+ All Categories
Home > Documents > BIOMIMICRY & PARAMETRIC DESIGN · 2019-01-07 · 1 University of Oregon – College of Design –...

BIOMIMICRY & PARAMETRIC DESIGN · 2019-01-07 · 1 University of Oregon – College of Design –...

Date post: 20-Jun-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
15
1 University of Oregon – College of Design – School of Architecture and Environment ‐ Department of Architecture ARCH 410/510 Winter 2019 CRN 27272 / 27273 Mon 8:00‐9:50am in 230LA, Wed 8:00‐9:50am in 383LA Professor Nancy Y Cheng, [email protected], 541‐346‐3674 o, 541‐556‐4590 c, Skype (ncheng1) Office hours in 477C Lawrence M 12noon‐12:50pm and Wed 10:00‐10:50am or by appointment http://blogs.uoregon.edu/bioform BIOMIMICRY & PARAMETRIC DESIGN: Form for environmental performance SYLLABUS Course Overview: This course examines how biomimicry and parametric design can address environmental challenges. Biomimicry Design Cycle by the Biomimicry Institute http://www.biomimicryinstitute.org/about‐us/biomimicry‐a‐ tool‐for‐innovation.html Plants and animals thrive in their habitats because they have structures, mechanisms and systems that work efficiently in specific environmental conditions. This class will examine how natural organisms can be models for architectural design using Biomimicry 3.8 principles and morphogenetic parametric design. Starting from the beauty of nature as inspiration, students will study ways that architects and designers are examining nature's forms, mechanisms and systems to discover principles for approaching design problems. Design approaches will include processes of observation, description, analysis, metaphor and abstraction. Biomimicry and systems thinking provide a framework for looking at skins, bones and growth as paradigms for designing static structures and dynamic systems. Students will study how designers have used natural models to generate building designs, architectural systems and kinetic constructions. Examples will span scales from landscapes, architecture and product design. The course develops understanding of concepts through readings, videos, lectures and discussions, then fosters applied skills through computational design assignments. Students will learn how to articulate geometric relationships and use algorithmic thinking with Rhinoceros‐Grasshopper (GH) parametric design software. They will be introduced to weather, solar and structural simulation software. Successful completion of this course will count towards the advanced technology requirement. Pre-requisites: ARCH 4/571 & 4/572, 384 or permission of the instructor Students do not need to bring a scientific knowledge, instead students are invited to investigate how organisms thrive in their environments, to grapple with understanding key biological, physical or chemical processes that underlie observed phenomena.
Transcript
Page 1: BIOMIMICRY & PARAMETRIC DESIGN · 2019-01-07 · 1 University of Oregon – College of Design – School of Architecture and Environment ‐ Department of Architecture ARCH 410/510

 

1  

University of Oregon – College of Design – School of Architecture and Environment ‐ Department of Architecture ARCH 410/510 Winter 2019   CRN 27272 / 27273  Mon 8:00‐9:50am in 230LA, Wed 8:00‐9:50am in 383LA  Professor Nancy Y Cheng, [email protected], 541‐346‐3674 o, 541‐556‐4590 c, Skype (ncheng1) Office hours in 477C Lawrence M 12noon‐12:50pm and Wed 10:00‐10:50am or by appointment http://blogs.uoregon.edu/bioform  

BIOMIMICRY & PARAMETRIC DESIGN: Form for environmental performance

 SYLLABUS   

      

Course Overview: This course examines how biomimicry and parametric design can address environmental challenges.  

Biomimicry Design Cycle by the Biomimicry Institute 

http://www.biomimicryinstitute.org/about‐us/biomimicry‐a‐tool‐for‐innovation.html 

 

 Plants and animals thrive in their habitats because they have structures, mechanisms and systems that work efficiently in specific environmental conditions.  This class will examine how natural organisms can be models for architectural design using Biomimicry 3.8 principles and morphogenetic parametric design. Starting from the beauty of nature as inspiration, students will study ways that architects and designers are examining nature's forms, mechanisms and systems to discover principles for approaching design problems.  Design approaches will include processes of observation, description, analysis, metaphor and abstraction.    Biomimicry and systems thinking provide a framework for looking at skins, bones and growth as paradigms for designing static structures and dynamic systems. Students will study how designers have used natural models to generate building designs, architectural systems and kinetic constructions. Examples will span scales from landscapes, architecture and product design.  The course develops understanding of concepts through readings, videos, lectures and discussions, then fosters applied skills through computational design assignments. Students will learn how to articulate geometric relationships and use algorithmic thinking with Rhinoceros‐Grasshopper (GH) parametric design software.  They will be introduced to weather, solar and structural simulation software.  Successful completion of this course will count towards the advanced technology requirement.   

Pre-requisites: ARCH 4/571 & 4/572, 384 or permission of the instructor Students do not need to bring a scientific knowledge, instead students are invited to investigate how organisms thrive in their environments, to grapple with understanding key biological, physical or chemical processes that underlie observed phenomena.  

Page 2: BIOMIMICRY & PARAMETRIC DESIGN · 2019-01-07 · 1 University of Oregon – College of Design – School of Architecture and Environment ‐ Department of Architecture ARCH 410/510

 

2  

Student Learning Outcomes Successful completion of this course will yield 

‐ Ability to address an environmental design problem by using a natural analogy, natural processes, or natural material properties.  

‐ Understanding of bio‐inspired methods for sustainable design ‐ Ability to use parametric design software to generate form variants ‐ Understanding of emergent possibilities in digital design, analysis and fabrication 

 

Course Requirements All students need have a Windows computer with Rhinoceros 6.0 software installed. Students should have some knowledge of some kind of 3D modeling, previous experience with Rhino and Grasshopper is helpful but not required. 

 ASSIGNMENTS: The course content and assignments may be tailored to student interests.  Check with the instructor if you have questions or suggestions.  Collaboration and peer coaching is encouraged. 

Throughout the term, the students will keep a digital journal by submitting their assignments to Canvas in weekly working portfolios that document key ideas from readings, class sessions and digital experiments.  At the end of the term, students will compile highlights of their work to share in a final pinup and summary portfolio. See portfolio examples at: http://blogs.uoregon.edu/bioform & http://timbertectonics.com  Rhino and GH files will need to be compressed to ZIP format, Image and PDF files need to be optimized so that they are easily downloadable.  

 Section through a christmas rose leaf showing round chloroplasts from Michael Hensel's (Synthetic) Life Architectures: Ramifications and Potentials of a Literal Biological Paradigm for Architectural Design, Architectural Design journal, v.76 no.2, p. 20 

DIGITAL EXERCISES:  (Wednesday) In‐class digital exercises will build on documented tutorials.  Students will be challenged to build on and modify parametric design definitions. In‐class work will not be graded but may be collected to document abilities.  

Assignment Overview The course is based on the idea that a biological organism’s adaptation to its environment can be fruitful inspiration for design. The course assignments provide a guided format for developing parametric design skills through bio‐inspired projects:  the first is very structured and the second is more open‐ended.   

In the first half of the class, students start by considering the patterns and functions of animal skin and gradually work towards creating a modular building skin that is customized according to solar exposure.  To support beginners, we start with simple geometric tiling patterns and then experiment with using parametric components and algorithms (formulas) that provide controls to emulate observed natural patterns.  By using components that quickly generate visual feedback, such as Paneling Tools and the Graph Mapper, students can develop familiarity with controlling form with the Grasshopper interface.    

Because the emphasis of the course is on form and performance, the class immediately moves into weather and solar simulation.  Students will learn how to visualize sun path, solar radiation (heat) for different instances and durations.  They will design a building skin module that has variations for sunny and shaded parts of a façade and learn how to use the solar data for custom static facades or adaptive kinetic facades. 

Page 3: BIOMIMICRY & PARAMETRIC DESIGN · 2019-01-07 · 1 University of Oregon – College of Design – School of Architecture and Environment ‐ Department of Architecture ARCH 410/510

 

3  

For the second half of the term, students can choose to focus on a bio‐inspired design project (i.e. Global Design Challenge http://challenge.biomimicry.org) OR simulate the form and motion of a natural organism.  Each student will start by studying a relevant biomimetic design example, and explain it to the class in a precedent study.  For the design project, students can either start with a problem or an organism. For either the design project or the simulation, students will study how to model the form and analyze its structural stability, and then simulate dynamics such as growth or movement.    

0: Precedent Study (presented throughout the term)  

To better comprehend how biomimicry can be used, students will research the process of how an architect, designer or engineer transferred ideas from organism to application.  Students should select an example that could inform their major project. Graduate students will develop a written illustrated summary (~500 words).  1: Natural Patterns: 2D Observe and sketch interesting natural patterns in the field. Using one pattern as inspiration, digitally draw the basic element and tessellate it using arrays (linear, polar) and grids (rectangular, triangular, hexagonal, etc.), creating variations similar to those observed in nature.  2. SKIN: 3D Patterns Develop 3D modeling skills by sculpting surfaces and wrapping patterns that adjust to varying conditionsusing Paneling Tools and the Graph Mapper        3: SKIN:  Solar Adjustable Module Model a panel with a variable aperture through using a sliding, stretching, folding or rotating element.  Make the shape change according to the sun angle: scaling, aligning, rotating, etc. Create a catalog that shows how this Module could adapt to different sun angles for different orientations or times of day.  4 & 5:  SKIN: Solar Responsive Surface Create a responsive wall, canopy or structure that demonstrates adaptation to different solar conditions or a static system with shading customized to typical summer solar radiation. 

 

MAJOR PROJECT – Design Project Option (GROUPWORK) Apply biomimetic and parametric design to a site‐specific design problem such as the Biomimicry Design Challenge or an aspect of a past or current design studio problem.  Each student needs to identify a relevant local organism, abstract its function, process or system and translate it into an architectural form or design element.  

  Homeostatic Wall:  Yeagon‐Decker 

Organism adaptation to environment Research (Mazzoleni model) Define an environmental problem and analyze how an organism has conquered it. 1. Biomimetic inspiration: hand‐sketches 2. Diagrams of physiological, behavioral or anatomical elements: How are the organism’s physical systems, behaviors and structures adapted to climate? How do they enable specific functions? 3. Climatic Interface: How does the organism’s structure, process or system mediate the external environment?  

Page 4: BIOMIMICRY & PARAMETRIC DESIGN · 2019-01-07 · 1 University of Oregon – College of Design – School of Architecture and Environment ‐ Department of Architecture ARCH 410/510

 

4  

Design phase Show how a designed building, structure, responsive surface or object addresses a specific challenge or deficiency. Develop their project through these stages: 

i. Statement & Conceptual sketches 

ii. Development Plan including team roles 

iii. Model project form & structural analysis 

iv. Illustrate construction phases or fabricate a component 

v. Create Presentation (orthographic views, perspectives, optional physical fabrication))  

MAJOR PROJECT – Organism Simulation option (GROUPWORK) Model an organism’s form and movement or growth in Grasshopper that could adapted for a kinetic mechanism. Students will start by examining a specific organism: drawing and modeling the forms at different stages of growth or movement.  Modeling of components can initially be done in Rhino in order to develop skills in building complex form. To assist deeper understanding of the dynamic processes, students will diagram the underlying organizational framework. They will look at how stimuli are sensed and processed, using diagrams to explain how the organism changes over time in response to internal stimuli and external forces.    

Organism growth or movement Research  

‐ Naturalistic drawings of 3 stages (cross‐sections and plans at a consistent scale) + 2+ perspectives (image 

from http://issuu.com/eggermont/docs/bio_drawing_sample) 

‐ Motion diagrams or collages with forces indicated. 

‐ Digital 3D diagram of the organism's basic geometric organization  

Parametric Simulation 

From the studying natural and the designed systems, students will choose an aspect of a dynamic process to model in Grasshopper.  Create the forms, kinetic logic and mechanisms from the original and then show how they can be adapted for new situations by creating a catalog of forms. 

  

10 FINAL PRESENTATION & SUMMARY PORTFOLIO  Final illustrated report that that includes the Research and Project Development  Student Engagement Inventory 

 

Page 5: BIOMIMICRY & PARAMETRIC DESIGN · 2019-01-07 · 1 University of Oregon – College of Design – School of Architecture and Environment ‐ Department of Architecture ARCH 410/510

 

5  

Simon Cygielski’s circlewall  

Requirements and Evaluations Students are expected to take responsibility for their learning.  They must come to class prepared and on‐time.  As timeliness is critical to academic advancement and professional practice, students are encouraged to turn in something, even partial work‐in‐progress on time, with additions accepted later.  Late initial submissions may be penalized up to 10% for every day late.  In‐class time will include feedback on how to meet learning goals. Quantitative feedback will be given 3 times during the term. Successful completion means: 

Engagement with content, instructor and peers through discussion and evidence of reading comprehension. Communication is essential: asks questions and support others. 

Effort to grow beyond pre‐existing knowledge and skills 

Completeness of assignments, with a high level of care and craft demonstrated (citations, layout, grammar and spelling) 

Technical virtuosity and aesthetic quality of digital design efforts  EVALUATION COMPONENTS 

    Undergrad  Grad 

Assignment 0: Precedent Study  8  10 

Assignments 1‐9: (8 points ea)  72  72 

Assignment 10: Final Portfolio  15  13 

Class Participation  5  5 

TOTAL points  100  100  Graduate/Undergraduate differentiation: Graduate students will be expected to take leadership and peer training roles, and pursue their studies with a greater degree of rigor and time‐investment. Grad students will write up the precedent study in to short paper. Grading standards will be higher for graduate students, particularly for written work and conceptual design development.   Grading standards (see Rubrics for more assignment specific information) A 90‐100 – Outstanding: Not only fulfilling the requirements, but going far beyond the expectations of the project. The student has demonstrated a superior grasp of the subject matter coupled with a high degree of creative or logical expression, and a strong ability to present these ideas in an organized and analytical manner.  B 80‐89 – Very Good: The student has demonstrated a solid grasp of the material with an ability to examine the material in an organized, critical, and constructive manner. The projects and in‐class performance reveal a solid understanding of the issues and related theories.  C 70‐79 – Adequate – The student has attempted to complete all work, and shown a moderate ability to grasp concepts and theories for the class, producing work that has merit but some deficiencies. Through 

Page 6: BIOMIMICRY & PARAMETRIC DESIGN · 2019-01-07 · 1 University of Oregon – College of Design – School of Architecture and Environment ‐ Department of Architecture ARCH 410/510

 

6  

projects and class discussions, the student displays a basic familiarity with the assigned readings and techniques.  D 60‐69 – Unacceptable – The student’s work is incomplete and/or demonstrates a minimal understanding of the fundamental nature of the material.  F 0‐59 – Failure – The student has demonstrated a lack of understanding or familiarity with course concepts and materials. Failure is often the result of limited effort and poor attendance, that may indicate that the student is not in the proper field of study.  Academic Misconduct  The University Conduct Code (available at conduct.uoregon.edu) defines academic misconduct. Students are prohibited from committing or attempting to commit any act that constitutes academic misconduct. By way of example, students should not give or receive (or attempt to give or receive) unauthorized help on assignments or examinations without express permission from the instructor. Students should properly acknowledge and document all sources of information (e.g. quotations, paraphrases, ideas) and use only the sources and resources authorized by the instructor. If there is any question about whether an act constitutes academic misconduct, it is the students’ obligation to clarify the question with the instructor before committing or attempting to commit the act. Additional information about a common form of academic misconduct, plagiarism, is available at: https://researchguides.uoregon.edu/citing‐plagiarism  Diversity and Inclusion It is the policy of the University of Oregon to support and value diversity. To do so requires that we: •  Respect the dignity and essential worth of all individuals •  Promote a culture of respect throughout the University community •  Respect the privacy, property, and freedom of others •  Reject bigotry, discrimination, violence, or intimidation of any kind •  Practice personal and academic integrity and expect it from others •  Promote the diversity of opinions, ideas, and backgrounds which is the lifeblood of the university The College of Design promotes the strengths of our multicultural community through the Equity & Inclusion Committee. For more information about the Equity & Inclusion Committee and other student resources, please see: https://blogs.uoregon.edu/design/deans‐ office/committees/equity‐inclusion‐committee/    Documented Disability:   Appropriate accommodations will be provided for students with documented disabilities. If you have a documented disability and require accommodation, arrange to meet with the course instructor within the first week of the term. The documentation of your disability must come in writing from the Accessible Education Center in the Office of Academic Advising and Student Services. For more information on Accessible Education Center, please see http://aec.uoregon.edu    Course Incomplete Policy: Students are expected to be familiar with University policy regarding grades of “incomplete” and the timeline for completion.  In Case of Inclement Weather: In the event the University operates on a curtailed schedule or closes, UO media relations will notify the Eugene‐Springfield area radio and television stations as quickly as possible. In addition, a notice regarding the University’s schedule will be posted on the UO main home page (in the “News” section) at https://www.uoregon.edu/  

Page 7: BIOMIMICRY & PARAMETRIC DESIGN · 2019-01-07 · 1 University of Oregon – College of Design – School of Architecture and Environment ‐ Department of Architecture ARCH 410/510

PORTFOLIO instructions 1

University of Oregon - School of Architecture and Allied Arts - Department of Architecture ARCH 410/510 BIOMIMICRY & PARAMETRIC DESIGN – Nancy Cheng

PORTFOLIO INSTRUCTIONS Working Portfolio feeds the Showcase Portfolio

Welcome to the learning portfolio. This document gives general instructions on how to use and navigate the portfolio template which can be downloaded from Canvas.

It is composed of 2 sections:

1. WORKING PORTFOLIO – a "Reflective" or "Self-Assessment" portfolio

2. SHOWCASE PORTFOLIO – a summary of the term’s work for presentation

The portfolio is intended to supplement and enhance your development as you progress through the course in the following ways:

Throughout each unit, you will be invited to undertake various activities. The portfolio provides a template for you to record outcomes and reflections for each of these activities. You are encouraged to customize this portfolio for your own specific needs by adding pages in which you can record ideas and make notes as you work through the units.

Your portfolio should continue to be a tool once you have completed each unit, providing a useful reference for the development of your final booklet. You may like to return to these notes and extend or refine them as you progress through the course.

While the Working portfolio is intended as an evolving document prepared and submitted by each individual student in the course, the Showcase portfolio may include contributions from multiple individuals, working as a team. The Showcase portfolio will use ideas and images from the Working portfolio and present the work framed by themes and synthesized lessons learned.

How to use the portfolio

Save a new copy of the portfolio template document for each week on your computer. Keep the portfolio document open as you work through the corresponding unit. Each time you undertake an activity, create a corresponding page or pages in the portfolio document. Refer to, or complete, each portfolio document as instructed in the corresponding section on Canvas. Each week, submit all the week’s portfolio pages for the unit as an optimized PDF on Canvas at the assigned deadline. Select summary pages to share online and upload as a smaller PDF or JPG images to the Wordpress blog, choosing to share your ideas/models/projects either privately (with a password for the course participants) or publicly.

You’ll receive a grade for your portfolio every two weeks. Besides the grade, the Portfolio include an area for receiving feedback from your instructor/s, on a bi-weekly basis on strengths and areas of growth.

Towards the end of the term, you will select and edit pages for your Showcase Portfolio, which could be a team effort.

Page 8: BIOMIMICRY & PARAMETRIC DESIGN · 2019-01-07 · 1 University of Oregon – College of Design – School of Architecture and Environment ‐ Department of Architecture ARCH 410/510

PORTFOLIO instructions 2

Parts of the working portfolio submission

Each week you will need to complete the following items:

Goals & Objectives: At the beginning set your personal learning goals for this course, then set specific objectives for each unit.

Capturing & storing evidence: Collect artifacts which you want to include in your weekly entry. (i.e. screenshots of the digital models, pictures of physical models, references, pictures of relevant case studies with sources cited, both discussed in class and analyzed through additional readings) Assign (classify) each artifact to the learning topic and objective identified during the lesson.

Reflection (~300 words) What I learned: provide the rationale for why these artifacts represent achievement of particular learning outcome, goal or standards.

Feedback (~200 words) Information to help your instructors tailor the class to your needs, such as: What I found interesting and want to know more about; What I found challenging and for what I’d need more support; How

the collaboration with my team partner/s has been this week.

Portfolio evaluation

Assessment will be based on the following factors.

Engagement (30%) Demonstrates motivation and depth of inquiry. That is, how much the student digs into given material, accesses class resources and researches areas of interest.

Technical expertise (25%) Able to use digital design and analysis tools to understand the relationship between form and natural forces.

Synthesis (25%) Able to digest multiple sources to develop ideas in words and images as appropriate to the task. Shows continuity of exploration and a clear train of thought that leads to lessons learned.

Communication (20%) Organizes and expresses ideas clearly through words and images. Reveals teamwork through incorporation of efforts and ideas from others.

Timeliness (multiplier) Submit by the deadline, barring unforeseen technical or personal difficulties. To encourage timely communication, late submissions may be marked 10% off for every day late, at the discretion of the instructor. So please submit something on time, even if it is a simple draft.

Page 9: BIOMIMICRY & PARAMETRIC DESIGN · 2019-01-07 · 1 University of Oregon – College of Design – School of Architecture and Environment ‐ Department of Architecture ARCH 410/510

References updated winter 2019 Books are on Reserve at the Design Library

Author Title UO Library Call Number Date Publisher Keywords

 Kohler, Matthias & 

Silke Langenberg, ed.Fabricate (2014 print, 2017 online) NA2543.T43 F33 2014 2014 gta Verlag

digital fabrication, 

material‐based design

Aksamija, AjlaSustainable Facades: Design Methods for High‐

Performance Building Envelopesonline ebook 2013 Wiley building envelopes

Aranda, Benjamin; 

Lasch, ChrisTooling NA2728 .A58 2006 2006

Princeton 

Architectural parametric design

Ball, PhilipNature's patterns: a tapestry in three parts. 

Shape

online ebook (2nd 

edition of Self‐made 

Tapestry)

2011Oxford University 

Press

biomimicry, pattern, 

chemistry

Beorkrem, Christopher Material strategies in digital fabricationNA4100 .B46 2017  

2017 Routledgedigital fabrication, 

material‐based design

Brownell, Blaine &  

Swackhamer, Marc

Hypernatural : architecture's new relationship 

with natureNA2542.35 .B79 2015  2015

Princeton 

Architectural 

Press

digital architecture, 

biomimicry

Goethe, Johann 

Wolvgang vonThe metamorphosis of plants online‐ebook 2009 MIT Press growth

Gruber, PetraBiomimetics in Architecture:  architecture of 

life and buildingsNA2543.B56 G78 2011 2011 Springer

biomimicry in 

architecture

Hu, David How to Walk on Water and Climb Up Walls 2018 Princeton Univ. Prebiomimicry, motion

Lim, Joseph Bio‐structural analogues in architecture NA2543.B56 L55 2009 2009 BIS Publishers biomimetic structures

Lim, Joseph Eccentric structures in architecture NA2750 .L56 2010 2010 BIS Publishers structures

Mazzoleni, Ilaria & 

Price, Shauna

Architecture Follows Nature‐Biomimetic 

Principles for Innovative DesignNA2543.B56 M39 2013 2013 CRC Press, T&F

biomimicry, 

architecture

Meadows, Donnella & 

Wright, DianaThinking in Systems online e‐book 2012 Taylor and Francis system thinking

Pawlyn, Michael Biomimicry in Architecture NA2543.B56 P39 2011 2011 Riba Publishingbiomimicry, 

architecture

Pearce, Peter Structure in Nature is a Strategy for Design NA2750 .P4 1978 MIT Pressnatural structures, 

geometry

Tedeschi, ArturoAAD Algorithms‐Aided Design. Parametric 

strategies using GrasshopperNA2728 .T43 2014  2014 Le Penseur parametric design

Tedeschi, ArturoParametric architecture with Grasshopper 

primerTA174 .T43413 2011  2011 Le Penseur parametric design

Thompson, D'Arcy 

WentworthOn Growth and Form QP84.T4 1952 1952

Cambridge Univ. 

Press

biological patterns, 

growth

References 1 of 3

Page 10: BIOMIMICRY & PARAMETRIC DESIGN · 2019-01-07 · 1 University of Oregon – College of Design – School of Architecture and Environment ‐ Department of Architecture ARCH 410/510

References updated winter 2019 Books are on Reserve at the Design Library

Author Title UO Library Call Number Date Publisher Keywords

Vogel, StevenCats' Paws and Catapults: mechanical worlds 

of nature and peopleQH513 .V64 1998 2000 Norton

biomimicry, biology, 

structure

Vyzoviti, SophiaSoft shells : porous and deployable 

architectural screensNA2790 2011 BIS Publishers folding

Yuan, Philip; Achim 

Menges & Neil LeachDigital Fabrication NA2543.T43 Y83 2017    2017

Tongji University 

Pressdigital fabrication

WEB RESOURCESBenyus, Janine & Joel 

MakowerVerge 18 Closing Keynote

https://www.greenbiz.com/vid

eo/closing‐plenary‐uncovering‐

natures‐secrets‐reinvent‐cities 2018

biomimicry, 

architecture

Blosfeldt, Karl Archive of Nature Specimen photos http://karl‐blossfeldt‐archiv.denature, natural 

structure, pattern

Conway, John Game of Life videohttps://www.youtube.com/wat

ch?v=CgOcEZinQ2Isystems, programming

Crash Course Master HOX geneshttps://www.youtube.com/wat

ch?v=9sjwlxQ_6LIDevelopmental biology

Eggermont, Marjan Zygote Quarterly https://issuu.com/eggermont biomimicry

Frame, Michael, 

BenoitMandelbrot,  & 

Nial Neger

Intro to Fractalshttp://users.math.yale.edu/pub

lic_html/People/frame/Fractals

/

systems, self‐

similarity, fractals

Frazier, John Evolutionary Architecture http://www.aaschool.ac.uk/publications/ea/intro.html

Hu, David Lab for Biolocomotionhttp://www.hu.gatech.edu/ Georgia Tech

animal‐inspired 

robots

Islands & Rivers Murmuration video: Flocking behavior https://vimeo.com/31158841 flocking

Oregon State University Oregon Explorer http://oregonexplorer.info/ nature, oregon

Panchuk, NealBiomimicry and its Application to Digital 

Architecture

http://uwspace.uwaterloo.ca/h

andle/10012/2876

biomimicry, 

architecture, 

parametric design

Perez‐Garcia, Agustin & 

Fernando Gomez‐

Martinez

Natural structures: Strategies for geometric 

and morphological optimization

http://www.researchgate.net/pu

blication/50838824_Natural_stru

ctures_strategies_for_geometric_

and_morphological_optimization

nature, natural 

structures

Petersen, Kirsten Collective Embodied Intelligence Labhttps://cei.ece.cornell.edu/new

s/news‐2/in‐the‐news/ Cornell University swarm robotics

Prusinkiewicz, 

Przemyslaw The Algorithmic Beauty of Plants http://algorithmicbotany.org/

nature, natural 

structures, digital 

modeling

RadioLab at WNYC Emergence podcast http://youtu.be/o_ZuWbX‐CyE systems

References 2 of 3

Page 11: BIOMIMICRY & PARAMETRIC DESIGN · 2019-01-07 · 1 University of Oregon – College of Design – School of Architecture and Environment ‐ Department of Architecture ARCH 410/510

References updated winter 2019 Books are on Reserve at the Design Library

Author Title UO Library Call Number Date Publisher Keywords

Rajabzadeh, Marziah et. 

al. 

Philip Ball's Self‐Made Tapestry http://www.youtube.com/watc

h?v=fS7kF_7QKcQ patterns in nature

Reynolds, Craig Flocking: digital boids http://www.red3d.com/cwr/boids/ systems, flocking

RPI Center for Architecture, Science and Ecology http://www.case.rpi.edu/page/research.phpnature, biomimetic 

technology

Rui, Felix Learning from a Barrel Cactushttps://bouncingideas.wordpre

ss.com/2011/12/14/learning‐

from‐a‐barrel‐cactus/

biomimicry, 

architecture, process

Sapolsky, Robert Complexity and Emergence lecture video http://youtu.be/o_ZuWbX‐CyEsystems, complexity, 

emergence

Wasley, James; Terry 

Meyer Boake, Mary 

Guzowski

Carbon Neutral Design Projecthttp://www.tboake.com/carbo

n‐aia/strategies.html2012

AIA | Society of 

Building Science 

Educators

sustainable design, ECS

Wolfram Wolfram's Demonstrations http://demonstrations.wolfram.com/Mathematics, 

geometry, patterns

YİĞİT, Nergiz

Industrial Product Design by Using Two‐

Dimensional Material in the Context of 

Origamic Structure and Integrity

http://library.iyte.edu.tr/tezler/

master/endustriurunleritasarim

i/t000457.pdf

2004İzmir Institute of

Technologyfolding, product design

References 3 of 3

Swimming multicelled Siphonophore simulated by Christine von Raven, Hank Hanzhao Huang, Jose Cuellar supervised by Kelly Sutherland and Nancy Cheng

Page 12: BIOMIMICRY & PARAMETRIC DESIGN · 2019-01-07 · 1 University of Oregon – College of Design – School of Architecture and Environment ‐ Department of Architecture ARCH 410/510

 

   

Parametric Design Rubric 

Page 13: BIOMIMICRY & PARAMETRIC DESIGN · 2019-01-07 · 1 University of Oregon – College of Design – School of Architecture and Environment ‐ Department of Architecture ARCH 410/510

 

   

Precedent Study or Research Report Rubric 

Page 14: BIOMIMICRY & PARAMETRIC DESIGN · 2019-01-07 · 1 University of Oregon – College of Design – School of Architecture and Environment ‐ Department of Architecture ARCH 410/510

 

Presentation Rubric 

Page 15: BIOMIMICRY & PARAMETRIC DESIGN · 2019-01-07 · 1 University of Oregon – College of Design – School of Architecture and Environment ‐ Department of Architecture ARCH 410/510

Schedule (subject to change)    

ARCH 4/510 w19 BIOMIMICRY & PARAMETRIC DESIGN ‐ CHENG [email protected]  

Week Date Room Topic Reading Assignment Due

1.1 M 7‐Jan 230LA Biomimicry Intro, Nature's PrinciplesBiomimicry Toolbox; Janine Benyus Verge 18 video; 

Modelab http://GrasshopperPrimer.com (to 1.3.3)

0 Case Study assigned 

(presented through the term)

1.2 W 9‐Jan 383LA  Interface, GH Basics, Arrays & Grids

2.1 M 14‐Jan 230LA Patterns, Skins & Building FacadesMarch & Steadman Ch 3; Vincent: Biomimetic Patterns, 

Ball: Self‐made Tapestry & video1 Natural patterns

2.2 W 16‐Jan 383LA Paneling tools, Graph mapper

3.1 M 21‐Jan 230LA NO CLASS ‐ MLK HolidayMazzolini: Architecture Follows Nature; Aksamija's 

Sustainable Facades2 Skin: 2D & 3D matrices

3.2 W 23‐Jan 383LA Solar Simulation ‐ Heliotrope

4.1 M 28‐Jan 230LASystems Thinking, Biomimetic Water 

systems 

Gruber's Biomimetics in Architecture; Kim's Systems 

Thinking; Fog‐collection papers. 3 Skin: Solar Responsive module

4.2 W 30‐Jan 383LA Weather & solar simulation ‐ Ladybug

5.1 M 4‐Feb 230LA Movement & Kinetic FacadesPanchuk's Uwaterloo Thesis, Sharaidin's Kinetic 

Facades, nowles Solar Aesthetic

4 Skin: Solar Responsive system; 

Major project proposal

5.2 W 6‐Feb 383LA Solar Simulation ‐ Ladybug

6.1 M 11‐Feb 230LABones, Carapaces & dynamic 

structures

Turner's Bones, Vincent's Deployable Structures, Vogel's 

Cat's Paws and Catapults (Ch.3‐5), Perez‐Garcia Natural 

Structures

5 Skin: final revisions; Major 

project bibliography

6.2 W 13‐Feb 383LAKaramba Structural simulation: linear 

elements

7.1 M 18‐Feb 230LA Material‐based Design & Fabrication 

Brownell s Hypernatural, Beorkram s Material 

Strategies in Digital Fabrication, Yuan's Digital 

Fabrication

6 Organism Structure: research 

sketches, digital form variants; 

7.2 W 20‐Feb 383LAKaramba Structural Simulation: 

surfaces

8.1 M 25‐Feb 230LAEvolution and Development, 

Galapagos

Carroll's Endless Forms Most Beautiful Ch1‐2, Radiolab 

Emergence, Milos Dimcic Coding Evolution; Optional: 

De Landa on Genetic Algorithms & Architecture

7 Organism or Design structural 

analysis; Project step‐by‐step 

plan8.2 W 27‐Feb 383LA Kangaroo Folding & Form‐finding

9.1 M 4‐Mar 230LA Animal Movement & Robotics

Hu's How to walk on Water, Petersen's Collaborative 

Construction, Robotics videos. 

https://www.youtube.com/watch?v=QhnkCIA‐FWs

8 Design, Growth or Movement: 

draft

9.2 W 6‐Mar   Project work time

10 477C LA9 Design, Growth or Movement: 

development

11 Th 21‐Mar TBA FINAL REVIEW 10:15‐12:15pm  10 Major Project & Summary 

Portfolio

M‐F 11 to 

15‐MarEach indiv or team schedules an appointment in lieu of class during week 10


Recommended