+ All Categories
Home > Documents > BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark...

BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark...

Date post: 11-Aug-2021
Category:
Upload: others
View: 12 times
Download: 0 times
Share this document with a friend
21
ECE-305: Spring 2015 BJTs: Current-Voltage Characteristics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA [email protected] 4/22/15 Pierret, Semiconductor Device Fundamentals (SDF) pp. 371-399 bipolar transistors Lundstrom ECE 305 S15 V CE E: emitter C: collector B: base I C NPN BJT I C V BE1 , I B1 I E I B (forward) active region EB: FB, BC: RB saturation region EB: FB, BC: FB cut-off region EB: RB, BC: RB 2
Transcript
Page 1: BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette,

Lundstrom ECE 305 S15

ECE-305: Spring 2015

BJTs: Current-Voltage Characteristics

Professor Mark Lundstrom

Electrical and Computer Engineering Purdue University, West Lafayette, IN USA

[email protected]

4/22/15

Pierret, Semiconductor Device Fundamentals (SDF) pp. 371-399

bipolar transistors

Lundstrom ECE 305 S15

VCE

E: emitter

C: collector

B: base

IC

NPN BJT

IC

VBE1, IB1

IE

IB

(forward) active region EB: FB, BC: RB

saturation region EB: FB, BC: FB

cut-off region EB: RB, BC: RB

2

Page 2: BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette,

BJT operation: active region

3 3

n+ emitter

p base

n collector

n+

FB RB

x

To understand this device, we should first draw an Energy Band Diagram.

Lundstrom ECE 305 S15

equilibrium

x

EF EC

EV

E

emitter base collector

Lundstrom ECE 305 S15

qVbi

4

EC

EV

Page 3: BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette,

VBE = 0, VCE > 0

x

EC

EV

E

collector

Lundstrom ECE 305 S15

qVbi

5 emitter base

Fn

Fn

EC

EV“off” “cut-off”

VBE > 0, VCE > 0

x

EC

EV

E

collector

Lundstrom ECE 305 S15

q Vbi −VA( )

6 emitter base

Fn

Fn

EC

EV“active”

IEn

ICn =αT IEn = IC

IC = I0eqVBE kBT

IEp

IB = IEp

IB = IC βdc << IC

Page 4: BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette,

NPN BJT operation (active region)

7

n+ emitter

p base

n collector

n+

FB RB

IE IC

IB

InE ICn ≈ IEn

I pE

IC ≈ IEn IE = IEn + IEpIB = IEp

WB << Ln( )

Lundstrom ECE 305 S15

Question 1)

1) For an NPN bipolar transistor biased in the forward active region, which of the following is true?

a)  VBE = 0, VCE = 0. b)  VBE > 0, VCE > 0. c)  VBE > 0, VCE < 0. d)  VBE < 0, VCE > 0. e)  VBE < 0, VCE < 0.

Lundstrom ECE 305 S15 8

Page 5: BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette,

Question 2)

2) For a PNP bipolar transistor biased in the forward active region, which of the following is true?

a)  VBE = 0, VCE = 0. b)  VBE > 0, VCE > 0. c)  VBE > 0, VCE < 0. d)  VBE < 0, VCE > 0. e)  VBE < 0, VCE < 0.

Lundstrom ECE 305 S15 9

Question 3)

Lundstrom ECE 305 S15

3) How are the PN junctions biased in the saturation region of an NPN BJT?

a) Emitter-base: forward biased. Base-collector: forward-biased.

b) Emitter-base: forward biased. Base-collector: reverse-biased.

c) Emitter-base: reverse biased. Base-collector: forward-biased.

d) Emitter-base: reverse biased. Base-collector: reverse-biased.

e) Emitter-base: forward biased. Base-collector: biased breakdown.

10

Page 6: BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette,

Question 4)

Lundstrom ECE 305 S15

4) How are the PN junctions biased in the saturation region of an PNP BJT?

a) Emitter-base: forward biased. Base-collector: forward-biased.

b) Emitter-base: forward biased. Base-collector: reverse-biased.

c) Emitter-base: reverse biased. Base-collector: forward-biased.

d) Emitter-base: reverse biased. Base-collector: reverse-biased.

e) Emitter-base: forward biased. Base-collector: biased breakdown.

11

outline

Lundstrom ECE 305 S15

1)  Review 2)  Review of PN junctions under bias 3)  IV Characteristics (Active region) 4)  IV characteristics (Saturation region) 5)  CE vs. CB 6)  Wrap-up

12

Page 7: BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette,

NP junction in FB

Lundstrom ECE 305 S15

q Vbi −VA( )Fp

Jn Jn = qDn

WP

ni2

NA

eqVA kBT −1( )

Jp Jp = qDp

WN

ni2

ND

eqVA kBT −1( )

WP

WN

13

Fn

quasi-neutral regions

Lundstrom ECE 305 S15

q Vbi −VA( )Fp

WPWN

14

Fn

Page 8: BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette,

diffusion in the quasi-neutral regions

Lundstrom ECE 305 S15

0x

Δn 0( ) = ni2

NA

eqVA kBT −1( )

WP << Ln

WP

Δn 0( ) = 0

′x

Δn x( )

′0

Δp ′0( ) = ni2

ND

eqVA kBT −1( )

Δp x( )

WN

WN << Ln

15

NP junction in FB (N-region)

Lundstrom ECE 305 S15

0x

Δn x( ) Δn 0( ) = ni2

NA

eqVA kBT −1( )

WB << Ln

WP

Jn = qDndΔn x( )dx x=0

Jn = −q Dn

WP

Δn 0( )

Jn = q Dn

WP

ni2

NA

eqVA kBT −1( )Δn 0( ) = 0

16

Page 9: BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette,

N+P junction in FB

Lundstrom ECE 305 S15

Jn

Jn VA( ) = q Dn

WP

ni2

NA

eqVA kBT −1( )

Jp

Jp VA( ) = q Dp

WN

ni2

ND

eqVA kBT −1( )JD VA( )

ND >> NA

γ ≡Jn VA( )

Jn VA( ) + Jp VA( ) ≤1

“electron injection efficiency”

γ ≡ 1

1+Dp

Dn

WP

WN

NA

ND 17

outline

Lundstrom ECE 305 S15

1)  Review 2)  Review of PN junctions under bias 3)  IV Characteristics (Active region) 4)  IV characteristics (Saturation region) 5)  CE vs. CB 6)  Wrap-up

18

Page 10: BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette,

NPN BJT operation (general)

19

n+ emitter

p base

n collector

n+ IE IC

IB

IEn ICn

IEp ICp

IE = IEn + IEp IC = ICn + ICp IB = IE − IC

FB/RB FB/RB

Lundstrom ECE 305 S15 19

NPN BJT operation (active region)

20

n+ emitter

p base

n collector

n+

FB RB

IE IC

IB

InE ICn

I pE

IC ≈ IEn IE = IEn + IEpIB = IEp

WB << Ln( )

Lundstrom ECE 305 S15

Page 11: BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette,

NPN BJT operation (active)

21

n+ emitter

p base

n collector

n+ IE IC

IB

IEn ICn

IEp ICp ≈ 0

IEn VBE( ) = qAE Dn

WB

ni2

NAB

eqVBE kBT −1( ) ???

IEp VBE( ) = qAEDp

WE

ni2

NDE

eqVBE kBT −1( )

ICn VBE( ) = IEn VBE( )

(no recombination in the base) αT = 1

diffusion in the quasi-neutral regions

Lundstrom ECE 305 S15

0x

WB

′x′0

Δp ′0( ) = ni2

NDE

eqVBE kBT −1( )

Δp x( )

WE

WE << Ln

Emitter Base

Δn 0( ) = ni2

NAB

eqVBE kBT −1( )

WB << Ln

Δn x( )

Δn WB( ) = ni2

NAB

eqVBC kBT −1( )

22

Page 12: BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette,

diffusion in the quasi-neutral base

Lundstrom ECE 305 S15

0

x

Δn 0( ) = ni2

NAB

eqVBE kBT −1( )

WB << Ln

WB

Δn x( )

Base

Δn WB( ) = ni2

NAB

eqVBC kBT −1( )

IEn VBE( ) = qAE Dn

WB

ni2

NAB

eqVBE kBT −1( ) ???

IEn VBE( ) = qAE Dn

WB

ni2

NAB

eqVBE kBT − eqVBC kBT( )

23

Δn WB( ) = − ni2

NAB

≈ 0

VBC << 0 (active region)

diffusion in the quasi-neutral base

Lundstrom ECE 305 S15

0

x

Δn 0( ) = ni2

NAB

eqVBE kBT −1( )

WB << Ln

WB

Δn x( )

Base

Δn WB( ) ≈ 0

IEn VBE( ) = qAE Dn

WB

ni2

NAB

eqVBE kBT − eqVBC kBT( )VBC << 0

IEn VBE( ) = qAE Dn

WB

ni2

NAB

eqVBE kBT

24

Page 13: BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette,

NPN BJT operation (active)

25

n+ emitter

p base

n collector

n+ IE IC

IB

IEn ICn

IEp ICp ≈ 0

IEn VBE( ) = qAE Dn

WB

ni2

NAB

eqVBE kBT

IEp VA( ) = qAEDp

WE

ni2

NDE

eqVBE kBT −1( )

ICn VBE( ) = IEn VBE( ) αT = 1( )

IC = IEn VBE( )

IC VBE( ) = I0eqVBE kBT I0 = qAEDn

WB

ni2

NAB

NPN BJT in active region

26

VCE

IC

VBE ,IB

IC = I0eqVBE kBT

What base current produced this collector current?

Lundstrom ECE 305 S15 26

Page 14: BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette,

NPN BJT (active region base current)

27

n+ emitter

p base

n collector

n+ IE IC

IB

IEn ICn

IEp ICp ≈ 0

IEp VBE( ) = qA Dp

WE

ni2

NDE

eqVBE kBT −1( )

IB VBE( ) = qAEDp

WE

ni2

NDE

eqVBE kBT

(forward) active region

Lundstrom ECE 305 S15

VCE

IC

VBE ,IB

IC = I0eqVBE kBT

IB VBE( ) = qAEDp

WE

ni2

NDE

eqVBE kBT

ICIB

= Dn

Dp

NDE

NAB

WE

WB

= βdc

28

IC VBE( ) = qAEDp

WE

ni2

NDE

eqVBE kBT

Page 15: BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette,

(forward) active region summary

Lundstrom ECE 305 S15

VCE

IC

VBE ,IBI0 = qAE

Dn

WB

ni2

NAB

βdc =Dn

Dp

NDE

NAB

WE

WB

IC = I0eqVBE kBT

IB = IC βdc

29

outline

Lundstrom ECE 305 S15

1)  Review 2)  Review of PN junctions under bias 3)  IV Characteristics (Active region) 4)  IV characteristics (Saturation region) 5)  CE vs. CB 6)  Wrap-up

30

Page 16: BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette,

bipolar transistors

Lundstrom ECE 305 S15

VCE

E: emitter

C: collector

B: base

IC

NPN BJT

IC

VBE1, IB1

IE

IB

(forward) active region EB: FB, BC: RB

saturation region EB: FB, BC: FB

31

diffusion in the quasi-neutral base

Lundstrom ECE 305 S15

0y

Δn 0( ) = ni2

NAB

eqVBE kBT −1( )

WB << Ln

WB

Δn x( )

Base

Δn WB( ) = ni2

NAB

eqVBC kBT −1( )

IEn VBE( ) = qAE Dn

WB

ni2

NAB

eqVBE kBT − eqVBC kBT( )

32

Page 17: BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette,

NPN BJT operation (saturation)

33

n+ emitter

p base

n collector

n+

FB FB

IE IC

IB

IEn ICn

I0 = qAEDn

WB

ni2

NABIC = I0e

qVBE kBT 1− e−qVCE kBT( )

outline

Lundstrom ECE 305 S15

1)  Review 2)  Review of PN junctions under bias 3)  IV Characteristics (Active region) 4)  IV characteristics (Saturation region) 5)  CE vs. CB 6)  Wrap-up

34

Page 18: BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette,

NPN bipolar transistor

35

BE: FB BC: RB

VBE > 0VCB = VCE −VBE > 0

IC

IB VCE

IEVBE

Pierret, Fig. 10.4

active saturation

cut-off inverted active

VCE (V )

IC = βdcIB

common base (active region)

36

IC

IB VCE

VBE

VCB

IE

IC = αdcIE

VCB > 0VEB < 0

IE

IB = IC β

IV characteristics

Page 19: BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette,

common base (active region)

37

IC

VCBVEB IB

IE

BE: FB BC: RB

VEB < 0VCB > 0

Pierret, Fig. 10.4

active

cut-off

saturation

VCB (V )

IC = αdcIE

outline

Lundstrom ECE 305 S15

1)  Review 2)  Review of PN junctions under bias 3)  IV Characteristics (Active region) 4)  IV characteristics (Saturation region) 5)  CE vs. CB 6)  Wrap-up

38

Page 20: BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette,

bipolar transistors

Lundstrom ECE 305 S15

VCE

E: emitter

C: collector

B: base

IC

NPN BJT

IC

VBE1, IB1

IE

IB

39

IC = I0eqVBE kBT 1− e−qVCE kBT( )

I0 = qADn

WB

ni2

NAB

IC = I0eqVBE kBT IB = IC βdc

IB > IC βdc

NPN BJT operation (general)

40

n+ emitter

p base

n collector

n+ IE IC

IB

IEn ICn

IEp ICp

IE = IEn + IEp IC = ICn + ICp IB = IE − IC

FB/RB FB/RB

Lundstrom ECE 305 S15

Page 21: BJTs: Current-Voltage CharacteristicsBJT_IV_S...BJTs: Current-Voltage Characteristics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette,

NPN BJT operation (active)

41

n+ emitter

p base

n collector

n+ IE IC

IB

IEn ICn ≈ IEn

IEp

IC ≈ IEn IB = IEp

FB/RB FB/RB

Lundstrom ECE 305 S15

NPN BJT operation (saturation)

42

n+ emitter

p base

n collector

n+ IE IC

IB

IEn ICn

IEp ICp

IC = IEn − ICn IB = IEp + ICp

FB/RB FB/RB

Lundstrom ECE 305 S15


Recommended