974article“Four821newspeciesofthraustochytriumfromAntarcticregions…”[195]isreferencedin12patent822documentsfrom3patentfamiliesfiledbyMartekBiosciences.However,thespecific823referencetoAntarcticaislimitedtocomparisonwiththegrowthconditionsofother824Thraustochytrium.Patentdocumentswithinthethreefamiliesincludeaprocessfor825growingThraustochytriumandafoodproductwhichincludesThraustochytrium[196]and826processesforgrowingmicroorganismsoftheorderThraustochytriales[197,198].Thefirst827claimofonefilingisfor:“Aprocessforculturingamicroorganismoftheorder828Thraustochytriales…”inaculturemediumtoobtainPUFAlipids.Inthiscaseitisthe829processforobtainingthelipidsfromtheorganismsthatisthefocusoftheinventionrather830thanbiochemicalcompoundsfromtheorganismsperseasinclaimsforcompositionsof831matter[196].832

Examplesofpatentclaimsatthegenuslevelareprovidedinasetof18patentapplications833citinganarticledefiningthegenusNocardiopsis,includingNocardiopsisantarctica,[199].834ThesepatentdocumentsincludedirectclaimsrelatingtoNocardiospis,suchasafilingsby835NovozymesinrelationtoproteasesandassociatedDNAandaminoacidsequences,butuse836speciesotherthanN.antarcticasuchasN.alba[200].However,thesetypesofapplication837commonlyanticipatetheuseofthesame,orsubstantiallysimilarsequences,fromother838membersofthegenusthroughreferencetootherspecies,suchasN.antarcticaelsewhere839intheapplication.840

Astheseexamplesillustrate,patentdocumentsinvolvingbiodiversityandthebiodiversity841literaturemayinformclaimedinventionsinavarietyofwaysandrequireconsiderable842careininterpretation.WenowturntopatentfilingsthatcitetheAntarcticliteraturewhere843anAntarcticspeciesisdirectlymaterialtotheclaimedinvention.844

AnarticleexploringexopolysaccharidesproducedbymarinebacteriafoundinArcticand845Antarcticseaiceandotherextremeenvironmentshasbeencitedin10patentfamilies846[201].Theseincludetheuseofexopolysaccharidesincompositionstotreatsubterranean847formations[202]whileotherfilingsrefertotheuseofbacterialexopolysaccharidesin848cosmeticcompositions,withantioxidantproperties[203],anti-wrinkleproperties[204],849andcontrollingsebumsecretionintheskin[205].850

AnarticleidentifyingthemechanismsthroughwhichAntarcticmicroalgaChlorellavulgaris851isabletoadapttocoldconditionsandhighsalinity[206]hasbeencitedin6patentfamilies852(10documents).TheseincludetheuseofChlorellavulgarisintheproductionofnaturaloil853forthepurposeofmanufacturingtransportationfuelssuchasrenewablediesel,biodiesel,854

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 33: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

33

andrenewablejetfuel,aswellasoleochemicalssuchasfunctionalfluids,surfactants,soaps855andlubricants[207].Thispatentapplicationhasbeencitedbyover17laterfilings.856Anotherpatentapplicationutilisingthespeciesintheproductionofrenewablefuels,which857arealsousefulasfeedstocks,alsocitesthisarticle[208].858

ResearchonalkaloidsfromtheAntarcticspongeKirkpatrickiavarialosainthemid1990s859hasbeencitedinfourpatentfamiliescontaining10documentsledbytheSpanish860pharmaceuticalandmarinebiodiscoverycompanyPharmaMarfiledfrom2000onwards861[209].Thepatentfamiliesfocusontheanti-tumourpropertiesofVariolinandits862derivatives[210–213].Threeofthepatentfamiliescontainover30familymemberswith863protectionsoughtin21countriessuggestingthattheapplicantsbelievethattheclaimed864inventionhassignificantcommercialpotential.865

Asdiscussedabove,coldtoleranceorantifreezemoleculesandproteinshavebeena866significantareaofresearchintheAntarctic.TheAntarcticgrassDeschampsiaantarcticahas867beenasignificantfocusofAntarcticresearchwith251articlesinourAntarcticliterature868datasetwithtopcitedscientificliteraturefocusingonissuessuchasheattoleranceof869photosynthesis,theevolutionofUVabsorbingcompounds,andvascularplantsas870bioindicatorsforwarminginAntarctica[214–216].871

Scientificliteraturethatiscitedbypatentapplicantsincludesworkonthreecold-872responsivegenesfromDeschampsiaantarcticabyresearchersfromChile[217].This873researchiscitedbythreepatentfamiliesincludingoneforanicerecrystallisation874inhibitionprotein,andanotherforanisolatedlowtemperatureplantpromotergene875[218,219].Otherworkofrelevanceincludesworkonthecharacterizationofantifreeze876activityinAntarcticplants[220]thatiscitedina2013patentgrantforanagentfor877cutaneousphotoprotectionagainstUVA(IandII)andUVBradiation(skinprotection878againstsundamage)containinganaqueousextractfromDeschampsiaantarcticaeither879obtainedfromitsnativeenvironmentorgrowninartificialsettings[221].Asthissuggests,880geneticelementsandcompoundsfromAntarcticspeciesmayfindapplicationsinmultiple881industrysectors.Intotal,ashighlightedinFigure5,weidentified26firstfilingsinvolving882Deschampsiaantarctica.883

Anarticleexaminingtheantifreezeproteingenefromtheantarcticmarinediatom884Chaetocerosneogracile[222]iscitedina2014patentfamilyfiledbySamsungelectronics885foran“AntifreezeMember”.Thefocusoftheclaimedinventionisthecreationofametal886substrateforsemiconductors,energyandbiosensorsthatovercomestheproblemoffrost887formationoncoolingplates.A2017USpatentgranttoSamsungclaimsthatthisproblem888canbesolvedby“arecombinantantifreezeproteininwhichametal-bindingproteinis889conjugatedtoanantifreezeproteinderivedfromChaetocerosneogracile”[223].890

Inwhatappearstobeasmallnumberofcasestheauthorsofscientificarticlesarealso891applyingforpatentprotection.OneexampleisworkbyresearchersinKoreafromthe892KoreaPolarResearchInstituteandtheKoreaOceanResearchandDevelopmentInstitutein893workontheantioxidantpropertiesoflichensfromAntarctica,notablyRamalinaterebrata894[224].Inthiscasetheresearchhasledtothefilingof5applicationsfocusingonRamalin895fromRamalinaterebrata[225,226].ThisincludestheuseofRamalinforitsantioxidant896

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 34: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

34

properties,inpharmaceuticalproductstotreatoxidationrelateddiseases,infunctional897foodsforanti-agingpurposesandinfunctionalcosmeticsforskin-whiteningandanti-898wrinklepurposes[227].OnepatentapplicationrelatestotheuseofRamalinina899pharmaceuticalcompositiontotreatorpreventinflammatoryandimmunediseases[228].900Anotherapplicationrelatestoanti-cancertreatmentforcolorectalcancer[229].Taken901togetherthefilingssuggestastrategytocaptureabroadrangeofpotentialmedical902applicationsforRamalin.AtthetimeofwritingthescientificlandscapeforRamalin903consistsof31scientificpublicationsand21patentfamilies.Thisrepresentsasignificant904researchinvestmentandstronglysuggeststhattheapplicantsbelieveRamalinhas905commercialpotential.906

Coralsandtunicates,suchasseasquirts,havebeenamajorfocusofappliedand907commercialmarineresearch[230].InthecaseofAntarcticaSynoicumadareanumhasbeen908thesubjectofresearchonacytotoxicmacrolidethatalsoformedthebasisforapatent909applicationandgranttotheleadauthors[231,232].TheseasquirtAplidiumcyaneumhas910alsobeenafocusofresearchoncytotoxicbromoindolederivativesthatbecamethebasisof911apatentapplicationbysomeoftheauthors[233,234].912

Antarcticfishhavealsobecomeasignificantfocusofcommerciallyorientedresearchand913development.Thescientificliteraturehasfocusedonissuessuchastheroleof914NotothenioidfishinthefoodweboftheRossSeashelf[235],orneutralbuoyancyin915Notothenioid[236].CommerciallyorientedresearchforNotothenioidssuchasDissostichus916mawsonifocusesonantifreezeglycopeptidesinthetissuesandfluidsofAntarcticfish[237]917andcomparativeanalysisoftheseproteinsbetweenArcticandAntarcticfish[238].This918workhasresultedinadirectfilingin1990byatleastoneoftheresearchersatthe919UniversityofCaliforniaforthermalhysteresisproteinswithasignificantimpactonlater920patentfilingsintheformof57patentcitationsfocusingonissuessuchasice-controlling921moleculesandcryosurgery[239].Intotal7firstfilingsrelatingtoDissostichusmawsoni922wereidentifiedinthepatentdataset.923

OtherNotothenioideithatareafocusofcommercialresearchanddevelopmentincludethe924WhiteBloodedIcefish(Chaenocephalusaceratus)[240,241].Workonicefishlackingin925haemoglobinisreflectedina1999filingonmethodsfortheisolationofhemapoieticgenes926inAntarcticicefish[242].ComparativeresearchinvolvingChaenocephalusaceratus927focusingonVitaminEcontent[243]associatedwithcoldadaptationhasalsoattracteda928patentcitationbutwithaspecificfocusonakrillcomposition[244].Pagothenia929borchgrevinkiisalsoasourceforapatentfilingbyAirbusin2008foranti-freezeproteins930forapplicationtowings,rotorsandturbines[160,245].931

Astheseexamplesmakeclear,analysisofpatentdocumentsthatcitetheAntarctic932literatureprovideaclearroutetomonitoringfilingswhereanAntarcticspeciesismaterial933toaclaimedinvention.However,careisrequiredininterpretingthereasonswhyanarticle934iscitedandwhetheranAntarcticspeciesisdirectlyinvolvedormaterialtotheclaimed935invention.Weconcludethisexplorationofthepatentlandscapebybrieflyexamining936referencestoAntarcticplacenamesinpatentdata.937

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 35: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

35

Antarctic Places 938

Oneaimoftheresearchwas,asfaraspossible,toidentifyandmapplacenamesappearing939intheliteratureandpatentdata.Twomainsourcesofdataareavailableforplacesin940Antarctica.ThefirstistheSCARCompositeGazetteer(March2018)of36,630names.The941secondsourceistheGeonamesdatabase,whichproducesafileAQforAntarctica942containing18,526placenamesand27,273variantnamesinmultiplelanguages.To943examinereferencestoAntarcticplacesinpatentdocumentswededuplicatedthenames944andthenmappedtherootsofplacenamesintothepatentdatafocusingonpatent945documentsthatalsocontainaspeciesname.Intotalweidentified267filingsthat946containedareferencetoaplacenameandaspeciesname,dominatedbytheterm947Antarctic/Antarctica.ReferencesrangefromgeneraldescriptionsofkrillasanAntarctic948speciestoAntarcticislands.Herewefocusonillustrativeexamples.949

A2010filingbyresearchersfromtheKoreaOceanResearchDevelopmentInstitute950(publishedasEP2617464A1)makesmultiplereferencestoplacesincludingKingSejon951Station,BartonPeninsulaandKingGeorgeIsland.TheapplicationfocusesonAntarctic952lichensnotablyanextractofStereocaulonalpinuminpharmaceuticalandfood953compositionstopreventortreatdiabetesorobesityandhasapatentfamilywith15954membersincludingpatentgrantsinChina,undertheEuropeanPatentConvention,Japan955andtheUnitedStates[246].Thepatentapplicationandothermembersofthepatentfamily956explainthat:957

“…the Antarctic lichen Stereocaulon alpinum (Stereocaulon alpinum (Hedw.) G.L. Sm.) used in the present 958invention was collected from the area around the King Sejong Station (S 62°13.3’, W58°47.0’) located on Barton 959Peninsula on King George Island, Antarctica, in January 2003.” 960

Animportantfeatureofthisexplicitreferenceisthatitispossibletoidentifytheprecise961pointofcollectionthroughtheuseofanamedplaceandcoordinates.Thisisalsoacase962whereatleastoneoftheauthorsofresearchonStereocaulonalpinumislistedasan963inventor[247].964

AsecondexampleofdirectcollectionofsamplesinAntarcticaalsorevealstheclose965relationshipbetweenthepublicationofscientificarticlesandpatentfilings.A2016filing966fromresearchersfromtheUniversityofSouthFloridaandtheUniversityofAlabama(UAB)967ResearchFoundationaddressesMRSABiofilmInhibition[248].Theapplicationstatesthat:968

“In the course of acquiring biodiversity to support an antibiotic screening program, the current inventors obtained 969the sponge Dendrilla membranosa from the vicinity of Palmer Station, Antarctica. The dichlorom ethane extract of 970the freeze-dried sponge was subjected to reversed-phase solid-phase extraction eluted with acetonitrile. The 971extract underwent HPLC purification to yield four major natural products, including three previously reported 972spongian diterpenes: aplysulphurin, tetrahydroaplysulphurin, and membranolide (Karuso et al., Aust. J. Chem. 9731984, 37, 1081-1093; Karuso et al., Aust. J. Chem. 1986, 39, 1643-1653; and Molinski et al., J. Org. Chem. 1989, 54, 9743902-3907). The fourth product was identified as darwinolide, a new rearranged spongian diterpene having a 975structure shown in FIG. 1. … The darwinolide skeleton is the newest of over a dozen structural motifs distinguishing 976the broad chemodiversity found in the Darwinellidae family of sponges.” [248] 977

978

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 36: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

36

Theygoontoexplainthat:979

“Sponge samples were collected from various sites around Palmer Station, Antarctica in the austral summer of 9802011. The collection sites chosen were Norsel Point (64°45.674’ S, 64°05.467’W), Bonaparte Point (64°46.748’ S, 98164°02.542’W), Gamage Point (64°46.345’ S 64°02.915’W), and Laggard Island (64°48.568’ S, 64 00.984’W) at 982depths between 5-35 m below sea level. Samples were frozen and transported back to the University of South 983Florida at -70°C where tissues were lyophilized and stored at - 80°C until further processing.” 984

TheapplicantsclaimamethodfortreatingbacterialinfectionsincludingMRSAbiofilms985withadarwinolidecompound.However,thisisalsoacasewhereresearcherstimethe986submissionofascientificarticleandapatentfilinginsuchawaythattheresearcharticle,987whichwouldbecomepriorart,doesnotdestroythenoveltyoftheclaimedinvention.Thus,988theearliestfilingdateofthepatentapplicationisinApril2016shortlybeforethe989publicationofthescientificarticleinMay2016andisfollowedinOctober2017by990publicationofthePatentCooperationTreatypatentapplication[249].991

AthirdexamplehighlightsthatapplicantsmayobtainsamplesthroughAntarcticresearch992centresoperatingasintermediaries.A2009firstfilingfromIndiabecamethebasisfora9932010internationalPatentCooperationTreatyapplication[250]formethodsofpreparinga994plantextractusingliquidchromatographyandmassspectrometrywheretheplantextract995isfromDeschampsiaantarctica.Thisapplicationdescribeshow:996

“The frozen plant material was procured from Coppermine Peninsula on Robert Island, South Shetland Island, 997Antarctica and was exported to us by Instituto Antarctico Chileno…” 998

ThisapplicationalsomakesextensivereferencetothewiderliteratureonD.antarcticathat999mentionplacessuchasSignyIslandandKingGeorgeIslandsignifyingthattheintensityof1000occurrencesofreferencestoAntarcticplacesmaybeagoodindicatorofcollectionof1001samplesintheAntarctic.However,themaininsightfromthisexampleisthatinsomecases1002anAntarcticresearchinstitutemayserveasanintermediaryprovidingAntarcticmaterial1003forcommerciallyorientedresearch.Itisunclearwhethertheinstitutewasawareofthis1004purposewhenprovidingthematerialorwhetheramaterialtransferagreement(MTA)was1005establishedbetweentheinstituteandtheapplicants.1006

Afourthexampleillustratesthepointraisedabovethatasamplemaycomefrommultiple1007sources.A2006filingbytheMontereyBayAquariumResearchInstitutefor“Alight-driven1008energygenerationsystemusingproteorhodopsin”explainsthat:1009

Using the same proteorhodopsin-specific PCR primers, as for instance shown in FIGS. 2 and 3, proteorhodopsin 1010genes were also amplified from bacterioplankton extracts. As mentioned above, any proteorhodopsin-specific PCR 1011primer can be used. These bacterioplankton extracts include those from the Monterey Bay (referred to as MB 1012clones), the Southern Ocean (Palmer Station, referred to as PAL clones), and waters of the central North Pacific 1013Ocean (Hawaii Ocean Time series station, referred to as HOT clones). 1014

Asimilarmulti-sourcecaseisprovidedbyafilingfromWoodsHoleOceanographic1015InstituteformetagenomicsamplescollectedbydrillingthroughseaiceintheRossSea1016combinedwithanalysisofotherdiatomstocreatearecombinantorganismforthe1017expressionofCobalamin(vitaminB12)[251].Anadditionalexampleisafillingfora1018cryoprotectiveagentfromanovelPseudoalteromonassp.strainCY01(KCTC12867BP)1019collectedfromtheAntarcticOceanaswellasArcticstrains[252].Whiletheseapplications1020

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 37: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

37

explicitlyinvolvesamplesfromtheAntarctic,itcanbechallengingtodeterminewhether1021theorganismsarematerialto(partof)theclaimedinvention.1022

ReferencestoAntarcticplacenamesoccurinthecontextofwiderinternationaldebateson1023disclosureoftheoriginofgeneticmaterialinpatentapplicationsandtheconsequencesof1024suchdisclosure[253].Increasingly,countriesthatarepartytotheConventiononBiological1025DiversityanditsNagoyaProtocolarerequiringdisclosureoforigininsupportofthe1026implementationoftheseagreements.However,theconsequencesofdisclosure,andfailure1027todisclose,mayvaryconsiderably.Thepresentresearchrevealsthatapplicantswilloften1028mentionAntarcticoriginandmay,aswehavejustseen,beexplicitabouttheplacesand1029coordinatesofcollection.IninternationalpolicydebatesatWIPO,agreementon1030internationalrequirementsfordisclosureoforiginhasbecomestuckondisagreements1031abouttheconsequencesofdisclosure,suchasrevocationofagrantedpatentintheabsence1032ofevidenceofpriorinformedconsentandabenefit-sharingagreementwiththecountryof1033origin[253,254].However,inthecaseoftheAntarctic,asformarinebiodiversityinAreas1034BeyondNationalJurisdiction,thefunctionofdisclosurecouldperhapsbetterbeseenas1035makingthecontributionofAntarcticbiodiversitytoinnovation(aspartlyreflectedinthe1036patentsystem)visibletothewiderworld[157,160].Thatis,disclosurecanassistwith1037supportinggreaterawarenessoftheecosystemservicesprovidedbyAntarcticbiodiversity1038andthusofAntarcticatowiderhumanwelfare.However,debatesondisclosureoforigin1039alsoraiseharderquestionsaboutthecontributionthatthosewhoseektocommercially1040developanduseAntarcticbiodiversityshouldmaketoitsconservation.Weturntohow1041thisissuemightbeaddressedinclosing.1042

Conclusion 1043

Thispaperhassoughttocontributetomappingthescientificandpatentlandscapefor1044biodiversityandinnovationinAntarcticaandtheSouthernOcean.Thegrowingavailability1045ofopenaccessdatabasesofscientific,patentandtaxonomicdatameansthatitispossible1046tobegintomaptheselandscapesatscaleusingmethodsthatareopen,transparentand1047accessibletoarangeofdisciplines.However,aswehavealsosoughttodemonstrate,1048exploitingopportunitiesforanalysisatscalerevealsissuesarounddatacompletenessand1049dataquality.Inthecaseofpatentdata,thesechallengesextendtorequirementsfor1050considerablecareininterpretationoftheAntarcticoriginofgeneticresourceswithin1051patentdocumentsandwhethertheyareactuallymaterialtoorpartoftheclaimed1052invention.1053

Issuesarounddatacompletenessanddataqualitycanbeaddressedthroughapproaches1054suchasre-indexingtoaddressgaps,inthecaseofMicrosoftAcademicGraph,andcloser1055attentiontodatacleaningusinglocalityinformationfortaxonomicdatafromGBIF.The1056growingavailabilityofthefulltextsofbothscientificandpatentpublicationspresents1057importantopportunitiestoimproveaccesstothefullresultsofscientificresearchbutalso1058presentschallengesinmovingbeyondpuremetadatabasedapproaches.Openaccess1059databasessuchastheLenshavemadeimportantbreakthroughsbylinkingtogether1060scientificandpatentdatathroughcitations.Thisinturnmakesiteasiertomonitorpatent1061activityarisingfromresearchinvolvingAntarcticbiodiversity.Developmentsinmachine1062learning,intheformofNaturalLanguageProcessinglibrariessuchasspaCy,meanthatitis1063

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 38: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

38

nowpossibletoimagineapipelineapproachtomonitoringAntarcticresearchbystreaming1064newscientificpublicationsandpatentdatafromdatabaseapplicationprogramming1065interfaces(APIs),suchastheLens,throughamachinelearningmodelforclassification,1066nameentityrecognition,analysisanddistributiontothescientificandpolicycommunity.1067Thegrowingpopularityofpipelineapproachestodealingwithdataatscalereflectsthe1068widespreadavailabilityofopensourcelibrariesforanalyticsatscale.Implementingsucha1069pipelinewouldrequirefocusedinvestmentbyoneormoremembersoftheAntarctic1070TreatySystemandwouldlogicallybecoordinatedwiththeSCAR.Asthispaperhelpsto1071demonstrate,thisisanachievablegoal.1072

Thepresentresearchalsopointstopotentialwaysforwardinaddressingharderquestions1073aroundbenefit-sharingfromcommercialresearchanddevelopmentinvolvingAntarctic1074biodiversity.BioprospectinghasbeenontheagendaoftheAntarcticTreatySystemfora1075numberofyears.However,asfarasweareaware,beyondagreementtokeepdiscussing1076theissue,noconsensushasemergedonaneedforpracticalactionotherthancollecting1077moreinformationtoinformdeliberations.Thishasacertainlogicinlightofuncertainties1078aboutlevelsofactivityandtheactualorpotentialoverlapbetweengeneticresourcesinside1079theAntarcticTreatySystem,thosewithinnationaljurisdictionsandthosebeingconsidered1080bydebatesonthenewtreatyonmarinebiodiversityinareasbeyondnationaljurisdiction1081undertheLawoftheSea.1082

Onechallengewiththetreatmentofbioprospecting,orcommercialresearchand1083developmentasweprefer,isthatitislargelyseeninisolationfromotheractivitiesin1084Antarctica.Awayforwardcouldpotentiallybefoundbyviewingcommercialresearchand1085developmentfromanecosystemservicesandnaturalcapitalaccountingperspective.Many,1086ifnotallmembersoftheATS,haveembracedtheecosystemservicesapproachanda1087growingnumberaremovingtowardstestingorimplementingnaturalcapitalaccountingin1088accordancewiththeframeworkoftheSystemofEnvironmentalEconomicAccounting1089(SEEA)linkedtotheUnitedNationsSystemsofNationalAccounts(SEA)[19,20,255,256].1090Thesedevelopmentshavebeenaccompaniedbytheincreasingpromotionoftheconceptof1091PaymentsforEcosystemServices(PES)withintheenvironmentaleconomicsliteratureand1092policy,asproposedbyVerbitsky2018fortourisminAntarctica[19,257].Thistypeof1093approachwouldallowcountriestodrawonexistingexperiencewithecosystemservices1094andnaturalcapitalaccountingwhenaddressingcommercialactivityintheAntarctic.It1095shouldbeemphasisedthatthevaluationofecosystemservicesischallenginganditis1096increasinglyrecognisedthatthereisariskthatsuchapproachesmayseektoreduce1097biodiversitytoanequivalentmonetaryvalueattheexpenseofrecognitionofthemultiple1098valuesofbiodiversityanditsservices.Nevertheless,despitethesereservations,overthe1099shortandmediumtermthisapproachwouldplacetheassessmentofactivitiessuchas1100commercialresearchanddevelopmentortourismwithinaclearandtransparent1101frameworkthatwouldbringAntarcticaintothefoldofwiderworkontheeconomicsof1102biodiversity.1103

Theyear2020hasbeendescribedasasuperyearforbiodiversity.Ascountriesscrambleto1104addresstheformidabledamagecausedbyCovid-19itremainstobeseenwhetherthiswill1105becomeareality.However,oneimportantlessonfromtheenvironmentalandecological1106economicsliteratureisthatbiodiversitycannotbetreatedasafreegood.Thejoint1107

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 39: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

39

biodiversityandclimatecrisishasitsoriginsinthetreatmentoftheenvironmentasafree1108goodwheninfactthecostsaredeferredelsewhereincludingtofuturegenerations.When1109viewedfromthisperspective,biodiversityisnotfreebuthastobepaidfor.Atpresent,as1110farasweareaware,therevenuegeneratedbybiodiversitybasedinnovationfromresearch1111intheAntarcticdoesnotcontributetotheconservationofbiodiversityintheAntarctic.11122020providesanopportunitytorethinkthelogicthatproducesthissituationby1113recognisingthatbiodiversitymustbepaidfor.Byacceptingthatbiodiversityisnotfreewe1114arethenabletoaskotherquestionsfocusingonreturningtangiblebenefitstoAntarctic1115biodiversitysuchas:howmuch,bywhom,inwhatform,andtowhatends?Thispaper1116seekstocontributetothedevelopmentoftheevidencebaseforaddressingthesequestions.1117

References 1118

1119

1.ConveyP,PeckLS.Antarcticenvironmentalchangeandbiologicalresponses.ScienceAdvances.2019;5:1120eaaz0888–null.doi:10.1126/sciadv.aaz08881121

2.ShawJD,TeraudsA,RiddleMJ,PossinghamHP,ChownSL.Antarctica’sprotectedareasareinadequate,1122unrepresentative,andatrisk.PLOSBiology.2014;12:e1001888–null.doi:10.1371/journal.pbio.10018881123

3.ChownSL,BrooksCM,TeraudsA,BohecCL,Klaveren-ImpagliazzoCvan,WhittingtonJD,etal.Antarctica1124andthestrategicplanforbiodiversity.PLOSBiology.2017;15:2001656–null.1125doi:10.1371/journal.pbio.20016561126

4.AbramsPA,AinleyDG,BlightLK,DaytonPK,EastmanJT,JacquetJ.Necessaryelementsofprecautionary1127management:Implicationsfortheantarctictoothfish.FishandFisheries.2016;17:1152–1174.1128doi:10.1111/faf.121621129

5.SeniorK.Bioprospectinginantarctica.FrontiersinEcologyandtheEnvironment.2004;2:60–null.1130doi:10.2307/38681981131

6.LohanD,JohnstonS.Bioprospectinginantarctica[Internet].2005.Available:1132http://collections.unu.edu/eserv/UNU:3100/antarctic_bioprospecting_3.pdf;https://lens.org/024-748-883-1133732-2491134

7.TvedtMW.Patentlawandbioprospectinginantarctica.PolarRecord.2011;47:46–55.Available:1135http://www.journals.cambridge.org/abstract_S0032247410000045;1136https://www.cambridge.org/core/journals/polar-record/article/patent-law-and-bioprospecting-in-1137antarctica/F285A818D5A18E745E70CD4AD63340E2;https://lens.org/064-456-376-454-0171138

8.LiuK,DingH,YuY,ChenB.Acold-adaptedchitinase-producingbacteriumfromantarcticaanditspotential1139inbiocontrolofplantpathogenicfungi.MarineDrugs.2019;17:695–null.doi:10.3390/md171206951140

9.OgakiMB,CostaCoelhoLda,VieiraR,NetoAA,ZaniCL,AlvesTMA,etal.Cultivablefungipresentindeep-1141seasedimentsofantarctica:Taxonomy,diversity,andbioprospectingofbioactivecompounds.Extremophiles.11422019;1–12.doi:10.1007/s00792-019-01148-x1143

10.Núñez-MonteroK,BarrientosL.Advancesinantarcticresearchforantimicrobialdiscovery:A1144comprehensivenarrativereviewofbacteriafromantarcticenvironmentsaspotentialsourcesofnovel1145antibioticcompoundsagainsthumanpathogensandmicroorganismsofindustrialimportance.TheJournalof1146Antibiotics.2018;7:90–null.doi:10.3390/antibiotics70400901147

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 40: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

40

11.HugSE,BrändleMP.Thecoverageofmicrosoftacademic:Analyzingthepublicationoutputofauniversity.1148Scientometrics.SpringerNature;2017;113:1551–1571.doi:10.1007/s11192-017-2535-31149

12.HugSE,OchsnerM,BrändleMP.Citationanalysiswithmicrosoftacademic.Scientometrics.Springer1150Nature;2017;111:371–378.doi:10.1007/s11192-017-2247-81151

13.ThelwallM.Canmicrosoftacademicbeusedforcitationanalysisofpreprintarchives?Thecaseofthe1152socialscienceresearchnetwork.Scientometrics.SpringerNature;2018;115:913–928.doi:10.1007/s11192-1153018-2704-z1154

14.ThelwallM.Doesmicrosoftacademicfindearlycitations?Scientometrics.SpringerNature;2017;114:1155325–334.doi:10.1007/s11192-017-2558-91156

15.ThelwallM.Microsoftacademic:Amultidisciplinarycomparisonofcitationcountswithscopusand1157mendeleyfor29journals.JournalofInformetrics.ElsevierBV;2017;11:1201–1212.1158doi:10.1016/j.joi.2017.10.0061159

16.HarzingA-W.Twonewkidsontheblock:Howdocrossrefanddimensionscomparewithgooglescholar,1160microsoftacademic,scopusandthewebofscience?Scientometrics.SpringerScience;BusinessMediaLLC;11612019;doi:10.1007/s11192-019-03114-y1162

17.MA.Milleniumecosystemassessment:Ecosystemsandhumanwell-being.2003.1163

18.NeumannB,MikoleitA,BowmanJS,DucklowHW,MüllerF.Ecosystemservicesupplyintheantarctic1164peninsularegion:Evaluatinganexpert-basedassessmentapproachandanovelseascapedatamodel.1165FrontiersinEnvironmentalScience.2019;7:null–null.doi:10.3389/fenvs.2019.001571166

19.VerbitskyJ.Ecosystemservicesandantarctica:Thetimehascome?Ecosystemservices.2018;29:381–1167394.doi:10.1016/j.ecoser.2017.10.0151168

20.HeinL,BagstadKJ,ObstC,EdensB,SchenauS,CastilloG,etal.Progressinnaturalcapitalaccountingfor1169ecosystems.Science.2020;367:514–515.doi:10.1126/science.aaz89011170

21.SinhaA,ShenZ,SongY,MaH,EideD,HsuB-J(Paul),etal.Anoverviewofmicrosoftacademicservice1171(MAS)andapplications.Proceedingsofthe24thinternationalconferenceonworldwideweb-WWW151172companion.ACMPress;2015.doi:10.1145/2740908.27428391173

22.RCoreTeam.R:Alanguageandenvironmentforstatisticalcomputing[Internet].Vienna,Austria:R1174FoundationforStatisticalComputing;2018.Available:https://www.R-project.org/1175

23.LuraschiJ,KuoK,UsheyK,AllaireJ,TheApacheSoftwareFoundation.Sparklyr:Rinterfacetoapache1176spark[Internet].2019.Available:https://CRAN.R-project.org/package=sparklyr1177

24.WickhamH.Tidyverse:Easilyinstallandloadthe’tidyverse’[Internet].2017.Available:https://CRAN.R-1178project.org/package=tidyverse1179

25.BenoitK,MatsuoA.Spacyr:Wrappertothe’spaCy’’nlp’library[Internet].2019.Available:1180https://spacyr.quanteda.io1181

26.RobinsonD,SilgeJ.Tidytext:Textminingusing’dplyr’,’ggplot2’,andothertidytools[Internet].2018.1182Available:https://CRAN.R-project.org/package=tidytext1183

27.PattersonD,CooperJ,KirkP,PyleR,RemsenD.Namesarekeytothebignewbiology.TrendsinEcology1184&Evolution.ElsevierBV;2010;25:686–691.doi:10.1016/j.tree.2010.09.0041185

28.DöringM.Familiesoflivingorganisms(falo)[Internet].GBIFSecretariat;2015.doi:10.15468/tfp6yv1186

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 41: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

41

29.RuggieroMA,GordonDP,OrrellTM,BaillyN,BourgoinT,BruscaRC,etal.Ahigherlevelclassificationof1187alllivingorganisms.ThuesenEV,editor.PLOSONE.PublicLibraryofScience(PLoS);2015;10:e0119248.1188doi:10.1371/journal.pone.01192481189

30.ChamberlainS,SzoecsE,FosterZ,ArendseeZ.Taxize:Taxonomicinformationfromaroundtheweb1190[Internet].2018.Available:https://CRAN.R-project.org/package=taxize1191

31.Gbif.OrgO.GBIFoccurrencedownloadantarctica(aq)[Internet].TheGlobalBiodiversityInformation1192Facility;2019.doi:10.15468/dl.atwzzy1193

32.Gbif.OrgO.GBIFoccurrencedownload,polygon((-180-90,180-90,180-60,-180-60,-180-90)),with1194coordinates,nogeospatialissue[Internet].TheGlobalBiodiversityInformationFacility;2019.1195doi:10.15468/dl.im0nrh1196

33.ZizkaA.CoordinateCleaner:Automatedcleaningofoccurrencerecordsfrombiologicalcollections1197[Internet].2019.Available:https://CRAN.R-project.org/package=CoordinateCleaner1198

34.ShenZ,MaH,WangK.Aweb-scalesystemforscientificknowledgeexploration.CoRR.11992018;abs/1805.12216.Available:http://arxiv.org/abs/1805.122161200

35.CárdenasP,LangeCB,VernetM,EsperO,SrainB,VorrathM-E,etal.Biogeochemicalproxiesanddiatoms1201insurfacesedimentsacrossthedrakepassagereflectoceanicdomainsandfrontalsystemsintheregion.1202ProgressinOceanography.2019;174:72–88.doi:10.1016/j.pocean.2018.10.0041203

36.ChuW-L,DangN-L,KokY-Y,YapK-SI,PhangS-M,ConveyP.Heavymetalpollutioninantarcticaandits1204potentialimpactsonalgae.PolarScience.2019;20:75–83.doi:10.1016/j.polar.2018.10.0041205

37.GersondeR,KyteFT,BleilU,DiekmannB,FloresJ-A,GohlK,etal.Geologicalrecordandreconstructionof1206thelateplioceneimpactoftheeltaninasteroidinthesouthernocean.Nature.1997;390:357–363.1207doi:10.1038/370441208

38.EaglesG,GohlK,LarterRD.High-resolutionanimatedtectonicreconstructionofthesouthpacificand1209westantarcticmargin.GeochemistryGeophysicsGeosystems.2004;5:null–null.doi:10.1029/2003gc0006571210

39.MichelsK,KuhnG,HillenbrandC-D,DiekmannB,FüttererDK,GrobeH,etal.Thesouthernweddellsea:1211Combinedcontourite-turbiditesedimentationatthesoutheasternmarginoftheweddellgyre.Geological1212Society,London,Memoirs.2002;22:305–323.doi:10.1144/gsl.mem.2002.022.01.221213

40.JokatW,Uenzelmann-NebenG,KristoffersenY,RasmussenTM.Lomonosovridge:Adouble-sided1214continentalmargin.Geology.1992;20:887–890.doi:10.1130/0091-7613(1992)020<0887:lradsc>2.3.co;21215

41.RogersAD,TylerPA,ConnellyDP,CopleyJT,JamesRH,LarterRD,etal.Thediscoveryofnewdeep-sea1216hydrothermalventcommunitiesinthesouthernoceanandimplicationsforbiogeography.PLOSBiology.12172012;10:e1001234–null.doi:10.1371/journal.pbio.10012341218

42.BrandtA,GoodayAJ,BrandãoSN,BrixS,BrökelandW,CedhagenT,etal.Firstinsightsintothe1219biodiversityandbiogeographyofthesouthernoceandeepsea.Nature.2007;447:307–311.1220doi:10.1038/nature058271221

43.AugustinL,BarbanteC,BarnesPRF,BarnolaJM,BiglerM,CastellanoE,etal.Eightglacialcyclesfroman1222antarcticicecore.Nature.2004;429:623–628.doi:10.1038/nature025991223

44.ClaudetJ,BoppL,CheungWWL,DevillersR,Escobar-BrionesE,HauganPM,etal.Aroadmapforusingthe1224undecadeofoceanscienceforsustainabledevelopmentinsupportofscience,policy,andaction.OneEarth.12252020;2:34–42.doi:10.1016/j.oneear.2019.10.0121226

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 42: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

42

45.JiQ,PangX,ZhaoX.Abibliometricanalysisofresearchonantarcticaduring19932012.Scientometrics.1227SpringerNature;2014;101:1925–1939.doi:10.1007/s11192-014-1332-51228

46.FuH-Z,HoY-S.Highlycitedantarcticarticlesusingsciencecitationindexexpanded:Abibliometric1229analysis.Scientometrics.SpringerNature;2016;109:337–357.doi:10.1007/s11192-016-1992-41230

47.KimH,JungW-S.Bibliometricanalysisofcollaborationnetworkandtheroleofresearchstationin1231antarcticscience.IndustrialEngineeringandManagementSystems.KoreanInstituteofIndustrialEngineers;12322016;15:92–98.doi:10.7232/iems.2016.15.1.0921233

48.LiangQ,PengS,NiuB,ZhouC,WangZ.Mappingglacier-relatedresearchinpolarregions:Abibliometric1234analysisofresearchoutputfrom1987to2016.PolarResearch.NorwegianPolarInstitute;2018;37:1468196.1235doi:10.1080/17518369.2018.14681961236

49.HijmansRJ,CameronSE,ParraJL,JonesPG,JarvisA.Veryhighresolutioninterpolatedclimatesurfacesfor1237globallandareas.InternationalJournalofClimatology.Wiley;2005;25:1965–1978.doi:10.1002/joc.12761238

50.ZuurAF,IenoEN,WalkerN,SavelievAA,SmithGM.Mixedeffectsmodelsandextensionsinecologywithr1239[Internet].SpringerNewYork;2009.doi:10.1007/978-0-387-87458-61240

51.RaynerNA.Globalanalysesofseasurfacetemperature,seaice,andnightmarineairtemperaturesince1241thelatenineteenthcentury.JournalofGeophysicalResearch.AmericanGeophysicalUnion(AGU);2003;108.1242doi:10.1029/2002jd0026701243

52.PetitJR,JouzelJ,RaynaudD,BarkovNI,BarnolaJ-M,BasileI,etal.Climateandatmospherichistoryofthe1244past420,000yearsfromthevostokicecore,antarctica.Nature.SpringerNature;1999;399:429–436.1245doi:10.1038/208591246

53.LozuponeC,KnightR.UniFrac:Anewphylogeneticmethodforcomparingmicrobialcommunities.1247AppliedandEnvironmentalMicrobiology.AmericanSocietyforMicrobiology;2005;71:8228–8235.1248doi:10.1128/aem.71.12.8228-8235.20051249

54.ShermanE,MooreJK,PrimeauF,TanouyeD.Temperatureinfluenceonphytoplanktoncommunity1250growthrates.GlobalBiogeochemicalCycles.AmericanGeophysicalUnion(AGU);2016;30:550–559.1251doi:10.1002/2015gb0052721252

55.VolkmanJK.Areviewofsterolmarkersformarineandterrigenousorganicmatter.OrganicGeochemistry.1253ElsevierBV;1986;9:83–99.doi:10.1016/0146-6380(86)90089-61254

56.RaineyFa,Ward-RaineyN,KroppenstedtRm,StackebrandtE.Thegenusnocardiopsisrepresentsa1255phylogeneticallycoherenttaxonandadistinctactinomycetelineage:Proposalofnocardiopsaceaefam.Nov.1256InternationalJournalofSystematicBacteriology.MicrobiologySociety;1996;46:1088–1092.1257doi:10.1099/00207713-46-4-10881258

57.DalsgaardJ,JohnMS,KattnerG,Müller-NavarraD,HagenW.Fattyacidtrophicmarkersinthepelagic1259marineenvironment.Advancesinmarinebiology.Elsevier;2003.pp.225–340.doi:10.1016/s0065-12602881(03)46005-71261

58.FrickeH,GerckenG,SchreiberW,OehlenschlägerJ.Lipid,sterolandfattyacidcompositionofantarctic1262krill(euphausiasuperbadana).Lipids.Wiley;1984;19:821–827.doi:10.1007/bf025345101263

59.ChenY-C,TouJ,JaczynskiJ.Aminoacidandmineralcompositionofproteinandothercomponentsand1264theirrecoveryyieldsfromwholeantarctickrill(euphausiasuperba)usingisoelectric1265solubilization/precipitation.JournalofFoodScience.Wiley;2009;74:H31–H39.doi:10.1111/j.1750-12663841.2008.01026.x1267

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 43: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

43

60.GigliottiJC,DavenportMP,BeamerSK,TouJC,JaczynskiJ.Extractionandcharacterisationoflipidsfrom1268antarctickrill(euphausiasuperba).FoodChemistry.ElsevierBV;2011;125:1028–1036.1269doi:10.1016/j.foodchem.2010.10.0131270

61.OlsenR,SuontamaJ,LangmyhrE,MundheimH,RingoE,MelleW,etal.Thereplacementoffishmealwith1271antarctickrill,euphausiasuperbaindietsforatlanticsalmon,salmosalar.AquacultureNutrition.Wiley;12722006;12:280–290.doi:10.1111/j.1365-2095.2006.00400.x1273

62.Rungruangsak-TorrissenK.DigestiveEfficiency,GrowthAndQualitiesOfMuscleAndOocyteInAtlantic1274Salmon(SalmoSalarL.)FedOnDietsWithKrillMealAsAnAlternativeProteinSource.JournalofFood1275Biochemistry.Wiley;2007;31:509–540.doi:10.1111/j.1745-4514.2007.00127.x1276

63.KleinES,HillSL,HinkeJT,PhillipsT,WattersGM.Impactsofrisingseatemperatureonkrillincreaserisks1277forpredatorsinthescotiasea.PLOSONE.2018;13:e0191011–null.doi:10.1371/journal.pone.01910111278

64.ConstableA.Lessonsfromccamlrontheimplementationoftheecosystemapproachtomanaging1279fisheries.FishandFisheries.2011;12:138–151.doi:10.1111/j.1467-2979.2011.00410.x1280

65.RogersAD,FrinaultB,BarnesDKA,BindoffNL,DownieR,DucklowHW,etal.Antarcticfutures:An1281assessmentofclimate-drivenchangesinecosystemstructure,function,andserviceprovisioninginthe1282southernocean.AnnualReviewofMarineScience.2019;12:87–120.doi:10.1146/annurev-marine-010419-12830110281284

66.BoydIL,ArnouldJPY,BartonT,CroxallJP.Foragingbehaviourofantarcticfursealsduringperiodsof1285contrastingpreyabundance.JournalofAnimalEcology.1994;63:703–713.doi:10.2307/52351286

67.ReidK,ArnouldJPY.Thedietofantarcticfursealsarctocephalusgazelladuringthebreedingseasonat1287southgeorgia.PolarBiology.1996;16:105–114.doi:10.1007/bf023904311288

68.MoraA,García-PeñaFJ,AlonsoMP,Pedraza-DíazS,Ortega-MoraLM,García-PárragaD,etal.Impactof1289human-associatedescherichiacoliclonalgroupsinantarcticpinnipeds:Presenceofst73,st95,st141and1290st131.ScientificReports.2018;8:4678–null.doi:10.1038/s41598-018-22943-01291

69.BuckleyBA.Regulationofheatshockgenesinisolatedhepatocytesfromanantarcticfish,trematomus1292bernacchii.JournalofExperimentalBiology.TheCompanyofBiologists;2004;207:3649–3656.1293doi:10.1242/jeb.012191294

70.HofmannGE,BuckleyBA,AiraksinenS,KeenJE,SomeroGN.Heat-shockproteinexpressionisabsentin1295theantarcticfishtrematomusbernacchii(familynototheniidae).TheJournalofexperimentalbiology.12962000;203:2331–2339.Available:https://lens.org/105-855-723-481-9971297

71.AndersonEM,LarssonKM,KirkO.Onebiocatalyst–manyapplications:Theuseofcandidaantarcticab-1298lipaseinorganicsynthesis.BiocatalysisandBiotransformation.1998;16:181–204.1299doi:10.3109/102424298090031981300

72.LauRM,RantwijkFV,SeddonKR,SheldonRA.Lipase-catalyzedreactionsinionicliquids.OrganicLetters.1301AmericanChemicalSociety(ACS);2000;2:4189–4191.doi:10.1021/ol006732d1302

73.BastidaA,SabuquilloP,ArmisénP,Fernandez-LafuenteR,HuguetJ,GuisanJM.Asinglesteppurification,1303immobilization,andhyperactivationoflipasesviainterfacialadsorptiononstronglyhydrophobicsupports.1304BiotechnologyandBioengineering.1998;58:486–493.doi:10.1002/(sici)1097-13050290(19980605)58:5<486::aid-bit4>3.3.co;2-e;10.1002/(sici)1097-0290(19980605)58:5<486::aid-1306bit4>3.0.co;2-91307

74.ShimadaY,WatanabeY,SugiharaA,TominagaY.Enzymaticalcoholysisforbiodieselfuelproductionand1308applicationofthereactiontooilprocessing.JournalofMolecularCatalysisB:Enzymatic.ElsevierBV;13092002;17:133–142.doi:10.1016/s1381-1177(02)00020-61310

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 44: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

44

75.NelsonLA,FogliaTA,MarmerWN.Lipase-catalyzedproductionofbiodiesel.JournaloftheAmericanOil1311ChemistsSociety.Wiley;1996;73:1191–1195.doi:10.1007/bf025233831312

76.ShimadaY,WatanabeY,SamukawaT,SugiharaA,NodaH,FukudaH,etal.Conversionofvegetableoilto1313biodieselusingimmobilizedcandidaantarcticalipase.JournaloftheAmericanOilChemistsSociety.Wiley;13141999;76:789–793.doi:10.1007/s11746-999-0067-61315

77.LiuQ,JanssenMHA,RantwijkFvan,SheldonRA.Room-temperatureionicliquidsthatdissolve1316carbohydratesinhighconcentrations.GreenChemistry.RoyalSocietyofChemistry(RSC);2005;7:39.1317doi:10.1039/b412848f1318

78.Gotor-FernandezV,BustoE,GotorV.Candidaantarcticalipaseb:Anidealbiocatalystforthepreparation1319ofnitrogenatedorganiccompounds.ChemInform.Wiley;2006;37.doi:10.1002/chin.2006352541320

79.KulakovaL,GalkinA,NakayamaT,NishinoT,EsakiN.Cold-activeesterasefrompsychrobactersp.1321Ant300:Genecloning,characterization,andtheeffectsofgly Prosubstitutionneartheactivesiteonits1322catalyticactivityandstability.BiochimicaetBiophysicaActa(BBA)-ProteinsandProteomics.ElsevierBV;13232004;1696:59–65.doi:10.1016/j.bbapap.2003.09.0081324

80.FellerG,ThiryM,ArpignyJL,GerdayC.Cloningandexpressioninescherichiacoliofthreelipase-encoding1325genesfromthepsychrotrophicantarcticstrainmoraxellaTA144.Gene.ElsevierBV;1991;102:111–115.1326doi:10.1016/0378-1119(91)90548-p1327

81.CokerJA,SheridanPP,Loveland-CurtzeJ,GutshallKR,AumanAJ,BrenchleyJE.Biochemical1328characterizationofa-galactosidasewithalowtemperatureoptimumobtainedfromanantarctic1329arthrobacterisolate.JournalofBacteriology.AmericanSocietyforMicrobiology;2003;185:5473–5482.1330doi:10.1128/jb.185.18.5473-5482.20031331

82.KarentzD,LutzeLH.Evaluationofbiologicallyharmfulultravioletradiationinantarcticawithabiological1332dosimeterdesignedforaquaticenvironments.LimnologyandOceanography.Wiley;1990;35:549–561.1333doi:10.4319/lo.1990.35.3.05491334

83.PowerML,SamuelA,SmithJJ,StarkJS,GillingsMR,GordonDM.Escherichiacolioutinthecold:1335Disseminationofhuman-derivedbacteriaintotheantarcticmicrobiome.EnvironmentalPollution.2016;215:133658–65.doi:10.1016/j.envpol.2016.04.0131337

84.González-AcuñaD,HernandezJ,MorenoL,HerrmannB,PalmaRL,LatorreA,etal.Healthevaluationof1338wildgentoopenguins(pygoscelispapua)intheantarcticpeninsula.PolarBiology.2013;36:1749–1760.1339doi:10.1007/s00300-013-1394-51340

85.MedigueC.Copingwithcold:Thegenomeoftheversatilemarineantarcticabacterium1341pseudoalteromonashaloplanktisTAC125.GenomeResearch.ColdSpringHarborLaboratory;2005;15:1325–13421335.doi:10.1101/gr.41269051343

86.PietteF,DAmicoS,StruvayC,MazzucchelliG,RenautJ,TutinoML,etal.Proteomicsoflifeatlow1344temperatures:TriggerfactoristheprimarychaperoneintheantarcticbacteriumPseudoalteromonas1345haloplanktisTAC125.MolecularMicrobiology.Wiley;2010;76:120–132.doi:10.1111/j.1365-13462958.2010.07084.x1347

87.GarsouxG,LamotteJ,GerdayC,FellerG.Kineticandstructuraloptimizationtocatalysisatlow1348temperaturesinapsychrophiliccellulasefromtheantarcticbacteriumPseudoalteromonashaloplanktis.1349BiochemicalJournal.PortlandPressLtd.2004;384:247–253.doi:10.1042/bj200403251350

88.HoyouxA,JennesI,DuboisP,GenicotS,DubailF,FrancoisJM,etal.Cold-adaptedbeta-galactosidasefrom1351theantarcticpsychrophilepseudoalteromonashaloplanktis.AppliedandEnvironmentalMicrobiology.1352AmericanSocietyforMicrobiology;2001;67:1529–1535.doi:10.1128/aem.67.4.1529-1535.20011353

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 45: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

45

89.YakimovMM.Oleispiraantarcticagen.Nov.,sp.Nov.,anovelhydrocarbonoclasticmarinebacterium1354isolatedfromantarcticcoastalseawater.InternationalJournalofSystematicandEvolutionaryMicrobiology.1355MicrobiologySociety;2003;53:779–785.doi:10.1099/ijs.0.02366-01356

90.CoulonF,McKewBA,OsbornAM,McGenityTJ,TimmisKN.Effectsoftemperatureandbiostimulationon1357oil-degradingmicrobialcommunitiesintemperateestuarinewaters.EnvironmentalMicrobiology.Wiley;13582007;9:177–186.doi:10.1111/j.1462-2920.2006.01126.x1359

91.ParnikozaI,KozeretskaI,KunakhV.Vascularplantsofthemaritimeantarctic:Originandadaptation.1360AmericanJournalofPlantSciences.2011;2:381–395.doi:10.4236/ajps.2011.230441361

92.BravoLA,UlloaN,ZuñigaGE,CasanovaA,CorcueraLJ,AlberdiM.Coldresistanceinantarctic1362angiosperms.PhysiologiaPlantarum.Wiley;2001;111:55–65.doi:10.1034/j.1399-3054.2001.1110108.x1363

93.SmithRIL.Vascularplantsasbioindicatorsofregionalwarminginantarctica.Oecologia.SpringerNature;13641994;99:322–328.doi:10.1007/bf006277451365

94.Pérez-TorresE,GarcıaA,DinamarcaJ,AlberdiM,GutiérrezA,GidekelM,etal.Theroleofphotochemical1366quenchingandantioxidantsinphotoprotectionofdeschampsiaantarctica.FunctionalPlantBiology.CSIRO1367Publishing;2004;31:731.doi:10.1071/fp030821368

95.SalvucciME.Relationshipbetweentheheattoleranceofphotosynthesisandthethermalstabilityof1369rubiscoactivaseinplantsfromcontrastingthermalenvironments.PlantPhysiology.AmericanSocietyof1370PlantBiologists(ASPB);2004;134:1460–1470.doi:10.1104/pp.103.0383231371

96.DayTA,RuhlandCT,GrobeCW,XiongF.Growthandreproductionofantarcticvascularplantsinresponse1372towarmingandUVradiationreductionsinthefield.Oecologia.SpringerScience;BusinessMediaLLC;13731999;119:24–35.doi:10.1007/s0044200507571374

97.RobinsonSA,WasleyJ,TobinAK.Livingontheedge-plantsandglobalchangeincontinentaland1375maritimeantarctica.GlobalChangeBiology.Wiley;2003;9:1681–1717.doi:10.1046/j.1365-13762486.2003.00693.x1377

98.DiTullioGR,GrebmeierJM,ArrigoKR,LizotteMP,RobinsonDH,LeventerA,etal.Rapidandearlyexport1378ofphaeocystisantarcticabloomsintherosssea,antarctica.Nature.2000;404:595–598.1379doi:10.1038/350070611380

99.BenderSJ,MoranDM,McIlvinMR,ZhengH,McCrowJP,BadgerJH,etal.Irontriggerscolonyformationin1381phaeocystisantarctica:Connectingmolecularmechanismswithironbiogeochemistry.2018;doi:10.5194/bg-13822017-5581383

100.KochF,BeszteriS,HarmsL,TrimbornS.Theimpactsofironlimitationandoceanacidificationonthe1384cellularstoichiometry,photophysiology,andtranscriptomeofphaeocystisantarctica.Limnologyand1385Oceanography.2018;64:357–375.doi:10.1002/lno.110451386

101.TrimbornS,ThomsS,BrenneisT,HeidenJP,BeszteriS,BischofK.Twosouthernoceandiatomsaremore1387sensitivetooceanacidificationandchangesinirradiancethantheprymnesiophytephaeocystisantarctica.1388PhysiologiaPlantarum.2017;160:155–170.doi:10.1111/ppl.125391389

102.ArrigoK.Ironfertilizationofthesouthernocean:Regionalsimulationandanalysisofc-sequestrationin1390therosssea[Internet].2012.doi:10.2172/10362391391

103.OldhamPD,SzerszynskiB,StilgoeJ,BrownC,EacottB,YuilleA.Mappingthelandscapeofclimate1392engineering.PhilosophicalTransactionsoftheRoyalSocietyA.2014;372:20140065–null.1393doi:10.1098/rsta.2014.00651394

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 46: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

46

104.OrtizJ,RomeroN,RobertP,ArayaJ,López-HernándezJ,BozzoC,etal.Dietaryfiber,aminoacid,fatty1395acidandtocopherolcontentsoftheedibleseaweedsulvalactucaanddurvillaeaantarctica.FoodChemistry.13962006;99:98–104.doi:10.1016/j.foodchem.2005.07.0271397

105.HelmuthB,VeitRR,HolbertonRL.Long-distancedispersalofasubantarcticbroodingbivalve(gaimardia1398trapesina)bykelp-rafting.MarineBiology.1994;120:421–426.doi:10.1007/bf006802161399

106.OrtizJ,RomeroN,RobertP,ArayaJ,Lopez-HernándezJ,BozzoC,etal.Dietaryfiber,aminoacid,fatty1400acidandtocopherolcontentsoftheedibleseaweedsulvalactucaanddurvillaeaantarctica.FoodChemistry.1401ElsevierBV;2006;99:98–104.doi:10.1016/j.foodchem.2005.07.0271402

107.VergarafernandezA,VargasG,AlarconN,VelascoA.Evaluationofmarinealgaeasasourceofbiogasina1403two-stageanaerobicreactorsystem.BiomassandBioenergy.ElsevierBV;2008;32:338–344.1404doi:10.1016/j.biombioe.2007.10.0051405

108.StierH,EbbeskotteV,GruenwaldJ.Immune-modulatoryeffectsofdietaryyeastbeta-1,3/1,6-d-glucan.1406NutritionJournal.SpringerNature;2014;13.doi:10.1186/1475-2891-13-381407

109.SkjermoJ,StørsethTR,HansenK,HandåA,ØieG.Evaluationof𝛽-(1→3,1→6)-glucansandhigh-m1408alginateusedasimmunostimulatorydietarysupplementduringfirstfeedingandweaningofatlanticcod1409(gadusmorhual.).Aquaculture.ElsevierBV;2006;261:1088–1101.doi:10.1016/j.aquaculture.2006.07.0351410

110.Laybourn-ParryJ,MarshallWa,MarchantHj.Flagellatenutritionalversatilityasakeytosurvivalintwo1411contrastingantarcticsalinelakes.FreshwaterBiology.Wiley;2005;50:830–838.doi:10.1111/j.1365-14122427.2005.01369.x1413

111.MarchantH,PerrinR.Seasonalvariationinabundanceandspeciescompositionofchoanoflagellates1414(acanthoecideae)atantarcticcoastalsites.PolarBiology.SpringerNature;1990;10.doi:10.1007/bf002336981415

112.ThomsenH,LarsenJ.Loricatechoanoflagellatesofthesouthernoceanwithnewobservationsoncell1416divisioninbicostaspinifera(throndsen,1970)fromantarcticaandsaroecaattenuatathomsen,1979,from1417thebalticsea.PolarBiology.SpringerNature;1992;12.doi:10.1007/bf002399651418

113.MarchantHJ,PerrinRA.Seasonalvariationinabundanceandspeciescompositionofchoanoflagellates1419(acanthoecideae)atantarcticcoastalsites.PolarBiology.1990;10:499–505.doi:10.1007/bf002336981420

114.HempelG.Weddellseaecology:Resultsofeposeuropean"polarstern"study[Internet].2011.Available:1421http://ci.nii.ac.jp/ncid/BA20482699;https://lens.org/067-643-706-475-6071422

115.KoppelDJ,GissiF,AdamsMS,KingCK,JolleyDF.Chronictoxicityoffivemetalstothepolarmarine1423microalgacryothecomonasarmigeraapplicationofanewbioassay.EnvironmentalPollution.ElsevierBV;14242017;228:211–221.doi:10.1016/j.envpol.2017.05.0341425

116.KoppelDJ,AdamsMS,KingCK,JolleyDF.Chronictoxicityofanenvironmentallyrelevantandequitoxic1426ratiooffivemetalstotwoantarcticmarinemicroalgaeshowscomplexmixtureinteractivity.Environmental1427Pollution.ElsevierBV;2018;242:1319–1330.doi:10.1016/j.envpol.2018.07.1101428

117.KoppelDJ,AdamsMS,KingCK,JolleyDF.Diffusivegradientsinthinfilmscanpredictthetoxicityofmetal1429mixturestotwomicroalgae:Validationforenvironmentalmonitoringinantarcticmarineconditions.1430EnvironmentalToxicologyandChemistry.Wiley;2019;38:1323–1333.doi:10.1002/etc.43991431

118.SaundersNF.Mechanismsofthermaladaptationrevealedfromthegenomesoftheantarcticarchaea1432methanogeniumfrigidumandmethanococcoidesburtonii.GenomeResearch.ColdSpringHarborLaboratory;14332003;13:1580–1588.doi:10.1101/gr.11809031434

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 47: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

47

119.GoodchildA,SaundersNFW,ErtanH,RafteryM,GuilhausM,CurmiPMG,etal.Aproteomic1435determinationofcoldadaptationintheantarcticarchaeon,methanococcoidesburtonii.Molecular1436Microbiology.Wiley;2004;53:309–321.doi:10.1111/j.1365-2958.2004.04130.x1437

120.NicholsDS,MillerMR,DaviesNW,GoodchildA,RafteryM,CavicchioliR.Coldadaptationintheantarctic1438archaeonmethanococcoidesburtoniiinvolvesmembranelipidunsaturation.JournalofBacteriology.1439AmericanSocietyforMicrobiology;2004;186:8508–8515.doi:10.1128/jb.186.24.8508-8515.20041440

121.DasSarmaS,CapesMD,KaranR,DasSarmaP.Aminoacidsubstitutionsincold-adaptedproteinsfrom1441halorubrumlacusprofundi,anextremelyhalophilicmicrobefromantarctica.PLOSONE.2013;8:e58587–null.1442doi:10.1371/journal.pone.00585871443

122.KepnerRL,WhartonRA,SuttleCA.Virusesinantarcticlakes.LimnologyandOceanography.1998;43:14441754–1761.doi:10.4319/lo.1998.43.7.17541445

123.BengtsonJL,BovengPL,FranzénU,HaveP,Heide-JørgensenM,HärkönenT.ANTIBODIEStocanine1446distempervirusinantarcticseals.MarineMammalScience.1991;7:85–87.doi:10.1111/j.1748-14477692.1991.tb00553.x1448

124.HarderTC,PlötzJ,LiessB.Antibodiesagainsteuropeanphocineherpesvirusisolatesdetectedinseraof1449antarcticseals.PolarBiology.1991;11:509–512.doi:10.1007/bf002330871450

125.BressemM-FV,WaerebeekKV,RagaJA.Areviewofvirusinfectionsofcetaceansandthepotential1451impactofmorbilliviruses,poxvirusesandpapillomavirusesonhostpopulationdynamics.DiseasesofAquatic1452Organisms.1999;38:53–65.doi:10.3354/dao0380531453

126.Guzmán-VerriC,González-BarrientosR,Hernández-MoraG,MoralesJ-A,Baquero-CalvoE,Chaves-Olarte1454E,etal.Brucellacetiandbrucellosisincetaceans.FrontiersinCellularandInfectionMicrobiology.2012;2:3–14553.doi:10.3389/fcimb.2012.000031456

127.AustinFJ,WebsterRG.EVIDENCEofortho-andparamyxovirusesinfaunafromantarctica.Journalof1457WildlifeDiseases.1993;29:568–571.doi:10.7589/0090-3558-29.4.5681458

128.PyperW.Sub-antarcticpenguinsinfectedwithtick-borneviruses.AustralianAntarcticMagazine.2009;145928–null.Available:http://search.informit.com.au/documentSummary;dn=863389709748583;res=IELHSS;1460https://lens.org/038-292-204-918-2401461

129.GodinhoVM,FurbinoLE,SantiagoIF,PellizzariFM,YokoyaNS,PupoD,etal.Diversityand1462bioprospectingoffungalcommunitiesassociatedwithendemicandcold-adaptedmacroalgaeinantarctica.1463TheISMEJournal.2013;7:1434–1451.doi:10.1038/ismej.2013.771464

130.FurbinoLE,GodinhoVM,SantiagoIF,PellizariFM,AlvesTMA,ZaniCL,etal.Diversitypatterns,ecology1465andbiologicalactivitiesoffungalcommunitiesassociatedwiththeendemicmacroalgaeacrosstheantarctic1466peninsula.MicrobialEcology.2014;67:775–787.doi:10.1007/s00248-014-0374-91467

131.SoaresFL,MeloISde,DiasACF,AndreoteFD.Cellulolyticbacteriafromsoilsinharshenvironments.1468WorldJournalofMicrobiology&Biotechnology.2012;28:2195–2203.doi:10.1007/s11274-012-1025-21469

132.DorstJvan,BenaudN,FerrariBC.Newinsightsintothemicrobialdiversityofpolardesertsoils:A1470biotechnologicalperspective.SpringerInternationalPublishing;2017.pp.169–183.doi:10.1007/978-3-319-147151686-8_71472

133.VesterJK,GlaringMA,StougaardP.Improvedcultivationandmetagenomicsasnewtoolsfor1473bioprospectingincoldenvironments.Extremophiles.2014;19:17–29.doi:10.1007/s00792-014-0704-31474

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 48: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

48

134.VesterJK,GlaringMA,StougaardP.Discoveryofnovelenzymeswithindustrialpotentialfromacoldand1475alkalineenvironmentbyacombinationoffunctionalmetagenomicsandculturing.MicrobialCellFactories.14762014;13:72–72.doi:10.1186/1475-2859-13-721477

135.KodziusR,GojoboriT.Marinemetagenomicsasasourceforbioprospecting.MarineGenomics.2015;24:147821–30.doi:10.1016/j.margen.2015.07.0011479

136.PascaleDde,SantiCD,FuJ,LandfaldB.Themicrobialdiversityofpolarenvironmentsisafertileground1480forbioprospecting.MarineGenomics.2012;8:15–22.doi:10.1016/j.margen.2012.04.0041481

137.DuarteAWF,SantosJAdos,ViannaMV,VieiraJ,MallaguttiVH,InforsatoFJ,etal.Cold-adaptedenzymes1482producedbyfungifromterrestrialandmarineantarcticenvironments.CriticalReviewsinBiotechnology.14832017;38:600–619.doi:10.1080/07388551.2017.13794681484

138.MartorellMM,RubertoLAM,FernándezPM,FigueroaLD,CormackWM.Biodiversityandenzymes1485bioprospectionofantarcticfilamentousfungi.AntarcticScience.2018;31:3–12.1486doi:10.1017/s09541020180004211487

139.MartinsRM,NedelF,SilvaGuimarãesVBda,SilvaAFda,ColepicoloP,PereiraCMP,etal.Macroalgae1488extractsfromantarcticahaveantimicrobialandanticancerpotential.FrontiersinMicrobiology.2018;9:412–1489null.doi:10.3389/fmicb.2018.004121490

140.SilvaTRe,DuarteAWF,PassariniMRZ,RuizALTG,FrancoCH,MoraesCB,etal.Bacteriafromantarctic1491environments:Diversityanddetectionofantimicrobial,antiproliferative,andantiparasiticactivities.Polar1492Biology.2018;41:1505–1519.doi:10.1007/s00300-018-2300-y1493

141.Jabour-GreenJ,NicolD.Bioprospectinginareasoutsidenationaljurisdiction:Antarcticaandthe1494southernocean.MelbourneJournalofInternationalLaw.2003;4:76–111.Available:1495https://www.questia.com/library/journal/1G1-108837717/bioprospecting-in-areas-outside-national-1496jurisdiction;http://ecite.utas.edu.au/27072;https://eprints.utas.edu.au/2668/;1497http://ecite.utas.edu.au/27072/2/03Green-Nicol.pdf;https://lens.org/199-301-537-108-2541498

142.NicolD.Antarcticbioprospecting,benefitsharingandcooperationinantarcticscience.Australian1499AntarcticMagazine.2004;6:10–11.Available:http://ecite.utas.edu.au/31180/;https://lens.org/190-319-1500605-207-8001501

143.HerberBP.Bioprospectinginantarctica:Thesearchforapolicyregime.PolarRecord.2006;42:139–1502146.Available:http://www.journals.cambridge.org/abstract_S0032247406005158;1503https://www.cambridge.org/core/journals/polar-record/article/bioprospecting-in-antarctica-the-search-1504for-a-policy-regime/7E5759AD2156668BBAFF090585027A85;https://lens.org/029-565-023-980-7011505

144.LearyD,WaltonDW.Scienceforprofit.Whataretheethicalimplicationsofbioprospectinginthearctic1506andantarctica.EthicsinScienceandEnvironmentalPolitics.2010;10:1–4.doi:10.3354/esep001071507

145.HemmingsAD.Doesbioprospectingriskmoralhazardforscienceintheantarctictreatysystem.Ethicsin1508ScienceandEnvironmentalPolitics.2010;10:5–12.doi:10.3354/esep001031509

146.GuyomardA-I.Ethicsandbioprospectinginantarctica.EthicsinScienceandEnvironmentalPolitics.15102010;10:31–44.doi:10.3354/esep001041511

147.HughesKA,BridgePD.Potentialimpactsofantarcticbioprospectingandassociatedcommercial1512activitiesuponantarcticscienceandscientists.EthicsinScienceandEnvironmentalPolitics.2010;10:13–18.1513doi:10.3354/esep001061514

148.Puig-MarcóR.Accessandbenefitsharingofantarctica’sbiologicalmaterial.MarineGenomics.2014;17:151573–78.doi:10.1016/j.margen.2014.04.0081516

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 49: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

49

149.OldhamP.Globalstatusandtrendsinintellectualpropertyclaims:Genomics,proteomicsand1517biotechnology.SSRNElectronicJournal.2004;null–null.doi:10.2139/ssrn.13315141518

150.LairdSA,WynbergRP.Afact-findingandscopingstudyondigitalsequenceinformationongenetic1519resourcesinthecontextoftheconventiononbiologicaldiversityandthenagoyaprotocol[Internet].2018.1520Available:https://www.cbd.int/doc/c/e95a/4ddd/4baea2ec772be28edcd10358/dsi-ahteg-2018-01-03-1521en.pdf1522

151.AubryS.Thefutureofdigitalsequenceinformationforplantgeneticresourcesforfoodandagriculture.1523FrontiersinPlantScience.2019;10:1046–null.doi:10.3389/fpls.2019.010461524

152.HoussenW,SaraR,Jaspars1M.Digitalsequenceinformationongeneticresources:Concept,scopeand1525currentuse.2019;Available:https://www.cbd.int/abs/DSI-peer/Study1_concept_scope.pdf1526

153.BagleyM,KargerE,MullerMR,Perron-WelchF,ThambisettyS.Fact-findingstudyonhowdomestic1527measuresaddressbenefit-sharingarisingfromcommercialandnon-commercialuseofdigitalsequence1528informationongeneticresourcesandaddresstheuseofdigitalsequenceinformationongeneticresources1529forresearchanddevelopment[Internet].2019.Available:https://www.cbd.int/abs/DSI-1530peer/Study4_domestic_measures.pdf1531

154.RohdenF,HuangS,DrogeG,ScholzAH,BarkerK,BerendsohnWG,etal.Combinedstudyondsiinpublic1532andprivatedatabasesanddsitraceability[Internet].2019.Available:https://www.cbd.int/abs/DSI-1533peer/Study-Traceability-databases.pdf1534

155.ArrietaJM,Arnaud-HaondS,DuarteCM.Whatliesunderneath:Conservingtheoceansgeneticresources.1535ProceedingsoftheNationalAcademyofSciences.ProceedingsoftheNationalAcademyofSciences;15362010;107:18318–18324.doi:10.1073/pnas.09118971071537

156.Arnaud-HaondS,ArrietaJM,DuarteCM.Marinebiodiversityandgenepatents.Science.American1538AssociationfortheAdvancementofScience(AAAS);2011;331:1521–1522.doi:10.1126/science.12007831539

157.PaulOldhamCBStephenHall.ValuingtheDeep:MarineGeneticResourcesinAreasBeyondNational1540Jurisdiction[Internet].DepartmentforEnvironmentFood;RuralAffairs(DEFRA),UK;2014pp.1–241.1541doi:10.13140/2.1.2612.56051542

158.BlasiakR,JouffrayJ-B,WabnitzCC,SundströmE,ÖsterblomH.Corporatecontrolandglobalgovernance1543ofmarinegeneticresources.ScienceAdvances.2018;4:eaar5237–null.doi:10.1126/sciadv.aar52371544

159.JeffersonOA,KöllhoferD,EhrichTH,JeffersonRA.Transparencytoolsingenepatentingforinforming1545policyandpractice.NatureBiotechnology.2013;31:1086–1093.doi:10.1038/nbt.27551546

160.OldhamPD,HallS,ForeroO.Biologicaldiversityinthepatentsystem.PLOSONE.2013;8:e78737–null.1547doi:10.1371/journal.pone.00787371548

161.THT.Enzymaticsynthesisofwaxes[Internet].US4826767A,1989.Available:https://lens.org/183-1549190-631-027-7171550

162.AllanS,AnantPS,MichiE-m,KimB,GrothCI,TrierHM.C.Antarcticalipaseandlipasevariants1551[Internet].WO1994/001541A1,1994.Available:https://lens.org/126-492-686-683-3711552

163.ShawnD.Remodelingandglycopegylationoffibroblastgrowthfactor(fgf)[Internet].WO2006/0502471553A2,2006.Available:https://lens.org/038-672-764-864-9781554

164.HuiL,AnkushA,RajinderS,SambaiahT,DavidC,KinT,etal.Cycloalkylsubstitutedpyrimidinediamine1555compoundsandtheiruses[Internet].US7858633B2,2011.Available:https://lens.org/074-665-824-262-15566971557

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 50: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

50

165.CAC.Structuredlipids[Internet].US6369252B1,2002.Available:https://lens.org/107-832-346-625-15586921559

166.Wen-tengW,Jech-weiC.Methodofpreparingloweralkylfattyacidsestersandinparticularbiodiesel1560[Internet].US6398707B1,2002.Available:https://lens.org/122-111-794-922-6271561

167.AsgeirS,CarlS,DariaJ,GudmundurH.Conjugatedlinoleicacidcompositionsandmethodsofmaking1562same[Internet].US6410761B1,2002.Available:https://lens.org/094-748-329-676-9631563

168.CatherineT,XiaodongL,MingQ,MarketaR,GuyS,MarkZ.Flavors,flavormodifiers,tastants,taste1564enhancers,umamiorsweettastants,and/orenhancersandusethereof[Internet].US7476399B2,2009.1565Available:https://lens.org/093-014-849-112-7321566

169.FosterJ,NicolS,KawaguchiS.Theuseofpatentdatabasestopredicttrendsinthekrillfishery.Ccamlr1567Science.2011;18:135–144.Available:https://lens.org/060-599-347-188-9551568

170.YamaguchiK,MurakamiM,NakanoH,KonosuS,KokuraT,YamamotoH,etal.Supercriticalcarbon1569dioxideextractionofoilsfromantarctickrill.JournalofAgriculturalandFoodChemistry.1986;34:904–907.1570doi:10.1021/jf00071a0341571

171.FinnM,NilsH,HåvardT.Phospholipidcompositionsandtheirpreparation[Internet].US9867856B2,15722018.Available:https://lens.org/011-348-907-388-8211573

172.IngeB,MikkoG,SnorreT,SebastianoB,JeffreyC,DanieleM.Bioeffectivekrilloilcompositions[Internet].1574WO2008/117062A1,2008.Available:https://lens.org/121-122-631-692-4651575

173.MoseLP,JohnFS.Thrombosispreventingkrillextract[Internet].WO2007/080515A1,2007.Available:1576https://lens.org/093-453-817-763-64X1577

174.IngeB,SnorreT,JefferyC,MikkoG,DanieleM,NilsH,etal.Methodsofusingkrilloiltotreatriskfactors1578forcardiovascular,metabolic,andinflammatorydisorders[Internet].US8697138B2,2014.Available:1579https://lens.org/148-076-064-464-5911580

175.FotiniS,HenriH.Concentratedtherapeuticphospholipidcompositions[Internet].US8586567B2,2013.1581Available:https://lens.org/015-218-496-395-8821582

176.SnorreT,NilsH.Phospholipidandproteintablets[Internet].US8372812B2,2013.Available:1583https://lens.org/146-794-117-594-2391584

177.SnorreT,ØisteinH.Methodformakingkrillmeal[Internet].US2015/0050403A1,2015.Available:1585https://lens.org/196-498-262-945-4931586

178.IngeB,MikkoG,RuneRS.Compositionsandmethodsfornutritionalsupplementation[Internet].US15872012/0231087A1,2012.Available:https://lens.org/048-513-968-558-3601588

179.MKW,LeoN,AlexO.Feedadditive[Internet].EP3456205A1,2019.Available:https://lens.org/064-1589509-646-853-2851590

180.AMJ,StephenHW,EMR.Therapeuticastaxanthinandphospholipidcompositionandassociatedmethod1591[Internet].US9763897B2,2017.Available:https://lens.org/154-620-924-659-65X1592

181.OskarRW.Aprimarilyanhydrouscomposition,inparticularforuseasnutritionalsupplements1593[Internet].EP3473240A1,2019.Available:https://lens.org/107-222-989-181-8121594

182.JunichiO,TomomiY,KoretaroT,TakeyaY.Lipidcompositionandmethodforproducingsame[Internet].1595US10246663B2,2019.Available:https://lens.org/181-471-030-132-2531596

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 51: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

51

183.NicholsDS,BowmanJ,SandersonK,NicholsCM,LewisT,McMeekinT,etal.DEVELOPMENTSwith1597antarcticmicroorganisms:CULTUREcollections,bioactivityscreening,taxonomy,pufaproductionandcold-1598adaptedenzymes.CurrentOpinioninBiotechnology.1999;10:240–246.doi:10.1016/s0958-1669(99)80042-159911600

184.AWC,RossZ,GMJ.Pufapolyketidesynthasesystemsandusesthereof[Internet].US7560539B2,2009.1601Available:https://lens.org/011-162-190-324-7011602

185.GMJ,MKJ,CaseyLJ.Polyunsaturatedfattyacidproductioninheterologousorganismsusingpufa1603polyketidesynthasesystems[Internet].US7759548B2,2010.Available:https://lens.org/044-044-796-740-16040721605

186.RolfM,SilkeW,ShawnR,KatjaG.Productionoffattyacidsbyheterologousexpressionofgeneclusters1606frommyxobacteria[Internet].EP2390343A1,2011.Available:https://lens.org/105-403-574-937-2941607

187.AWC,RossZ,HDD,GMJ.Chimericpufapolyketidesynthasesystemsandusesthereof[Internet].US16088003772B2,2011.Available:https://lens.org/042-707-862-350-34X1609

188.MarcS,ErnstR,RolfM,OGR,DominikP,AlexanderB.Productionofomega-3fattyacidsby1610myxobacteria[Internet].WO2010/063451A2,2010.Available:https://lens.org/000-730-545-455-6251611

189.SkerrattJ,BowmanJP,NicholsPD.Shewanellaolleyanasp.Nov.,amarinespeciesisolatedfroma1612temperateestuarywhichproduceshighlevelsofpolyunsaturatedfattyacids.InternationalJournalof1613SystematicandEvolutionaryMicrobiology.2002;52:2101–2106.doi:10.1099/ijs.0.02351-0;161410.1099/00207713-52-6-21011615

190.WhartonDA,JudgeKF,WorlandMR.Coldacclimationandcryoprotectantsinafreeze-tolerantantarctic1616nematode,panagrolaimusdavidi.JournalofComparativePhysiologyB-biochemicalSystemicand1617EnvironmentalPhysiology.2000;170:321–327.doi:10.1007/s0036000001061618

191.MitchellL.Tissuetreatmentmethods[Internet].US8192474B2,2012.Available:https://lens.org/194-1619569-607-851-2341620

192.JosephT,WTS,TimothyR,RichardW.Coolingdeviceforremovingheatfromsubcutaneouslipid-rich1621cells[Internet].US8337539B2,2012.Available:https://lens.org/035-742-176-538-3421622

193.WAJ.Systemsandmethodswithinterrupt/resumecapabilitiesfortreatingsubcutaneouslipid-richcells1623[Internet].US8603073B2,2013.Available:https://lens.org/011-572-868-639-2911624

194.ELM,NRJ,AHC,SSK.Monitoringthecoolingofsubcutaneouslipid-richcells,suchasthecoolingof1625adiposetissue[Internet].US8285390B2,2012.Available:https://lens.org/100-924-070-103-5541626

195.BahnwegG,SparrowFK.FOURnewspeciesofthraustochytriumfromantarcticregions,withnoteson1627thedistributionofzoosporicfungiintheantarcticmarineecosystems’.AmericanJournalofBotany.1974;61:1628754–766.doi:10.1002/j.1537-2197.1974.tb12298.x1629

196.RBW.Processfortheheterotrophicproductionofmicrobialproductswithhighconcentrationsof1630omega-3highlyunsaturatedfattyacids[Internet].US7381558B2,2008.Available:https://lens.org/101-1631258-468-929-9591632

197.BBR,DonD,MHJ,JMP,MRC,TVIG,etal.Enhancedproductionoflipidscontainingpolyenoicfattyacid1633byveryhighdensityculturesofeukaryoticmicrobesinfermentors[Internet].US8124384B2,2012.1634Available:https://lens.org/030-671-430-051-0901635

198.RBW.Methodofproducinglipidsbygrowingmicroorganismsoftheorderthraustochyriales[Internet].1636US7011962B2,2006.Available:https://lens.org/046-871-289-097-5631637

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 52: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

52

199.RaineyFA,Ward-RaineyN,KroppenstedtRM,StackebrandtE.Thegenusnocardiopsisrepresentsa1638phylogeneticallycoherenttaxonandadistinctactinomycetelineage:Proposalofnocardiopsaceaefam.Nov.1639InternationalJournalofSystematicandEvolutionaryMicrobiology.1996;46:1088–1092.1640doi:10.1099/00207713-46-4-10881641

200.FlenstedLS,RahbekOP,CarstenS.Proteases[Internet].AU2004/247802A1,2004.Available:1642https://lens.org/075-139-743-730-5631643

201.PoliA,AnzelmoG,NicolausB.Bacterialexopolysaccharidesfromextrememarinehabitats:Production,1644characterizationandbiologicalactivities.MarineDrugs.2010;8:1779–1802.doi:10.3390/md80617791645

202.RussellMC.Treatmentofasubterraneanformationwithcompositionincludingamicroorganismor1646compoundgeneratedbythesame[Internet].WO2014/176061A1,2014.Available:https://lens.org/067-1647870-744-021-77X1648

203.AntoineG,RomualdV,Pierre-yvesM.Cosmeticcomposition,usefulasantioxidant,comprises1649exopolysaccharidefromthebacterium,wheretheexopolysaccharidecomprisingrepetitivesequence1650consistingofdimerunitofmannoseandothersugarhavingcarboxylatefunction[Internet].FR2999929A1,16512014.Available:https://lens.org/041-669-561-232-6481652

204.AntoineG,RomualdV.Compositioncosmetiqueanti-ridescomprenantunexopolysaccharideissud’une1653bacteriemarine.[Internet].FR2975910A1,2012.Available:https://lens.org/175-058-181-346-8771654

205.AntoineG,RomualdV.Composition,usefulforregulatingsebumsecretionandreducingwrinklesand1655finelinesontheskin,comprisesexopolysaccharide,whichhassebum-regulatingpropertiesandiscomposed1656ofachainofgalacturonicacidmonomers[Internet].FR2975906A1,2012.Available:https://lens.org/198-1657785-621-046-1021658

206.LuY,ChiX,YangQ,LiZ,LiuS,GanQ,etal.Molecularcloningandstress-dependentexpressionofagene1659encodingδ12-fattyaciddesaturaseintheantarcticmicroalgachlorellavulgarisnj-7.Extremophiles.2009;13:1660875–884.doi:10.1007/s00792-009-0275-x1661

207.ScottF,AravindS,JaniceW,GeorgeR,LMJ,WaltR,etal.Tailoredoilsproducedfromrecombinant1662oleaginousmicroorganisms[Internet].US2012/0277452A1,2012.Available:https://lens.org/135-440-1663582-668-9101664

208.ScottF,AravindS,KarenE,GeorgeR,PenelopeC.Renewablefuelsproducedfromoleaginous1665microorganisms[Internet].US9062294B2,2015.Available:https://lens.org/062-667-057-856-9801666

209.PerryNB,EttouatiL,LitaudonM,BluntJW,MunroMHG,ParkinS,etal.Alkaloidsfromtheantarctic1667spongekirkpatrickiavarialosa.Tetrahedron.1994;50:3987–3992.doi:10.1016/s0040-4020(01)89673-31668

210.CharlesMJ,JamesAR,ModestoR,IgnacioM.Variolinderivativesasanti-canceragents[Internet].US16697320981B2,2008.Available:https://lens.org/078-525-596-274-0121670

211.ModestoR,JoseGJ,CarlosDP,CarmenC,SimonM,JamesAR,etal.Variolinderivativesandtheiruseas1671antitumoragents[Internet].US7495000B2,2009.Available:https://lens.org/074-434-511-580-3971672

212.MercedesA,FernandezBD,FernandezPJL.Derivativesofvariolinb[Internet].AU2001/276510B2,16732007.Available:https://lens.org/109-857-836-384-59X1674

213.HeinzW,ThomasB,MathiasS,SilkeB,BerndN.Cyclicindoleandheteroindolederivatives,the1675productionandusethereofasmedicaments[Internet].WO2003/020731A1,2003.Available:1676https://lens.org/094-017-826-791-4961677

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 53: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

53

214.SalvucciME,Crafts-BrandnerSJ.Relationshipbetweentheheattoleranceofphotosynthesisandthe1678thermalstabilityofrubiscoactivaseinplantsfromcontrastingthermalenvironments.PlantPhysiology.16792004;134:1460–1470.doi:10.1104/pp.103.0383231680

215.RozemaJ,BjörnLO,BornmanJF,GaberščikA,HäderD-P,TroštT,etal.Theroleofuv-bradiationin1681aquaticandterrestrialecosystems—anexperimentalandfunctionalanalysisoftheevolutionofuv-absorbing1682compounds.JournalofPhotochemistryandPhotobiologyB-biology.2002;66:2–12.doi:10.1016/s1011-16831344(01)00269-x1684

216.SmithRIL.Vascularplantsasbioindicatorsofregionalwarminginantarctica.Oecologia.1994;99:322–1685328.doi:10.1007/bf006277451686

217.GidekelM,Destefano-beltranL,GarcíaP,MujicaL,LealP,CubaM,etal.Identificationand1687characterizationofthreenovelcoldacclimation-responsivegenesfromtheextremophilehairgrass1688deschampsiaantarcticadesv.Extremophiles.2003;7:459–469.doi:10.1007/s00792-003-0345-41689

218.GermanS,PeterJU,MartinaPR.Icerecrystallisationinhibitionproteinorantifreezeproteinsfrom1690deschampsia,loliumandfestucaspeciesofgrass[Internet].WO2005/049835A1,2005.Available:1691https://lens.org/014-023-989-800-8861692

219.ManuelG,AnaG,LealP,LuisD-b,JorgeD,EmilioG.Plantpromoter[Internet].US7273931B2,2007.1693Available:https://lens.org/053-289-529-443-9561694

220.BravoLA,GriffithM.Characterizationofantifreezeactivityinantarcticplants.JournalofExperimental1695Botany.2005;56:1189–1196.doi:10.1093/jxb/eri1121696

221.ManuelG,LucasMCR,GustavoCB,CarlosSL,AnaGM,PabloPRJ,etal.Agentforcutaneous1697photoprotectionagainstuva/uvbrays[Internet].US8357407B2,2013.Available:https://lens.org/004-963-1698859-833-2061699

222.GwakIG,JungWsic,KimHJ,KangS-H,JinE.Antifreezeproteininantarcticmarinediatom,chaetoceros1700neogracile.MarineBiotechnology.2009;12:630–639.doi:10.1007/s10126-009-9250-x1701

223.SukKH,JongKM,JinOS,YunhoG,Young-pilK,Ji-inP,etal.Antifreezemember[Internet].US98160211702B2,2017.Available:https://lens.org/019-397-792-679-3631703

224.BhattaraiHD,PaudelB,HongSG,LeeHK,YimJH.Thinlayerchromatographyanalysisofantioxidant1704constituentsoflichensfromantarctica.JournalofNaturalMedicines.2008;62:481–484.1705doi:10.1007/s11418-008-0257-91706

225.HanYJ,Il-chanK,DockyuK,JongHS,SeokLH,BhattaraiHD,etal.Methodforstabilizingramalinusing1707porousmatrix,andstablizedramalinsolution[Internet].WO2013/141576A1,2013.Available:1708https://lens.org/142-125-779-826-3061709

226.HanYJ,ChanKI,GuLS,DockyuK,JongHS,SeokLH,etal.Methodforpreparingramalin[Internet].WO17102012/008785A3,2012.Available:https://lens.org/007-962-237-348-18X1711

227.HanYJ,KumLH,DattaBH,PaudelB,ChanKI,GyuHS,etal.Novelcompoundramalin,andusethereof1712[Internet].WO2010/053327A2,2010.Available:https://lens.org/146-794-606-612-67X1713

228.HanYJ,ChanKI,GuLS,KyuKD,JongHS,SeokLH,etal.Pharmaceuticalcompositionforthepreventionor1714treatmentofinflammatorydiseasesorimmunediseasescontainingramalin[Internet].US2013/0116324A1,17152013.Available:https://lens.org/049-890-848-097-1331716

229.Il-chanK,Sung-sukS,HanLJ,JongHS,JoungYU,KyoungKT,etal.Compositionforpreventingortreating1717colorectalcancer,containingramalinasactiveingredient[Internet].WO2019/059470A1,2019.Available:1718https://lens.org/109-191-363-221-9191719

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 54: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

54

230.HuG-P,YuanJ,SunLL,SheZ,WuJ,LanX-J,etal.Statisticalresearchonmarinenaturalproductsbased1720ondataobtainedbetween1985and2008.MarineDrugs.2011;9:514–525.doi:10.3390/md90405141721

231.DiyabalanageT,AmslerCD,McClintockJB,BakerBJ.Palmerolidea,acytotoxicmacrolidefromthe1722antarctictunicatesynoicumadareanum.JournaloftheAmericanChemicalSociety.2006;128:5630–5631.1723doi:10.1021/ja05885081724

232.BillB,ThusharaD,BMJ,DAC.Cytotoxincompoundsandmethodsofisolation[Internet].US8669376B2,17252014.Available:https://lens.org/027-594-410-904-6101726

233.ReyesF,FernándezR,RodriguezA,FranceschA,TaboadaS,AvilaC,etal.Aplicyaninsa–f,newcytotoxic1727bromoindolederivativesfromthemarinetunicateaplidiumcyaneum.Tetrahedron.2008;64:5119–5123.1728doi:10.1016/j.tet.2008.03.0601729

234.FernandoRBJ,FranceschSA,CuevasMC,AltunaUM,PlaQD,AlvarezDM,etal.Indolederivativesas1730antitumoralcompounds[Internet].US2009/0124647A1,2009.Available:https://lens.org/083-578-139-1731958-5311732

235.MesaML,EastmanJT,VacchiM.Theroleofnotothenioidfishinthefoodweboftherossseashelfwaters:1733Areview.PolarBiology.2004;27:321–338.doi:10.1007/s00300-004-0599-z1734

236.EastmanJT,DeVriesAL.Buoyancyadaptationsinaswim-bladderlessantarcticfish.Journalof1735Morphology.1981;167:91–102.doi:10.1002/jmor.10516701081736

237.AhlgrenJA,ChengC-HC,SchragJD,DeVriesAL.Freezingavoidanceandthedistributionofantifreeze1737glycopeptidesinbodyfluidsandtissuesofantarcticfish.TheJournalofExperimentalBiology.1988;137:1738549–563.Available:1739https://jeb.biologists.org/content/137/1/549;http://www.ncbi.nlm.nih.gov/pubmed/3209974;1740http://jeb.biologists.org/content/jexbio/137/1/549.full.pdf;https://lens.org/037-884-838-398-3821741

238.O’GradySM,SchragJD,RaymondJA,DevriesAL.Comparisonofantifreezeglycopeptidesfromarcticand1742antarcticfishes.JournalofExperimentalZoology.1982;224:177–185.doi:10.1002/jez.14022402071743

239.BorisR,LDA,AmirA.Interactionofthermalhysteresisproteinswithcellsandcellmembranesand1744associatedapplications[Internet].US5358931A,1994.Available:https://lens.org/118-292-692-874-3461745

240.SidellBD,O’BrienKM.Whenbadthingshappentogoodfish:Thelossofhemoglobinandmyoglobin1746expressioninantarcticicefishes.TheJournalofExperimentalBiology.2006;209:1791–1802.1747doi:10.1242/jeb.020911748

241.SidellBD,VaydaME,SmallD,MoylanTJ,LondravilleRL,YuanML,etal.Variableexpressionofmyoglobin1749amongthehemoglobinlessantarcticicefishes.ProceedingsoftheNationalAcademyofSciencesoftheUnited1750StatesofAmerica.1997;94:3420–3424.doi:10.1073/pnas.94.7.34201751

242.IiiDWH,AYD.Isolationofnovelhemapoieticgenesbyrepresentationaldifferenceanalysis[Internet].1752WO2001/009387A1,2001.Available:https://lens.org/031-982-165-841-01X1753

243.DunlapWC,FujisawaA,YamamotoY,MoylanTJ,SidellBD.Notothenioidfish,krillandphytoplankton1754fromantarcticacontainavitamineconstituent(α-tocomonoenol)functionallyassociatedwithcold-water1755adaptation.ComparativeBiochemistryandPhysiologyB.2002;133:299–305.doi:10.1016/s1096-17564959(02)00150-11757

244.AdrienB.Methodforpreventingtheoxidationoflipidsinanimalandvegetableoilsandcompositions1758producedbythemethodthereof[Internet].WO2005/075613A1,2005.Available:https://lens.org/138-170-1759683-945-1731760

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint

Page 55: Biodiversity Research and Innovation in Antarctica and the ......2020/05/03  · 124 Ocean or the South Pole anywhere in metadata (including author affiliations and available under

55

245.KarinB,ChristianB,AloisF,UlrichR.Surfaceswithimmobilizedenzymesoranti-icingproteins1761[Internet].WO2009/136186A1,2009.Available:https://lens.org/045-984-219-947-6191762

246.HanYJ,ChanKI,KyuKD,JongHS,SeokLH,BhattaraiHD,etal.Pharmaceuticalandfoodcompositionsfor1763preventingortreatingdiabetesorobesity[Internet].EP2617464A1,2013.Available:https://lens.org/149-1764447-807-703-634;1765https://worldwide.espacenet.com/patent/search/family/045928177/publication/EP2617464A1?q=EP26171766464A11767

247.SeoC,SohnJH,AhnJS,YimJH,LeeHK,OhH.Proteintyrosinephosphatase1Binhibitoryeffectsof1768depsidoneandpseudodepsidonemetabolitesfromtheantarcticlichenstereocaulonalpinum.Bioorganic&1769MedicinalChemistryLetters.2009;19:2801–2803.doi:10.1016/j.bmcl.2009.03.1081770

248.JBB,NSL,BruceMJ,DAC,LeeFJ,GWC,etal.Mrsabiofilminhibition[Internet].WO2017/177142A1,17712017.Available:https://lens.org/023-299-861-368-7251772

249.SalmJLvon,WitowskiCG,FleemanR,McClintockJB,AmslerCD,ShawLN,etal.Darwinolide,anew1773diterpenescaffoldthatinhibitsmethicillin-resistantstaphylococcusaureusbiofilmfromtheantarcticsponge1774dendrillamembranosa.OrganicLetters.2016;18:2596–2599.doi:10.1021/acs.orglett.6b009791775

250.MorawalaPV,RenukaJ,ManoharS,LaksmiS.Identificationandcharacterizationofnaturalchemical1776entitiesbyliquidchromatographyandmassspectrometrylc-ms/msandusesthereof[Internet].WO17772011/058423A2,2011.Available:https://lens.org/014-621-154-445-4171778

251.MakotoS,MarieBE.Cobalaminacquisitionproteinandusethereof[Internet].WO2013/166075A1,17792013.Available:https://lens.org/148-837-872-714-3101780

252.HanYJ,Il-chanK,JongHS,JoungYU,KumLH,JinKS,etal.Cryoprotectiveagentcontaining1781exopolysaccharidefrompseudoalteromonassp.Cy01[Internet].WO2018/207988A1,2018.Available:1782https://lens.org/184-778-733-200-4811783

253.OldhamPD,BurtonG.Defusingdisclosureinpatentapplications.SSRNElectronicJournal.2010;null–1784null.doi:10.2139/ssrn.16948991785

254.WIPO.Keyquestionsonpatentdisclosurerequirementsforgeneticresourcesandtraditionalknowledge1786[Internet].Geneva:WIPO;2017pp.1–94.Available:1787https://www.wipo.int/edocs/pubdocs/en/wipo_pub_1047.pdf1788

255.GuerryAD,PolaskyS,LubchencoJ,Chaplin-KramerR,DailyGC,GriffinRJ,etal.Naturalcapitaland1789ecosystemservicesinformingdecisions:Frompromisetopractice.ProceedingsoftheNationalAcademyof1790SciencesoftheUnitedStatesofAmerica.2015;112:7348–7355.doi:10.1073/pnas.15037511121791

256.DivisionUNS.Naturalcapitalaccountingandvaluationofecosystemservicesproject[Internet].1792electronic;2020.Available:https://seea.un.org/home/Natural-Capital-Accounting-Project1793

257.EngelS,PagiolaS,WunderS.Designingpaymentsforenvironmentalservicesintheoryandpractice:An1794overviewoftheissues.EcologicalEconomics.2008;65:663–674.doi:10.1016/j.ecolecon.2008.03.0111795

ihttps://www.microsoft.com/en-us/research/project/microsoft-academic-graph/

.CC-BY 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074849doi: bioRxiv preprint


Recommended