+ All Categories
Home > Documents > Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution:...

Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution:...

Date post: 02-Sep-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
35
L. De Lathauwer Block Component Analysis A New Concept for Blind Source Separation (Higher-Order Tensors and Blind Signal Separation) Lieven De Lathauwer KU Leuven Belgium [email protected] [email protected] [Selected slides] 1
Transcript
Page 1: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Block Component Analysis

A New Concept for Blind Source Separation

(Higher-Order Tensors and Blind Signal Separation)

Lieven De Lathauwer

KU Leuven

Belgium

[email protected]

[email protected]

[Selected slides]

1

Page 2: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Factor analysis and blind source separation

• Decompose a data matrix in meaningful rank-1 terms

T = A · BT

T =

a1

b1+ · · ·+

aR

bR

• Mixing vectors and sources

2

Page 3: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

• Decomposition in rank-1 terms is not unique

T = A · BT

= (AM) · (M−1B

T )

= A · BT

T =

1

1+ · · ·+

R

R

aa

bb

3

Page 4: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Principal Component Analysis and Singular Value

Decomposition

PCA, SVD: uniqueness thanks to orthogonality constraints

T = U · Σ · VT

=∑

r

σrurvT

r

U, V orthogonal, Σ diagonal

4

Page 5: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Motivating example: excitation-emission fluorescence in

chemometrics

Matrix approach

row vector ∼ emission spectrum

column vector ∼ excitation spectrum

T =

a1

b1+ · · ·+

aR

bR

NMF not unique in general

5

Page 6: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Tensor solution: CP Analysis

Tensorization: one matrix → several matrices, stacked in tensor

row vector ∼ emission spectrum

column vector ∼ excitation spectrum

coefficients ∼ concentrations

T

=

a1

b1

c1

+ · · ·+

aR

bR

cR

[Smilde, Bro, Geladi ’04]

6

Page 7: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Tensor rank and Canonical Polyadic Decomposition

Rank: minimal number of rank-1 terms [Hitchcock, 1927]

Canonical Polyadic Decomposition (CPD): decomposition in minimal

number of rank-1 terms [Harshman ’70], [Carroll and Chang ’70]

T

=

a1

b1

c1

+ · · ·+

aR

bR

cR

• Unique under mild conditions on number of terms and differences

between terms

• Orthogonality not required

• Uniqueness in “underdetermined” case

7

Page 8: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Tensor data:

• telecommunications

• higher-order statistics

• annotated graphs

• hyperlink data

• matrices (deliberately) measured under different conditions / at different

time instances / . . .

• matrices depending on parameter(s)

• . . .

8

Page 9: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Alternative representation: tensor diagonalization

9

Page 10: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Alternative representation: joint matrix diagonalization

Also underdetermined case

10

Page 11: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Motivating example: EEG

0 1 2 3 4 5 6 7 8 9 10

T1

T2

P3

C3

F3

O1

T5

T3

F7

Fp1

Pz

Cz

Fz

P4

C4

F4

02

T6

T4

F8

Fp2

Time (sec)

236µV

Tensorization: biorthogonal wavelet

11

Page 12: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Components: eye blink and epileptic activity

0 1 2 3 4 5 6 7 8 9 10−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12temporal atom of eye−blink activity

Time (sec)0 1 2 3 4 5 6 7 8 9 10

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time (sec)

temporal atom of seizure activity

0 5 10 15 20 25 30 35 40 450

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Freq (Hz)

frequency distribution of eye−blink activity

0 5 10 15 20 25 30 35 40 450

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18frequency distribution of seizure activity

Freq (Hz)

[De Vos et al., Neuroimage ’07], [Acar et al., Bioinformatics ’07]

12

Page 13: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Independent Component Analysis (ICA)

Model: X = AS

s1

s2

s3

s1

s2s3

+

Sources statistically independent

13

Page 14: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

ICA: basic equations

Model:

X = AS

Second order:

C(2)X

= E{XXT}

= A · C(2)S

· AT

uncorrelated sources: C(2)S

is diagonal

C(2)X

=

σ2s1

σ2s2

σ2sR

a1

a1

a2

a2

aR

aR

+ . . .++

14

Page 15: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Higher order:

C(N)X

= C(N)S

·1 A ·2 A ·3 . . . ·N A

independent sources: C(N)S

is diagonal

= +

c(N)s1

c(N)s2

c(N)sR

a1 a2 aR

a1 a2 aR

a1 a2 aR

+ . . .+C(N)X

Tensorization: decomposition data matrix → CPD cumulant tensor

[Comon ’94], [Cardoso ’93]

15

Page 16: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

ICA based on second-order statistics

Condition: sources mutually uncorrelated, but individually correlated in time

C(2)X

(τ) = E{X(t)X(t + τ)T}

= A · C(2)S

(τ) · AT

=

Tensorization: stack covariance matrices in 3rd-order tensor

[Belouchrani et al. ’97], [Yeredor ’02], . . .

16

Page 17: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Tensor rank and Canonical Polyadic Decomposition

Rank: minimal number of rank-1 terms [Hitchcock, 1927]

Canonical Polyadic Decomposition (CPD): decomposition in minimal

number of rank-1 terms

T

=

a1

b1

c1

+ · · ·+

aR

bR

cR

[Harshman ’70], [Carroll and Chang ’70]

Unique under mild conditions

17

Page 18: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Decomposition in rank-(L,L, 1) terms

T

=

A1

B1

c1

+ · · ·+

AR

BR

cR

Unique under mild conditions

[DL ’08]

18

Page 19: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Decomposition in rank-(R1, R2, R3) terms

T

=

A1

B1

C1

+ · · ·+

AR

BR

CR

Unique under mild conditions

[DL ’08]

19

Page 20: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Alternative representation: tensor block diagonalization

20

Page 21: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Decomposition in rank-(R1, R2, •) terms

T

=

A1

B1 + · · ·+

AR

BR

[DL ’08]

Alternative representation: joint block diagonalization

21

Page 22: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Block Component Analysis

Demo

−20

2

−20

2

−1

0

1

−20

2

−20

2

−1

0

1

−20

2

−20

2

−1

0

1

−20

2

−20

2

−1

0

1

−20

2

−20

2

−1

0

1

−20

2

−20

2

−1

0

1

22

Page 23: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Exponentials, sinusoids, polynomials, exponential

polynomials

Principle: Map every row of T = A · BT to Hankel matrix

Hankel matrices are often very ill-conditioned

Hankel matrices generated by exponential polynomials are exactly low-rank

+ . . .+ + . . .+

[DL ’11]

23

Page 24: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

0

0

0

0

0

0

0

0

0

0

0

0

11

11

1

1

1

1-1-1

0.50.5

0.50.5

0.50.5

2

2

2

2

-2-2

-2

4

5

-5

theoretical values: (L1, L2) = (2, 3)

perfect separation: (L1, L2) = (2, 3), (3, 3), (2, 4), (3, 4), (4, 4)

good separation: (L1, L2) = (2, 2), (1, 2)

24

Page 25: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

0 0.5 1−0.2

0

0.2

0 0.5 1−0.1

0

0.1

0 0.5 1−0.1

0

0.1

0 0.5 1−0.5

0

0.5

0 0.5 1−0.05

0

0.05

0 0.5 1−0.2

0

0.2

501 samples, SNR = 5 dB

good separation: (L1, L2) = (1, 2), (2, 2), (2, 3)

25

Page 26: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

theoretical values: L1 = 2, L2 = 251

0 50 100 150 200 250 300 350 400 450 500−1

−0.5

0

0.5

1

0 50 100 150 200 250 300 350 400 450 500−1

−0.5

0

0.5

1

0 50 100 150 200 250 300 350 400 450 500−2

−1

0

1

2

0 50 100 150 200 250 300 350 400 450 500−2

−1

0

1

2

26

Page 27: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

theoretical values: L1 = 2, L2 = 251

results: L1 = 2, L2 = 2, 3, . . . , 7

0 50 100 150 200 250 300 350 400 450 500−2

−1

0

1

2

0 50 100 150 200 250 300 350 400 450 500−2

−1

0

1

2

0 50 100 150 200 250 300 350 400 450 500−1

−0.5

0

0.5

1

0 50 100 150 200 250 300 350 400 450 500−4

−2

0

2

4

27

Page 28: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Toy example: audio

5 10 15 20 25 30−0.4

−0.2

0

0.2

0.4

5 10 15 20 25 30−0.5

0

0.5

Chirp (top) and train (bottom) signal, 31 samples

28

Page 29: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

5 10 150

0.5

1

1.5

2

2.5

5 10 150

0.5

1

1.5

2

2.5

3

100 200 300 400 5000

10

20

30

40

50

60

100 200 300 400 5000

20

40

60

80

100

singular values of Hankel matrices generated by chirp (left) and train (right)

top: 31 samples; bottom: 1000 samples

29

Page 30: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

L1 / L2 1 2 3 4 5 6 7

1 20 48 49 37 20 15 15

2 48 47 49 48 44 17 16

3 49 49 49 47 23 20 19

4 37 48 47 47 47 20 18

5 20 44 23 47 45 29 16

6 15 17 20 20 29 25 33

7 15 16 19 18 16 33 24

mean SIR [dB] (Hankel, noiseless) (ICA: COM2: 15 dB, JADE: 14 dB)

L1 / L2 1 2 3 4 5 6 7

1 49 47 49 51 51 19 13

2 47 47 50 49 51 38 22

3 49 50 49 48 49 47 45

4 51 49 48 47 48 46 44

5 51 51 49 48 48 46 44

6 19 38 47 46 46 46 47

7 13 22 45 44 44 47 44

median SIR [dB] (Hankel, noiseless) (ICA: COM2: 15 dB, JADE: 14 dB)

30

Page 31: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Results for noisy data:

0 5 10 15 20 25 30 355

10

15

20

25

30

35

40

45

50

55

60

BCA Hankel L=1BCA Hankel L=2BCA Hankel L=3BCA Hankel L=4BCA wavelet L=1BCA wavelet L=2BCA wavelet L=3BCA wavelet L=4ICA COM2

SNR [dB]

SIR

[dB]

31

Page 32: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Foundation: BCA exploits low intrinsic dimensionality

intrinsic dimensionality ∼ multilinear rank

Related: Pareto analysis

compressed sensing

scientific computing

. . .

Tensorization: Hankel, wavelet, time-frequency, . . .

0 100 200 300 400 500−4

−3

−2

−1

0

1

2

3

4

unstructured signal

32

Page 33: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Analogy:

CPD: splitting in “atoms” (pure frequencies)

T

=

a1

b1

c1

+ · · ·+

aR

bR

cR

BTD: splitting in “molecules” (sounds)

T

=

A1

B1

c1

+ · · ·+

AR

BR

cR

33

Page 34: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

Conclusion

• BCA: separation based on low intrinsic dimensionality

• Intrinsic dimensionality measured by (multilinear) rank

• Rank-1 hypothesis sometimes questionable

• Related to Pareto, compressed sensing, etc.

• Related to Sparse Component Analysis, etc.

• Tensorization: HOS, sets of matrices, Hankel, . . .

• Hankel: separation of exponential polynomials

• Low complexity variants of current tensorization-based schemes

• PCA, ICA, CPA, NMF, . . . : easier to use but assumptions should hold

• Constrained BCA: nonnegativity, sparsity, orthogonality, statistical

independence, . . .

Related work: CPA with orthogonality constraint [Sørensen, DL et al.]

CPA with independence constraint [De Vos, Van Huffel, DL]

Thanks: to Laurent Sorber for helping with figures

34

Page 35: Block Component Analysis A New Concept for Blind Source ...arie/LVA-ICA-2012-LDL.pdfTensor solution: CP Analysis Tensorization: one matrix → several matrices, stacked in tensor row

L. De Lathauwer

L. De Lathauwer, “Block Component Analysis, a New Concept for Blind

Source Separation,” in F. Theis, A. Cichocki, A. Yeredor, M. Zibulevsky

(Eds.): Latent Variable Analysis and Signal Separation, 10th International

Conference, LVA/ICA 2012, Tel-Aviv, Israel, March 2012, Proceedings,

LNCS 7191, Springer, Heidelberg, 2012, pp. 1-8.

35


Recommended