+ All Categories
Home > Documents > Bird Detection w Radar

Bird Detection w Radar

Date post: 16-Sep-2015
Category:
Upload: neronci
View: 237 times
Download: 2 times
Share this document with a friend
Description:
use of marine radars to detect birds that can be a problem near an airport
Popular Tags:
6
50 | Triennial Scientific Report Monitoring bird migration by weather radar Adriaan Dokter and Iwan Holleman Introduction Weather and bird migration are intimately related. Evolution has shaped the migration strategies of birds such that they optimally respond to and make use of weather conditions during their long distance travels between breeding and wintering grounds. Both wind and precipitation strongly determine the day-to-day timing of migration and altitude use by birds. Spatiotemporal information on bird migration is of invaluable use to scientists and society alike, but so far no sensor networks have been established that can monitor bird movement continuously over large areas. In aviation bird migration information is important for improving flight safety. Especially military low level flying has a high risk of en-route bird strikes and spatial bird migration information is essential for generating reliable flight warnings to pilots. Comprehensive monitoring of bird migration at continental scales can also provide insight into migration paerns and the impact on migratory flight of synoptic scale factors like weather and orography. As part of an international project by the European Space Agency (ESA) aimed at reducing collisions between aircraſts and birds, we have explored the potential of operational Doppler weather radar as a bird migration sensor. Observing bird migration by Doppler weather radar Operational weather radar networks exist in e.g. Europe and the United States for meteorological applications. These networks have a large spatial coverage as illustrated in Figure 1, showing part of the European network OPERA (Operational Programme for the Exchange of weather Radar information) 1) . Although weather radars are used primarily for precipitation monitoring, also biological scaerers can be observed by these systems. Boundary layer clear-air weather radar echoes are caused nearly exclusively by arthropods (most- ly insects) and flying birds. Weather radars are therefore a promising sensor for providing bird migration information. A bird migration quantification algorithm needs to auto- matically distinguish bird-scaered signals from all other echoes detected by weather radar. Bird echoes and other clear-air signals tend to be considerably weaker than meteorologically relevant signals from hydrometeors. Birds, insects and hydrometeors give rise to signals in an 355˚ 10˚ 45˚ 50˚ 0 100 200 Kilometers 7 15 23 31 39 47 55 [dBZ] EUMETNET/OPERA Radar Network Wideumont Trappes Den Helder De Bilt Figure 1. Map of operational weather radars for part of Western Europe. Radar sites are indicated by bullets, the weather radars used in this study are labelled and coloured red. The OPERA reflectivit y composite is overlaid for 19 April 2008 19.30 UTC.
Transcript
  • 50 | Triennial Scientific Report

    Monitoring bird migration by weather radar

    Adriaan Dokter and Iwan Holleman

    IntroductionWeatherandbirdmigrationareintimatelyrelated.Evolutionhasshapedthemigrationstrategiesofbirdssuchthattheyoptimallyrespondtoandmakeuseofweatherconditionsduringtheirlongdistancetravelsbetweenbreedingandwinteringgrounds.Bothwindandprecipitationstronglydeterminetheday-to-daytimingofmigrationandaltitudeusebybirds.

    Spatiotemporalinformationonbirdmigrationisofinvaluableusetoscientistsandsocietyalike,butsofarnosensornetworkshavebeenestablishedthatcanmonitorbirdmovementcontinuouslyoverlargeareas.Inaviationbirdmigrationinformationisimportantforimprovingflightsafety.Especiallymilitarylowlevelflyinghasahighriskofen-routebirdstrikesandspatialbirdmigrationinformationisessentialforgeneratingreliableflightwarningstopilots.Comprehensivemonitoringofbirdmigrationatcontinentalscalescanalsoprovideinsightintomigrationpatternsandtheimpactonmigratoryflightofsynopticscalefactorslikeweatherandorography.

    AspartofaninternationalprojectbytheEuropeanSpaceAgency(ESA)aimedatreducingcollisionsbetweenaircraftsandbirds,wehaveexploredthepotentialofoperationalDopplerweatherradarasabirdmigrationsensor.

    Observing bird migration by Doppler weather radarOperationalweatherradarnetworksexistine.g.EuropeandtheUnitedStatesformeteorologicalapplications.ThesenetworkshavealargespatialcoverageasillustratedinFigure1,showingpartoftheEuropean

    networkOPERA(OperationalProgrammefortheExchangeofweatherRadarinformation)1).Althoughweatherradarsareusedprimarilyforprecipitationmonitoring,alsobiologicalscattererscanbeobservedbythesesystems.Boundarylayerclear-airweatherradarechoesarecausednearlyexclusivelybyarthropods(most-lyinsects)andflyingbirds.Weatherradarsarethereforeapromisingsensorforprovidingbirdmigrationinformation.

    Abirdmigrationquantificationalgorithmneedstoauto-maticallydistinguishbird-scatteredsignalsfromallotherechoesdetectedbyweatherradar.Birdechoesandotherclear-airsignalstendtobeconsiderablyweakerthanmeteorologicallyrelevantsignalsfromhydrometeors.Birds,insectsandhydrometeorsgiverisetosignalsinan

    355 0 5 10

    45

    50

    0 100 200

    Kilometers

    7

    15

    23

    31

    39

    47

    55

    [dBZ]

    EUMETNET/OPERA Radar Network

    Wideumont

    Trappes

    Den Helder

    De Bilt

    Figure 1. Map of operational weather radars for part of Western Europe.

    Radar sites are indicated by bullets, the weather radars used in this study

    are labelled and coloured red. The OPERA reflectivit y composite is overlaid

    for 19 April 2008 19.30 UTC.

  • Triennial Scientific Report | 51

    overlappingreflectivityregime,whichmakesitchallengingtodistinguishthem.

    Dopplerweatherradarsprovideinformationontheradialvelocityofscatterers,whichweusetoselectoutechoesrelatedtobirdmigration.Figure2showsweatherradarimagesduringintensebirdmigration(toprow)

    andduringacasewithconvectiveshowers(bottomrow).Birdmigrationgivesrisetoacharacteristicallyhighspatialvariabilityoftheradialvelocityscandata,whichisnotobservedforechoesfromprecipitationorinsects.Unlikeprecipitationandinsects,birdsperformactiveflightwhichvariesinspeedanddirectionperindividual,causingahighervariabilityintheDopplervelocity.

    0

    90

    180

    270

    0

    90

    180

    270

    0

    90

    180

    270

    0

    90

    180

    270

    Figure 2. Radar displays for reflectivity factor (left) and radial velocity (right) during a bird migration event (top rectangular box in green) and an event

    with weak convective showers (bottom rectangular box in blue). The displays show the 1.2 degree elevation scan for a circular area of 25 km radius

    around the weather radar in De Bilt. Contiguous areas of echoes identified by the algorithm are indicated within the reflectivity displays by red borders.

    For the precipitation case (bottom) these areas removed from the data based on a low spatial variance of the radial velocities, while for the bird migration

    case (top) these areas are retained based on a high spatial variance of radial velocities. After removing precipitation echoes average bird densities are

    calculated from the remaining reflectivity data.

  • 52 | Triennial Scientific Report

    Wedevelopedabirddetectionalgorithm3,4)basedonexistingwind-profilingalgorithmsforDopplerweatherradars,usingtheVolumeVelocityProfiling(VVP)tech-nique5).Atargetidentificationschemewasdevelopedtofilteroutnon-birdechoesfromtheradarvolumedata,basedonananalysisofthelocalvarianceinradialvelocity.Thefilteredreflectivitydataisusedtoconstructabirddensityaltitudeprofile,andananalysisoftheradialvelocitydatayieldstheaveragebirdspeedanddirection.Reflectivitywasconvertedtobirddensitybyassumingaconstantbirdradarcrosssectionof11cm2,whichwefoundtobeanadequateapproximationduringnocturnalmigrationoverWesternEurope,whichisstronglydominatedbypasserines(smallsong-birds).

    Bird radar field campaigns for validationIncorporationwiththeSwissOrnithologicalInstituteweusedadedicatedbirdradarofthetypeSuperfle-dermaus(seeFigure3)tovalidatetheweatherradarobservationsofbirdmigration.Thededicatedradariscapableofdetectingthewingbeatpatternforindividualradartargets6)(seeFigure4).Basedontheseechosigna-tures,insects,birdsandhydrometeorscanbedistinguis-hedwithahighselectivity.Themobiletrackingradaristhereforeastate-of-the-artreferenceforvalidatingtheweatherradarbirdobservations7).

    Threefieldcampaignswereorganizedtovalidatetheweatherradarbirdobservations.Thebirdradarhas

    beenstationedwithinthemeasurementvolumeoftheweatherradarinDeBilt,theNetherlandsfrom19Aug-16Sep2007,inWideumont,Belgiumfrom18Sep-22Oct2007andinTrappes,Francefrom10Mar-9May2008,thuscoveringafullautumnandspringmigrationseason.InFigure5thebirddensitiesaltitudeprofilesdetectedbybirdradar(toppanel)andweatherradar(middlepanel)aredisplayedfortheperiodof11-16October2007,whenthebirdradarwasstationedinTrappes.Wefindaremarkablecorrespondenceinthedetectedbirddensitiesbythetwosensorsduringallfieldcampaigns.Thealtitudedistributionsandabsolutenumberofdetectedbirdsmatchquantitatively.Weatherradarcanthusbeusedasareliablesensorforbirdmigrationquantification.

    The effect of wind on bird migrationTheeffectoftheenvironmentalwindonflightaltitudesbecomesevidentbycomparingtheweatherradarbirddensityprofile(Figure5middlepanel)withthewindprofilescalculatedbytheHIRLAMnumericalweatherpre-dictionmodel(Figure5bottompanel).Wefindthatbirdsadjusttheirflightaltitudetomakeoptimaluseoftailwindsalongthepredominant(south-westerly)migratorydirection.Forexample,theHIRLAMwindprofile(bottompanelFigure5)showsthatonOctober4windconditi-onsathighaltitudewereunfavourable,wherestrongwesterlywindscausenegativewindeffects.Migrationthereforedoesnotextendabove1km(seemiddlepanelFigure5).Ontheotherhand,onOctober6tailwindsaremostfavourableabove1kmandasaresultalargefractionofmigrationtakesplaceathighaltitude.

    Birdmigrationpatternsobservedatsinglesitescanstronglydependonweatherconditionselsewhere.Thisappliesparticularlytonortherntemperateclimate,wherefrequentpassagesofhighandlowpressuresystemscausealargespatialvariabilityinweather.Usingfourweatherradars(seeFigure1)we

    Figure 3. The bird radar Superfledermaus equipped with a camera moun-

    ted parallel to the radar antenna.

    Figure 4. Wingbeat pattern of a small songbird with regular phases

    of wingbeats (frequency around 15 Hz) and pauses as recorded by the

    Superfledermaus bird radar. The single wingbeats are clearly visible. The

    envelope of increasing and decreasing amplitude (vertical axis) of the

    signal along the time axis (horizontal axis) reflects the birds flight entering

    the radar beam at one edge, flying through the centre and leaving at the

    other edge.

    Weather radar can be used as a reliable sensor for bird migration quantification

  • Triennial Scientific Report | 53

    02-Oct-07 03-Oct-07 04-Oct-07 05-Oct-07 06-Oct-07 07-Oct-07

    Height-integrated bird density and wind profile

    02-Oct-07 03-Oct-07 04-Oct-07 05-Oct-07 06-Oct-07 07-Oct-07Time

    0

    50

    100

    150

    Bird

    den

    sity

    [bird

    s/km

    2 ]

    1

    2

    3

    4

    Hei

    ght a

    gl [k

    m]

    Bird radar

    02-Oct-07 03-Oct-07 04-Oct-07 05-Oct-07 06-Oct-07 07-Oct-070

    1

    2

    3

    4

    Hei

    ght a

    gl [k

    m]

    Bird radar

    02-Oct-07 03-Oct-07 04-Oct-07 05-Oct-07 06-Oct-07 07-Oct-070

    1

    2

    3

    4

    Hei

    ght a

    gl [k

    m]

    02-Oct-07 03-Oct-07 04-Oct-07 05-Oct-07 06-Oct-07 07-Oct-07

    Weather radar

    02-Oct-07 03-Oct-07 04-Oct-07 05-Oct-07 06-Oct-07 07-Oct-07

    1

    2

    3

    4

    Hei

    ght a

    gl [k

    m]

    Weather radar

    02-Oct-07 03-Oct-07 04-Oct-07 05-Oct-07 06-Oct-07 07-Oct-07

    1

    2

    3

    4

    Hei

    ght a

    gl [k

    m]

    02-Oct-07 03-Oct-07 04-Oct-07 05-Oct-07 06-Oct-07 07-Oct-07

    1

    23

    5

    1015

    25

    50

    100

    200

    400

    Den

    sity

    [Bird

    s / k

    m3 ]

    -16

    -12

    -8

    -4

    0

    4

    8

    12

    Ref

    lect

    ivity

    fact

    or [d

    BZ]

    Figure 5. Comparison of the bird densities altitude profiles determined by bird radar (top panel) and weather radar (middle panel). Integrated bird densi-

    ties over all height layers are displayed in the lower panel for both weather radar (red) and bird radar (blue) (left vertical axis). The period between sunset

    and sunrise is shaded in grey. Wind barbs in the lower panel show the wind profile from the HIRLAM numerical weather prediction model (right vertical

    axis). Wind barbs in the middle panel indicate the bird speed and direction as retrieved by the weather radar algorithm. Each half flag represents 10 km/h

    and each full flag 20 km/h.

    monitoredthebirdmigrationflywayatseveralsitessimultaneously.Weatherradarbirdobservationsforthenightof19-20April2008aredepictedinFigure6.ForthisnighttheOPERAreflectivitycompositeisoverlaidonFigure1togiveanimpressionofthelargescaleweatherconditions.

    Ateachsite,thetimingandaltitudeprofileofbirdmigra-tionisobservedtobeinfluencedbyweatherconditionsatlocationspassedearlierduringamigratoryflight.Asanexample,migrationatthemostsouthernsite(Trap-

    pes)ischaracterizedbystrongdepartureandascenttohighaltitudesaround2.5km,wherebirdsexperiencefavourabletailwindsalongthepreferredmigratorydirection(NEinspring).Lowaltitudemigrationisavoidedbecauseofunfavourableeasterlylowlevelwinds.Atoneradarsitenorth-eastofWideumont,weobservetheappearanceofamigrationlayercentredaround2kmheightafter22UTC.Thismigrationlayerappearsafter4hoursofflighttime,whichcorrespondswithameasuredbirdgroundspeedof70km/htobirdshavingtravelledoveradistanceofabout280kmtowards

  • 54 | Triennial Scientific Report

    19-Apr-08 18:00 20-Apr-08 00:00 20-Apr-08 06:000

    50

    100

    150

    19-Apr-08 18:00 20-Apr-08 00:00 20-Apr-08 06:000

    50

    100

    150

    18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:000

    1

    2

    3

    4

    18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:000

    1

    2

    3

    4Den Helder

    19-Apr-08 18:00 20-Apr-08 00:00 20-Apr-08 06:000

    50

    100

    150

    18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:000

    1

    2

    3

    4

    18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:000

    1

    2

    3

    4De Bilt

    19-Apr-08 18:00 20-Apr-08 00:00 20-Apr-08 06:000

    50

    100

    150

    18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:000

    1

    2

    3

    4

    18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:000

    1

    2

    3

    4Wideumont

    19-Apr-08 18:00 20-Apr-08 00:00 20-Apr-08 06:000

    50

    100

    15018:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:000

    1

    2

    3

    4

    18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:000

    1

    2

    3

    4Trappes

    19-Apr-08 18:00 20-Apr-08 00:00 20-Apr-08 06:000

    50

    100

    150

    1 2 3 5 10 15 25 50 100 200 400Density [Birds / km3]

    -16.0 -12.0 -8.0 -4.0 0.0 4.0 8.0Reflectivity factor [dBZ]

    Den Helder

    De Bilt

    Wideumont

    Trappes

    Hei

    ght A

    GL

    [km

    ]bi

    rd d

    ensi

    ty [b

    irds/

    km2 ]

    Time [UTC]

    north-east.ThesebirdsmustthereforehavedepartedinthevicinityofTrappesinnorthernFrance,wherebirdschoseaflightaltitudeof2.5km.SinceWideumontislocated500mabovemeansealevel,the2kmaltitude

    bandcloselymatchesthecruisingaltitudeafterdepar-turenearTrappes.Birdshavethusmaintainedaconstantflightaltitudeduringtheirmigratoryflightwithrespecttosealevel.ThealtitudeprofileobservedinWideumontisclearlyaffectedbytheparticularwindconditionsatthemoresouthernsiteofTrappes.InDeBilt,northofWideumont,nobirdsdepartintheearlynight.ThisisexplainedbytheweakocclusionfrontslightlysouthofDeBilt,whichblocksmostmigration.Withthisfrontweakeninginactivity,migrationcondi-tionsbecamemorefavourableoverthecourseofthenight,andafter00UTCwedoobservethepassageandarrivalofmigratingbirds.NomigrationisobservedonthemostnortherlylocatedweatherradarinDenHelder.Theextenttowhichbirdsareabletoadapttheirflightaltitudesinresponsetochangingmeteorologicalcondi-tionswillbetopicoffutureresearch.

    ConclusionWefindthatDopplerweatherradarishighlysuccessfulindeterminingquantitativebirddensitiesandaverageflightspeedsanddirectionsasafunctionofaltitude.Wefindthatweatherradarreflectivitycanbequantitativelycorrelatedtothebird-densitiesdeterminedindependentlybybirdradar.Thedevelopedmethodsforbirddetectionandquantificationcanbeeasilyextendedtofulloperationalweatherradarnetworks.WiththeestablishmentoftheOPERAdatacentreforradardatawithinthecomingtwoyears1)theestablishmentofacontinent-widebirdmigrationsensornetworkinEuropeiswithinreach.Suchanetworkcanenableimportantapplicationsbothinflightsafety,health(aviandiseasespread)andenvironmentalimpactassessments.

    Figure 6. Bird densities as a function of time and altitude at different

    weather radar sites (see Figure 1) for the night of 19 April 2008. The wind

    barbs represent the measured bird ground speed and direction. The lower

    panel shows the height integrated bird densities over 0.2-4 km altitude.

    The period between sunset and sunrise is shaded in grey and civil twilight

    is shaded in light grey. The pink boxed inset on the right hand side of each

    panel shows the HIRLAM wind profile at 00 UTC. Around 00 UTC a double

    layered bird density profile is observed in Wideumont. We attribute the top

    band to birds that departed in the vicinity of Trappes, while the lower band

    results from birds departed at closer distance.

    The establishment of a continent-wide bird migration sensor network in Europe is within reach

  • Triennial Scientific Report | 55

    References1) Holleman I., L. Delobbe and A. Zgonc, 2008. Update on the european weather radar network (OPERA). Proc. Fifth European Conf. on Radar in Meteorology and Hydrology, June-July 2008, Helsinki, Finland, 5pp2) Holleman, I., H. van Gasteren and W. Bouten, 2008. Quality assessment of weather radar wind profiles during bird migration. J. Atm. Oceanic Technol., 25, 2188-2198, htpp://journals.ametsoc.org/doi/pdf/10.1175/2008JTECHA1067.13) Dokter, A.M., F. Liechti, H. Stark, L. Delobbe, P. Tabary and I. Holleman, 2010. Bird migration flight altitudes studied by a network of operational weather radars. J. R. Soc. Interface 7, doi:10-1098/rsif.2010.01164) Gasteren, H. van, I. Holleman, W. Bouten, E. van Loon, and J. Shamoun-Baranes, 2008. Extracting bird migration information from C-band weather radars. Ibis, 150, 674-686.5) Waldteufel, P. and H. Corbin, 1979. On the analysis of single doppler radar data. J. Appl. Meteor., 18, 532-542.6) Zaugg, S., G. Saporta, E. van Loon, H. Schmaljohann and F. Liechti, 2008. Automatic identification of bird targets with radar via patterns produced by wing flapping. J. Royal Soc. Interface, 5, 1041-1053.7) Schmaljohann, H., F. Liechti, E. Bchler, T. Steuri, and B. Bruderer, 2008. Quantification of bird migration by radar - a detection probability problem. Ibis, 150, 342-355.


Recommended