+ All Categories
Home > Documents > Bioproducts from agroindustrial residues - FAPESP · Bioproducts from agroindustrial residues...

Bioproducts from agroindustrial residues - FAPESP · Bioproducts from agroindustrial residues...

Date post: 31-Mar-2018
Category:
Upload: buitruc
View: 216 times
Download: 1 times
Share this document with a friend
24
Bioproducts from agroindustrial residues Luiziana Ferreira da SILVA Lab of Bioproducts Institute of Biomedical Sciences University of São Paulo USP Brazil PRIBOP CYTED-IBEROAMERICAN BIOPLASTIC NETWORK
Transcript

Bioproducts from agroindustrial residues

Luiziana Ferreira da SILVA

Lab of Bioproducts

Institute of Biomedical Sciences University of São Paulo USP

Brazil

PRIBOP CYTED-IBEROAMERICAN BIOPLASTIC NETWORK

Some bioproducts under study

• Polyhydroxyalkanoates (PHA)

• Ethanol

• 1,2 propanediol

• Rhamnolipids

PHA are accumulated as intracelular granules by bacteria

C4 & C5 Short-chain length monomers PHA scl

C6 & C12 Medium-chain length monomers PHA mcl

Features influencing PHA monomer composition

Monomer composition is responsible for PHA properties and applications

PHA production integrated to a sugar and etanol mill.

Glycerol

Isolation of a new species from sugarcane cultivation soil

Strain/isolate Carbon source PHB (%)

Ralstonia eutropha

Glucose + Fructose Sucrose

77 0

Isolate 101

Glucose + Fructose Sucrose

75 70

Burkholderia sacchari wt 101

Improvement to

incorporate 3HV units

Strain Phenotype/ strategy

3HB mol%

3HV mol%

Y3HV/prp* g/g

B. sacchari wild type 93.8 6.2 0.10

189 prp UV mutant 43.6 56.4 0.90

189 Sucrose:propionate feeding rates

92.0 18.0 1.27

*Y3HV/prp = 3HV yield from propionic acid

Maximum theoretical yield = 1.35 g/g

P3HB-co-3HV from sucrose and propionic acid

Inactivation on the propionate

catabolic pathway

2MCC = 2 methyl citrate cycle

3HV content is dependent on propionic acid concentration

acnM/prpC deletion

2MCC is more operative

at low prp concentrations.

A second prp catabolic

pathway do exist?

Control on 3HV content

Sucrose:propionic ratio in the feeding media

B. sacchari accumulates up o 2 mol% 3HHx from hexanoic acid

0

0,5

1

1,5

2

2,5

0   0,5   1   1,5   2  

3HH

x (m

ol%

)

Hexanoic acid (g/L)

Glucose 10 g/L

B. sacchari can incorporate 3HHx from butyric acid

Glucose (5 g/L), 72 h experiment, CDW= cell dry weigth, average of 3 experiments

3HHx fraction on PHA can be controlled Different fatty acids can be used as precursors

Collaboration submitted to FAPESP BE-Basic Call: Biological production of medium-chain fatty acids from low-grade biomass and its application to produce biodegradable polyesters by bacteria USP & Waste2Chemical - LF Silva & K. Steinbusch

Use of sugarcane bagasse hydrolysate do produce PHA

High PHB content

Low productivity

Detoxification of hydrolysate needed

Strain Sugar CDW (g l-1)

Sugar (g l-1)

PHB (%)

Time (h)

YHB (g g -1)

PHB (g l-1 h-1)

Bu.sacchari Glu 6.37 14.07 63.14 36 0.29 0.11 Busacchari Xyl 5.53 12,37 58.07 48 0.26 0.07 Bu.sacchari Glu+Xyl 5.82 12.42 53.42 36 0.25 0.09 Bu.sacchari Glu+Xyl+Ara 5.72 12.26 47.49 36 0.22 0.08 MA 3.3 Glu 5.76 14.58 62.15 36 0.25 0.10 MA 3.3 Xyl 5.54 14.97 64.36 60 0.24 0.06 MA 3.3 Glu+Xyl 3.86 10.19 38.16 24 0.14 0.06 MA 3.3 Glu+Xyl+Ara 3.99 14.50 39.89 48 0.11 0.03

Performance in sugar mixtures (bagasse hydrolysate main sugars)

-  PPHB is 40% lower in xylose than in glucose

- In sugar mixtures parameters were lower: %PHB, YPHB/C e PPHB.

Bacillus megaterium

Abolishing catabolite repression of natural PHB+ isolates

Growth experiments in triple sugar mixtures with wild type B. sacchari wild type (solid line) and B. sacchari PTS-Glucose+ (dotted line): (▲) biomass, (-) glucose, (+) arabinose and (●) xylose.

Deletion on PTS genes B. sacchari

Abolishing catabolite repression of natural PHB+ isolates

PHB production experiment in triple sugar mixture with ammonium for wild type B. sacchari IPT101 (solid line) and B. sacchari LFM828 PTS-Glucose+ (dotted line): (-) glucose, (+) arabinose, (●) xylose, (▲) biomass, and (■) PHB content of the cell dry weight (%PHB).

PHB% PPHB were not improved

Abolishing catabolite repression of natural PHB+ isolates

PHB production by B. megaterium (solid line) andB. megaterium ΔccpA MSL7 (dashed line) in mineral media supplemented with glutamate and sugar mixtures: (♦) glucose, (+) arabinose, (■) xylose, (▲) cell dry weight (CDW), (x) PHB content from cell dry weight (%PHB) and, (○) CO2 production.

Deletion on ccpA genes B. megaterium

New screening from hawaiian soil Back to biodiversity

PHA production experiments with soil isolates in mineral media supplemented with xylose (20 g l-1). The initial inocullum was around 1.5 g l-1 for all cultures.

Burkholderia sp

Isolate F24 (Burkholderia sp) can use toxic compounds from sugarcane hydrolysate

Growth experiment with F24 in mineral media with xylose (10 g l-1) and individual compounds: (■) 2.5 g l-1 of acetic acid, (▲) 1.25 g l-1 of formic acid, (♦) control experiment only with xylose, (●) 0.5 g l-1 of HMF, and (x) 0.5 g l-1 of furfural.

Effect of the inoculum size (g l-1) on utilization of hydrolysates (g l-1), cell growth (g l-1) and PHA biosynthesis (% of PHA of the cell dry weight) in hydrolysate medium after 48 hours

Effect of hydrolysate concentration in high cell density cultivation with Burkholderia sp. F24: (♦) cell dry weight (■) percentage of PHA .of cell dry weight. Solid line represents the hydrolysate and the dotted line represents de hydrolysate concentrated 3 times.

Burkholderia sp F24 using sugarcane bagasse hdrolysate to produce PHB

PPHB= 0.28 g.l-1 h-1

Economic assessment of biopolymer production integrated to a sugar and ethanol mill

Raicher, 2012

Projections to improve the process to produce P3HB from hemicellulosic hydrolysate. Evaluating the impact of improving specific growth rates of bacteria and P3HB production

PHA content – simulated scenarios Raicher experiments Parameters

Target – productivity 1 g l-1 h-1

Parameters to be improved

How to improve? 1.  Genetic improvement 2.  Evolutive engineering 3.  Evolutive engineering & Biochemical Engineering strategies 4.  Metabolic Flux Analysis

Team and Financial Support

Dr. J.Gregório C. Gomez Dr. Luiziana F. Silva Dr. Marilda Keico Taciro Dr. Ruben Sanchez (UENF) Dr. Rogério S. Gomes Dr. Gil Raicher MSc. Thatiane T. Mendonça MSc. Daniela C. P. Lício MSc. Y. Paola Galindo-Rozo MSc. Karen L. Almeida MSc. Linda Guaman

Johana K. Bocanegra-Rodriguez Rominne K.B. Freire Karinna Chouman Liege A. Kawai Nathália G.F. Machado Débora Parrine Sant’ana Amanda B. Flora Kelli Lopes Gabriela Lozano Carlos Fajardo Juliano Cherix Thandara Garcia Rafaela Tavares Mariana N. Limas Lucas Cespedes Elisa Gragnani Aelson L. Santos

Colaboration

• Zanotto, S.P. University of the Amazon Estate, Brazil

• Lopes, MSG. Braskem Brazil • Sanchez, R. Advanced Materials Laboratory, UENF Rio de Janeiro, Brazil • Gosset, G. Cell Biology and Biocatalysis Lab, UNAM, Mexico • Hillen, W. Microbiology Institut, Friedrich-Alexander University ,Germany • Yu, J. Hawaii Natural Energy Institute, University of Hawaii

• Steinbusch, K, van Stralen, N. Waste2Chemical, The Netherlands

Financial support

PRIBOP CYTED-IBEROAMERICAN BIOPLASTIC NETWORK


Recommended