+ All Categories
Home > Education > BIOL 121 Chp 10: Muscular Tissue

BIOL 121 Chp 10: Muscular Tissue

Date post: 11-May-2015
Category:
Upload: rob-swatski
View: 6,698 times
Download: 8 times
Share this document with a friend
Description:
This is a lecture presentation for my BIOL 121 Anatomy and Physiology I students on Chapter 10: Muscular Tissue (Principles of Anatomy and Physiology, 14th Ed. by Tortora and Derrickson). Rob Swatski, Associate Professor of Biology, Harrisburg Area Community College - York Campus, York, PA. Email: [email protected] Please visit my website for more anatomy and biology learning resources: http://robswatski.virb.com/
Popular Tags:
88
1 Muscular Tissue BIOL 121: A&P I Chapter 10 Rob Swatski Associate Professor of Biology HACC – York Campus Textbook images - Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Transcript
Page 1: BIOL 121 Chp 10: Muscular Tissue

1  

Muscular  Tissue  

BIOL  121:  A&P  I  

Chapter  10  

Rob  Swatski  Associate  Professor  of  Biology  

HACC  –  York  Campus  

Text

book

imag

es -

Cop

yrig

ht ©

201

4 Jo

hn W

iley

& S

ons,

Inc.

All

right

s re

serv

ed.

Page 2: BIOL 121 Chp 10: Muscular Tissue

2  

Myology  

MoHlity  

ContracHon  

RelaxaHon  

Chemical  energy  à  Mechanical  

energy  

Page 3: BIOL 121 Chp 10: Muscular Tissue

3  

Muscle  Tissue  

Skeletal  muscle  

Cardiac  muscle  

Smooth  muscle  

Page 4: BIOL 121 Chp 10: Muscular Tissue

4  

Skeletal  Muscle  A4ached  to  bone,  skin,  

fascia  

Striated  &  voluntary  

Parallel  fibers  

Page 5: BIOL 121 Chp 10: Muscular Tissue

5  

Cardiac  Muscle  

Heart  muscle  

Striated,  involuntary,  autorhythmic  

Branching  fibers  

Page 6: BIOL 121 Chp 10: Muscular Tissue

6  

Smooth  Muscle  

In  walls  of  viscera  

Nonstriated  &  involuntary  

Tapered  individual  

cells  

Page 7: BIOL 121 Chp 10: Muscular Tissue

7  

FuncHons  of  Muscle  Tissue  

Movement   Stability  Storing  and  TransporHng  Substances  

Thermogenesis  

Page 8: BIOL 121 Chp 10: Muscular Tissue

8  

ProperHes  of  Muscle  Tissue  

Excitability   Extensibility   ContracHlity   ElasHcity  

Page 9: BIOL 121 Chp 10: Muscular Tissue

9  

Skeletal  Muscle  Whole  muscle  

=  organ  

MulQnucleated  muscle  cell  =  

fiber  

Fascicle  

Muscle  belly  à  Tendon  à  

Bone  

Page 10: BIOL 121 Chp 10: Muscular Tissue

10  

ConnecHve  Tissue  

Components  of  Muscle  

Epimysium  

Perimysium  

Endomysium  

Page 11: BIOL 121 Chp 10: Muscular Tissue

Perimysium around fascicle

Satellite cell

Mitochondrion

Endomysium

Myofibril

Muscle fiber

Sarcolemma

Sarcoplasm

Nucleus

OrganizaHon  of  a  fascicle  

Page 12: BIOL 121 Chp 10: Muscular Tissue

12  

Tendons  

Extensions  of  CT    

A4ach  muscle  to  bone  or  to  other  muscle  

Dense  regular  CT  

Aponeurosis  

Page 13: BIOL 121 Chp 10: Muscular Tissue

13  

Nerve  &  Blood  Supply  of  Muscle  

Nerve,  artery,  1-­‐2  veins  per  muscle  

Motor  neuron  supplies  several  

fibers  

Neuromuscular  juncHon  (NMJ)  

Page 14: BIOL 121 Chp 10: Muscular Tissue

14  

Page 15: BIOL 121 Chp 10: Muscular Tissue

15  

Structure  of  Muscle  Fibers  

Sarcolemma  

Transverse  (T)  tubules  

Sarcoplasm:  glycogen  &  myoglobin  

Mitochondria  

Page 16: BIOL 121 Chp 10: Muscular Tissue

Sarcoplasmic reticulum

Sarcolemma

Myofibril

Sarcoplasm

Nucleus

Thick filament Thin

filament

Z disc

Details  of  a  muscle  fiber  

Triad:

Transverse tubule

Terminal cisterns

Mitochondrion

Sarcomere

Page 17: BIOL 121 Chp 10: Muscular Tissue

17  

Myofibrils  

Create  striaHons  

Surrounded  by  sarcoplasmic  reHculum  (SR)  

Thick  &  thin  contracHle  filaments  

Page 18: BIOL 121 Chp 10: Muscular Tissue

18  

Page 19: BIOL 121 Chp 10: Muscular Tissue

19  

Sarcomeres  

Organized  contracQle  units  

Separated  by  z-­‐discs  

Thick  &  thin  filaments  overlap  

Page 20: BIOL 121 Chp 10: Muscular Tissue

20  

Page 21: BIOL 121 Chp 10: Muscular Tissue

21  

Sarcomere  Structure  

M-­‐line  

H-­‐zone  

A-­‐band  

I-­‐band  

Z-­‐disc  

Page 22: BIOL 121 Chp 10: Muscular Tissue

22  

Page 23: BIOL 121 Chp 10: Muscular Tissue

23  

Page 24: BIOL 121 Chp 10: Muscular Tissue

24  

Page 25: BIOL 121 Chp 10: Muscular Tissue

25  

Myofibril  Proteins  ContracHle  proteins  

Regulatory  proteins  

Structural  proteins  

Page 26: BIOL 121 Chp 10: Muscular Tissue

26  

ContracHle  Proteins  

AcHn  

Myosin  

Page 27: BIOL 121 Chp 10: Muscular Tissue

Myosin-binding site (covered by tropomyosin)

PorHon  of  a  thin  filament  

Actin Troponin Tropomyosin

Page 28: BIOL 121 Chp 10: Muscular Tissue

28  

Page 29: BIOL 121 Chp 10: Muscular Tissue

29  

Page 30: BIOL 121 Chp 10: Muscular Tissue

30  

Page 31: BIOL 121 Chp 10: Muscular Tissue

31  

Regulatory  Proteins  

Troponin  

Tropomyosin  

Page 32: BIOL 121 Chp 10: Muscular Tissue

32  

Structural  Proteins  

Nebulin:  alignment  

TiHn:  extensibility  &  elasQcity  

Myomesin:  anchorage  

Dystrophin:  transmits  tension  

Page 33: BIOL 121 Chp 10: Muscular Tissue

33  

Page 34: BIOL 121 Chp 10: Muscular Tissue

Sarcolemma Sarcoplasmic reticulum (SR)

Transverse tubule

Terminal cistern of SR

Sarcoplasm

Membrane protein

Nucleus Z

disc

Dystrophin

Thin filament Thick filament

Sarcomere

SimplisHc  representaHon  of  a  muscle  fiber  

Myofibril

= Ca2+

Key:

= Ca2+ release channels

= Ca2+ active transport pumps

Glycogen granules Myoglobin Mitochondrion

Z disc

Page 35: BIOL 121 Chp 10: Muscular Tissue

35  

Sliding  Filament  Mechanism  of  ContracHon    

Page 36: BIOL 121 Chp 10: Muscular Tissue

36  

NMJ  

Axon  terminal  of  motor  neuron  

SynapHc  end  bulb  

Motor  end  plate  

Synapse  

SynapHc  cleW  

Page 37: BIOL 121 Chp 10: Muscular Tissue

Neuromuscular  juncHon  

Axon collateral of somatic motor neuron

Axon terminal

Synaptic end bulb

Neuromuscular junction (NMJ)

Sarcolemma

Myofibril in muscle fiber

Muscle fiber

Page 38: BIOL 121 Chp 10: Muscular Tissue

38  

Muscle  ContracHon  

Nerve  impulse  reaches  axon  

terminal  at  NMJ  

SynapHc  vesicles  à  ACh  into  cle\  

ACh  à  receptors  on  sarcolemma  

(motor  end  plate)  

Na+  channels  OPEN  

Na+  “soaks”  into  muscle  fiber  

Page 39: BIOL 121 Chp 10: Muscular Tissue

Enlarged  view  of  the  neuromuscular  juncHon  

Axon terminal

Nerve impulse

Synaptic vesicle containing acetylcholine (ACh)

SYNAPTIC END BULB Synaptic cleft (space)

Ca2+ Voltage-gated Ca2+ channel

Sarcolemma

MOTOR END PLATE

Page 40: BIOL 121 Chp 10: Muscular Tissue

Binding  of  acetylcholine  to  ACh  receptors  in  the  motor  end  plate  

ACh is released from synaptic vesicle

Synaptic cleft (space)

ACh binds to ACh receptor

Junctional fold

Synaptic end bulb

ACh is broken down

MOTOR END PLATE

Muscle action potential is produced

Na+

Ca2+

1

2

4

3

Page 41: BIOL 121 Chp 10: Muscular Tissue

Nerve impulse arrives at axon terminal of motor neuron and triggers release of acetylcholine (ACh).

1

ACh diffuses across synaptic cleft, binds to its receptors in the motor end plate, and triggers a muscle action potential (AP).

Acetylcholinesterase in synaptic cleft destroys ACh so another muscle action potential does not arise unless more ACh is released from motor neuron.

ACh receptor

Synaptic vesicle filled with ACh

Muscle action potential

Transverse tubule

Muscle AP traveling along transverse tubule opens Ca2+

release channels in the sarcoplasmic reticulum (SR) membrane, which allows calcium ions to flood into the sarcoplasm.

SR Ca2+

Ca2+ binds to troponin on the thin filament, exposing the binding sites for myosin.

Elevated Ca2+

Contraction: power strokes use ATP; myosin heads bind to actin, swivel, and release; thin filaments are pulled toward center of sarcomere.

Muscle relaxes.

Troponin–tropomyosin complex slides back into position where it blocks the myosin binding sites on actin.

Ca2+ active transport pumps

Ca2+ release channels in SR close and Ca2+

active transport pumps use ATP to restore low level of Ca2+ in sarcoplasm.

Ca2+

Nerve impulse

2

3

4

5

6 7

8

9

Page 42: BIOL 121 Chp 10: Muscular Tissue

42  

Muscle  ContracHon  

Muscle  acHon  potenHal  à  

sarcolemma  &  T-­‐tubules  

SR  à  Ca+2  into  sarcoplasm  

Ca+2  binds  to  troponin  

Page 43: BIOL 121 Chp 10: Muscular Tissue

43  

Muscle  ContracHon  

Tropomyosin  swivels  open  

Exposes  myosin-­‐binding  sites  (on  

acQn)  

ContracHon  Cycle  begins  

Page 44: BIOL 121 Chp 10: Muscular Tissue

44  

ContracHon  Cycle  

1.  ATP  hydrolysis  at  myosin  head  

2.  Binding  of  myosin  heads  to  

acHn  (crossbridges)  

3.  ContracHon  =  power  stroke  

4.  Detachment  of  myosin  heads  

Page 45: BIOL 121 Chp 10: Muscular Tissue

45  

1.  ATP  hydrolysis    

Page 46: BIOL 121 Chp 10: Muscular Tissue

46  

2.  Binding  of  myosin  heads  to  acHn  

Page 47: BIOL 121 Chp 10: Muscular Tissue

47  

3.  ContracHon  =  power  stroke  

Page 48: BIOL 121 Chp 10: Muscular Tissue

48  

4.  Detachment  of  myosin  heads  

Page 49: BIOL 121 Chp 10: Muscular Tissue

Myosin heads hydrolyze ATP and become reoriented and energized

Myosin heads bind to actin, forming cross-bridges

As myosin heads bind ATP, the cross-bridges detach from actin Myosin cross-bridges

rotate toward center of sarcomere (power stroke)

ADP

ADP

ADP

P

P

ATP

ATP

Key: = Ca2+

Contraction cycle continues if ATP is available and Ca2+ level in sarcoplasm is high

1

2

3 4

Page 50: BIOL 121 Chp 10: Muscular Tissue

50  

Page 51: BIOL 121 Chp 10: Muscular Tissue

51  

ContracHon  

Page 52: BIOL 121 Chp 10: Muscular Tissue

52  

RelaxaHon  

Page 53: BIOL 121 Chp 10: Muscular Tissue

53  

Length-­‐Tension  

RelaHonship  

Tension  =  force  of  contracQon  

OpQmal  sarcomere  length  

Overstretched  

Understretched  

Page 54: BIOL 121 Chp 10: Muscular Tissue

54  

Muscle  Metabolism  

CreaHne  phosphate  

Anaerobic  glycolysis  

Aerobic  cellular  respiraHon  

Page 55: BIOL 121 Chp 10: Muscular Tissue

55  

CreaHne  Phosphate  

Made  from  excess  ATP  in  resQng  muscle  

15  sec  =  maximum  contracQon  

Short,  intense  bursts  of  energy  

Page 56: BIOL 121 Chp 10: Muscular Tissue

56  

Anaerobic  Glycolysis  

Makes  ATP  from  glucose  

breakdown  during  glycolysis  

If  no  O2:  Pyruvic  acid  à  lacQc  acid  

à  blood  

2  min  =  maximum  contracQon  

Page 57: BIOL 121 Chp 10: Muscular Tissue

57  

Aerobic  Cellular  RespiraHon  

Makes  ATP  from  glucose  breakdown  in  mitochondria  

If  O2:  Pyruvic  acid  à  mitochondria  à  ATP  

Several  minutes  to  hours  =  maximum  

contracQon  

Page 58: BIOL 121 Chp 10: Muscular Tissue

58  

Muscle  FaHgue  

Feeling  Qred  &  wanQng  to  stop  exercise  =  central  

faHgue  

Low  Ach  &  Ca+2  

Low  creaQne  phosphate  

Low  O2  or  glycogen  

Oxygen  debt  (recovery  oxygen  

uptake)  Build-­‐up  of  lacQc  

acid  

Page 59: BIOL 121 Chp 10: Muscular Tissue

59  

Motor  Units  

One  motor  neuron  +  10-­‐2000  muscle  fibers  (150  fibers  

avg)  

All  fibers  contract  in  unison  

Strength  of  contracQon  depends  on:  the  size  of  a  motor  unit  &  the  #  of  fibers  ac4vated  at  a  give  

4me  

Page 60: BIOL 121 Chp 10: Muscular Tissue

60  

Page 61: BIOL 121 Chp 10: Muscular Tissue

61  

Control  of  Muscle  Tension  

Twitch  contracHon  

Brief  =  20-­‐200  msec  

All  muscle  fibers  in  motor  unit  contract  in  

response  to  AP  

Page 62: BIOL 121 Chp 10: Muscular Tissue

Parts  of  a  Twitch  ContracHon  

Latent  Period  

ContracHon  Period  

RelaxaHon  Period  

Refractory  Period  

62  

Page 63: BIOL 121 Chp 10: Muscular Tissue

63  

Page 64: BIOL 121 Chp 10: Muscular Tissue

64  

Refractory  Period  

Page 65: BIOL 121 Chp 10: Muscular Tissue

65  

Frequency  of  

SHmulaHon  

Wave  summaHon  

Unfused  (Incomplete)  

tetanus  

Fused  (Complete)  tetanus  

Page 66: BIOL 121 Chp 10: Muscular Tissue

Myograms

Forc

e of

con

tract

ion

(a) Single twitch (b) Wave summation (c) Unfused tetanus (d) Fused tetanus Time (msec)

Action potential

Page 67: BIOL 121 Chp 10: Muscular Tissue

67  

Wave  SummaHon  

Page 68: BIOL 121 Chp 10: Muscular Tissue

68  

Unfused  (Incomplete)  

Tetanus  

Page 69: BIOL 121 Chp 10: Muscular Tissue

69  

Fused  (Complete)  

Tetanus  

Page 70: BIOL 121 Chp 10: Muscular Tissue

70  

Why  does  summaHon  &  tetanus  occur?  

Ca+2  remains  in  sarcoplasm  

ElasQc  components  (tendons,  CT)  remain  taut  

Myotonic  goats!  

Page 71: BIOL 121 Chp 10: Muscular Tissue

71  

Motor  Unit  Recruitment  

Large  motor  units  à  High  tension  (Strength)  

Small  motor  units  à  Low  tension  (Precision)  

Motor  units  in  whole  muscle  fire  

asynchronously    Why?  

Page 72: BIOL 121 Chp 10: Muscular Tissue

72  

Muscle  Tone  

Involuntary  contracQon  &  

relaxaQon  of  small  #  of  motor  units  

Alternate  in  constantly  shi\ing  

pa4ern  

No  movement  produced  (but  

muscles  kept  firm)  

FuncQons:  posture,  blood  pressure  

Page 73: BIOL 121 Chp 10: Muscular Tissue

73  

Isotonic  ContracHon  

Generates  movement  

Concentric:  flexion  (muscle  shortens)  

Eccentric:  extension  (muscle  lengthens)  

Page 74: BIOL 121 Chp 10: Muscular Tissue

74  

Isometric  ContracHon  

No  movement  

Maintains  posture  

Maintains  objects  in  fixed  posiQon  

Page 75: BIOL 121 Chp 10: Muscular Tissue

75  

VariaHons  in  Skeletal  

Muscle  Fibers  Differ  in  amount  of  

myoglobin,  mitochondria,  capillaries  

Red  muscle  (darker)  

White  muscle  (lighter)  

Range  of  contracQon  speeds  &  faQgue  

resistance  

Page 76: BIOL 121 Chp 10: Muscular Tissue

76  

3  Types  of  Skeletal  Muscle  Fibers  

Slow  OxidaHve  (SO)  

Fast  OxidaHve  GlycolyHc  (FOG)  

Fast  GlycolyHc  (FG)  

Page 77: BIOL 121 Chp 10: Muscular Tissue

Transverse  secHon  of  three  types  of  skeletal  muscle  fibers  

Slow oxidative fiber

Fast glycolytic fiber

Fast oxidative– glycolytic fiber

LM 440x

Page 78: BIOL 121 Chp 10: Muscular Tissue

78  

Slow  OxidaHve  (SO)  Fibers  

Smallest,  weakest,  slowest  (slow-­‐twitch)  

Red  muscle:  lots  of  mito,  myo,  &  

blood  

Aerobic  cellular  respiraQon  à  ATP  

Page 79: BIOL 121 Chp 10: Muscular Tissue

79  

Slow  OxidaHve  (SO)  

Fibers  

Sustained  contracQons  

High  faQgue  resistance  

Maintains  posture,  yoga  poses  

Aerobic  endurance  acQviQes  (marathon  

running)  

Page 80: BIOL 121 Chp 10: Muscular Tissue

80  

Fast  OxidaHve-­‐GlycolyHc  

(FOG)  Fibers  

Large  diameter  &  strength    

Fast-­‐twitch  

Red  muscle:  lots  of  mito,  myo,  &  blood  

Page 81: BIOL 121 Chp 10: Muscular Tissue

81  

Fast  OxidaHve-­‐GlycolyHc  

(FOG)  Fibers  Aerobic  &  anaerobic  

respiraQon  à  ATP  (store  glycogen)  

Moderate  faQgue  

resistance  

Walking,  sprinQng  

Page 82: BIOL 121 Chp 10: Muscular Tissue

82  

Fast  GlycolyHc  (FG)  Fibers  

Strongest,  fast  twitch  fibers  

High  glycogen  storage  

White  muscle:  less  mito,  myo,  blood  

Page 83: BIOL 121 Chp 10: Muscular Tissue

83  

Fast  GlycolyHc  (FG)  Fibers  

Anaerobic  cellular  

respiraQon  à  ATP  

Low  faQgue  resistance  

Rapid,  intense,  brief  

contracQons:  weight  li\ing  

Page 84: BIOL 121 Chp 10: Muscular Tissue

84  

Cardiac  Muscle  Tissue  

Striated,  branching,  

shorter  fibers  of  heart  

Intercalated  discs  with  gap  juncHons  

One  central  nucleus  per  fiber  

Page 85: BIOL 121 Chp 10: Muscular Tissue

85  

Page 86: BIOL 121 Chp 10: Muscular Tissue

86  

Cardiac  Muscle  Tissue  Same  acQn  &  

myosin  arrangement  as  skeletal  muscle  

Autorhythmic  

Longer  contracQons  (longer  Ca+2  delivery)  

Page 87: BIOL 121 Chp 10: Muscular Tissue

87  

Smooth  Muscle  Tissue  Small,  single,  nonstriated,  tapered,  

involuntary  fibers  

No  T  tubules  &  li4le  SR  

Contains  acQn  &  myosin,  but  no  sarcomeres  

Dense  bodies  

Page 88: BIOL 121 Chp 10: Muscular Tissue

Autonomic neurons

Nucleus

Muscle fibers

(a) Visceral (single-unit) smooth muscle tissue

(b) Multiunit smooth muscle tissue


Recommended