+ All Categories
Home > Documents > Blocking PirB Up-regulates Spines and Functional Synapses to Unlock Visual Cortical Plasticity and...

Blocking PirB Up-regulates Spines and Functional Synapses to Unlock Visual Cortical Plasticity and...

Date post: 29-Sep-2015
Category:
Upload: austin-v-hennessey
View: 20 times
Download: 1 times
Share this document with a friend
Description:
During critical periods of development, the brain easily changesin response to environmental stimuli, but this neural plasticitydeclines by adulthood.
12
1/31/2015 Blocking PirB upregulates spines and functional synapses to unlock visual cortical plasticity and facilitate recovery from amblyopia http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 1/12 Home > Science Journals > Science Translational Medicine Home > 15 October 2014 > Bochner et al. , 6 : (258 ): 258ra140 + + INTRODUCTION RESULTS Genetic deletion of PirB enhances OD plasticity Postnatal deletion of PirB from excitatory neurons enhances adult OD plasticity Blockade of PirB ligand binding rapidly enhances OD plasticity sPirB increases spine density and functional synapses on L5 pyramidal neurons sPirB treatment after LTMD enables recovery of spine density sPirB induces recovery of visual acuity after LTMD DISCUSSION sPirB as an acute regulator of spine and synapse density sPirB as a potential therapy for recovery from amblyopia PirB: An endogenous target for manipulations of synapse and systemslevel plasticity MATERIALS AND METHODS Study design Mouse strains sPirB protein production Osmotic minipump implantations and sPirB infusion Arc mRNA induction and in situ hybridization VEP recordings Statistical analyses SUPPLEMENTARY MATERIALS REFERENCES AND NOTES Science Translational Medicine stm.sciencemag.org.ezproxy.lib.usf.edu Sci Transl Med 15 October 2014: Vol. 6, Issue 258, p. 258ra140 Sci. Transl. Med. DOI: 10.1126/scitranslmed.3010157 RESEARCH ARTICLE NEUROSCIENCE Blocking PirB upregulates spines and functional synapses to unlock visual cortical plasticity and facilitate recovery from amblyopia David N. Bochner 1 , * , Richard W. Sapp 1 , * , Jaimie D. Adelson 1 , Siyu Zhang 2 , Hanmi Lee 1 , Maja Djurisic 1 , Josh Syken 3 , Yang Dan 2 and Carla J. Shatz 1 , Author Affiliations Author Notes Corresponding author. Email: [email protected] During critical periods of development, the brain easily changes in response to environmental stimuli, but this neural plasticity declines by adulthood. By acutely disrupting paired immunoglobulinlike receptor B (PirB) function at specific ages, we show that PirB actively represses neural plasticity throughout life. We disrupted PirB function either by genetically introducing a conditional PirB allele into mice or by minipump infusion of a soluble PirB ectodomain (sPirB) into mouse visual cortex. We found that neural plasticity, as measured by depriving mice of vision in one eye and testing ocular dominance, was enhanced by this treatment both during the critical period and when PirB function was disrupted in adulthood. Acute blockade of PirB triggered the formation of new functional synapses, as indicated by increases in miniature excitatory postsynaptic current (mEPSC) frequency and spine density on dendrites of layer 5 pyramidal neurons. In addition, recovery from amblyopia—the decline in visual acuity and spine density resulting from longterm monocular deprivation—was possible after a 1week infusion of sPirB after the deprivation period. Thus, neural plasticity in adult visual cortex is actively repressed and can be enhanced by blocking PirB function. INTRODUCTION During postnatal development, the capacity of the brain to undergo experiencedependent changes in synaptic strength and circuit connectivity is dynamically regulated, with plasticity peaking during developmental critical periods and then decreasing with maturation ( 1 3 ). Critical periods are key times when sensory experience is necessary for normal circuit development and when abnormal experience can generate enduring anomalies in brain structure and function ( 2 , 4 ). Ocular dominance (OD) plasticity is a graphic example of experiencedriven synaptic and circuit plasticity. Children born with congenital cataract in one eye will suffer amblyopia—a loss of visual acuity—if not corrected early in life ( 5 , 6 ). Monocular visual deprivation (MD) has been used in animal models of amblyopia to understand underlying Prev | Table of Contents | Next Back to Top AAAS.ORG FEEDBACK HELP LIBRARIANS Science Translational Medicine ADVANCED Sci TM Home Current Issue Rapid Publication Issue Archive Multimedia Sci TM Collections My Sci TM About Sci TM
Transcript
  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 1/12

    Home>ScienceJournals>ScienceTranslationalMedicineHome>15October2014>Bochneretal.,6:(258):258ra140

    +

    +

    INTRODUCTIONRESULTS

    GeneticdeletionofPirBenhancesODplasticityPostnataldeletionofPirBfromexcitatoryneuronsenhancesadultODplasticityBlockadeofPirBligandbindingrapidlyenhancesODplasticitysPirBincreasesspinedensityandfunctionalsynapsesonL5pyramidalneuronssPirBtreatmentafterLTMDenablesrecoveryofspinedensitysPirBinducesrecoveryofvisualacuityafterLTMD

    DISCUSSIONsPirBasanacuteregulatorofspineandsynapsedensitysPirBasapotentialtherapyforrecoveryfromamblyopiaPirB:Anendogenoustargetformanipulationsofsynapseandsystemslevelplasticity

    MATERIALSANDMETHODSStudydesignMousestrainssPirBproteinproductionOsmoticminipumpimplantationsandsPirBinfusionArcmRNAinductionandinsituhybridizationVEPrecordingsStatisticalanalyses

    SUPPLEMENTARYMATERIALSREFERENCESANDNOTES

    ScienceTranslationalMedicinestm.sciencemag.org.ezproxy.lib.usf.eduSciTranslMed15October2014:Vol.6,Issue258,p.258ra140Sci.Transl.Med.DOI:10.1126/scitranslmed.3010157

    RESEARCHARTICLE

    NEUROSCIENCE

    BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopiaDavidN.Bochner1,*,RichardW.Sapp1,*,JaimieD.Adelson1,SiyuZhang2,HanmiLee1,MajaDjurisic1,JoshSyken3,YangDan2

    andCarlaJ.Shatz1,

    AuthorAffiliations

    AuthorNotes

    Correspondingauthor.Email:[email protected]

    Duringcriticalperiodsofdevelopment,thebraineasilychangesinresponsetoenvironmentalstimuli,butthisneuralplasticitydeclinesbyadulthood.ByacutelydisruptingpairedimmunoglobulinlikereceptorB(PirB)functionatspecificages,weshowthatPirBactivelyrepressesneuralplasticitythroughoutlife.WedisruptedPirBfunctioneitherbygeneticallyintroducingaconditionalPirBalleleintomiceorbyminipumpinfusionofasolublePirBectodomain(sPirB)intomousevisualcortex.Wefoundthatneuralplasticity,asmeasuredbydeprivingmiceofvisioninoneeyeandtestingoculardominance,wasenhancedbythistreatmentbothduringthecriticalperiodandwhenPirBfunctionwasdisruptedinadulthood.AcuteblockadeofPirBtriggeredtheformationofnewfunctionalsynapses,asindicatedbyincreasesinminiatureexcitatorypostsynapticcurrent(mEPSC)frequencyandspinedensityondendritesoflayer5pyramidalneurons.Inaddition,recoveryfromamblyopiathedeclineinvisualacuityandspinedensityresultingfromlongtermmonoculardeprivationwaspossibleaftera1weekinfusionofsPirBafterthedeprivationperiod.Thus,neuralplasticityinadultvisualcortexisactivelyrepressedandcanbeenhancedbyblockingPirBfunction.

    INTRODUCTION

    Duringpostnataldevelopment,thecapacityofthebraintoundergoexperiencedependentchangesinsynapticstrengthandcircuitconnectivityisdynamicallyregulated,withplasticitypeakingduringdevelopmentalcriticalperiodsandthendecreasingwithmaturation(13).Criticalperiodsarekeytimeswhensensoryexperienceisnecessaryfornormalcircuitdevelopmentandwhenabnormalexperiencecangenerateenduringanomaliesinbrainstructureandfunction(2,4).Oculardominance(OD)plasticityisagraphicexampleofexperiencedrivensynapticandcircuitplasticity.Childrenbornwithcongenitalcataractinoneeyewillsufferamblyopiaalossofvisualacuityifnotcorrectedearlyinlife(5,6).Monocularvisualdeprivation(MD)hasbeenusedinanimalmodelsofamblyopiatounderstandunderlying

    Prev|TableofContents|Next

    BacktoTop

    AAAS.ORG FEEDBACK HELP LIBRARIANS ScienceTranslationalMedicine ADVANCED

    SciTMHome CurrentIssue RapidPublication IssueArchive Multimedia SciTMCollections MySciTM AboutSciTM

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 2/12

    View larger version:In this page In a new window

    Download PowerPoint Slide for Teaching

    mechanisms.AfterabriefperiodofMDorenucleation(ME)duringjuvenilelife,visuallydrivenresponsesofneuronsinthebinocularzoneofmammalianprimaryvisualcortex(V1)shifttowardtheopeneye,andcorticalterritorycontainingneuronsrespondingtoopeneyestimulationexpands,whereasclosedeyeresponsesweakenandterritoryshrinks(3,7,8).Theseeffectsaremaximalaroundpostnatalday28(P28)inmiceanddecreasethereafterbyadulthood,littleODplasticityresultingfromeyeclosurecanbedetected,particularlywithshorterperiodsofdeprivation(711).Furthermore,alongtermperiodofMD(LTMD)spanningtheentirecriticalperiod(forexample,P19toP47)generatesanenduringlossofacuityandcorticalfunctioninthedeprivedeyeevenifbinocularvisionisrestoredinadulthood(4,12,13).Thisnormaldecreaseinplasticitybyadulthood,althoughimportantforstabilizingneuralcircuits,actsasabarriertorecoveryafterinjurybecauseitlimitscorticalreorganization,canlockineffectsofdysfunctionaldevelopment,andevenopposesacquisitionofnewlearning.Ifadultneuralcircuitscouldbereturnedtoanimmaturestate,criticalperiodsmightbeeffectivelyreopened,facilitatingrecoveryafternervoussystemdamage,leadingtonewtreatmentsforneurodegenerativeordevelopmentaldisorders,orevenenhancinglearninginhealthyindividuals.

    Alimitednumberofcandidatemoleculesthatappeartoactasendogenousnegativeregulatorsofcorticalplasticityhavebeenidentified(1418).Onesuchmolecule,pairedimmunoglobulinlikereceptorB(PirB),isexpressedincorticalandhippocampalneuronsaswellasinsomeimmunecells(14).Inthenervoussystem,PirBbindsseveralligands,includingmajorhistocompatibilitycomplex(MHC)classIproteins,NogoA,andmyelincomponents(19,20).Bothinimmunecellsandneurons,ligandbindingrecruitsSHP1andSHP2phosphatases(14,21).SHPrecruitmentrequiresPirBphosphorylationonitsITIM(immunoreceptortyrosinebasedinhibitorymotif)domains(21,22).Inneurons,cofilinisalsorecruitedtoPirB,leadingtochangesintheactincytoskeleton(20).

    GermlinePirB/micehaveenhancedODplasticitynotonlyduringthecriticalperiodbutalsobeyond,andtheyrecovermorerapidlyinastrokemodel(14,23,24).PirBanditshumanortholog,leukocyteimmunoglobulinlikereceptor,subfamilyB,member2(LilrB2),bindsolubleamyloidoligomers,andgermlinePirBdeletionrescuesODplasticityandhippocampaldeficitsinamousemodelofAlzheimersdisease(AD)(20).However,itremainsunknownwhethertheenhancedODplasticityandstrokerecoveryingermlinePirB/miceareduetoearlydevelopmentalchanges,orwhetherPirBactsatallagestolimitplasticity,whichwouldmakeitanattractivetherapeutictargetfordrugdevelopment.BecausePirBisareceptor,signalingcanbemodulatedbyconditionalgeneticknockoutorbyinterferingwithligandbinding(19).IfPirBfunctionsthroughoutlife,disruptingPirBshouldenhanceplasticityorfacilitaterecoveryatanyage.

    RESULTS

    GeneticdeletionofPirBenhancesODplasticity

    TodisruptPirBfunctionwithtemporalcontrol,aconditionalalleleofPirBwasgeneratedbyinsertingloxPsitessurroundingexons10to13,whichcontainthetransmembranedomainandfirstITIMdomainofPirB(14)(Fig.1A).Toobtainrobustwidespreaddeletion,thisPirBfloxmouselinewascrossedwithatransgenicmouselineexpressingtamoxifeninducibleCreERT2onaubiquitinCpromoter(25).TheresultingUbcCreERT2PirBflox/floxmicewerebredwithPirBflox/floxmice,producingexperimentalUbcCreERT2PirBflox/floxanimals(henceforthcalledCre+)aswellasPirBflox/flox(Cre)littermatecontrols.TamoxifeninjectionsgiveneitherneonatallyoraftercriticalperiodclosureinducedrobustdeletionofthefloxedallelefromgenomicDNAwithin1week(Fig.1B).PirBproteinlosswasmoregradualforexample,dailytamoxifentreatmentfromP3toP7diminishedPirBproteinintheforebrainby~90%byP27(Fig.1,CandD).AsimilargraduallossofproteinwasseenatP70aftertamoxifentreatmentfromP45toP49(Fig.1,CandE).Thus,tamoxifenadministrationsubstantiallyreducedPirBproteinlevelsbythepeakoftheODcriticalperiodatP28(7),aswellasinadulthoodbyP70.

    Fig.1.ATamoxifeninducibleCredependentstrategyfordeletionofPirBwithtemporalcontrol.

    (A)SchematicofPirBproteinstructure(top)andfloxedPirBallele(bottom)beforeandafterCremediatedexcision.(B)Dailytamoxifengivenviainjectionofnursingmother(P3toP7)inducesdeletionofthefloxedregionatP21asdetectedbypolymerasechainreaction(PCR).(C)WesternblotsforPirBproteininforebrainatages(left)oftamoxifen(TAM)administrationandWesternblotting.(D)QuantificationofPirBproteininforebrainaftertamoxifenadministration(P3toP7),normalizedtoaverageCre

    levelsacrossallagesassayed:CreP21:n=4miceversusCre+P21:n=5,P=0.02,Utest.CreP27:n=5versusCre+P27:n=4,P=0.02,Utest.(E)QuantificationofPirBproteininforebrainatP70(adult)aftertamoxifeninjectionfromP45toP49.CreP70:n=4versusCre+P70:n=4,P=0.03,Utest.*P

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 3/12

    View larger version:In this page In a new window

    Download PowerPoint Slide for Teaching

    inducedwithinminutesofvisualstimulation,andtheupregulatedmRNAcanbedetectedincorticalneuronsfunctionallydrivenbythestimulatedeye(26).WemeasuredthehorizontalextentoftheArcmRNAinsituhybridizationsignalalongL4ofvisualcortexipsilateraltothespared,stimulatedeye(Fig.2,AtoC,andfig.S1).ThisexpansioninwidthofArcmRNAsignalisareliablemeasureofopeneyestrengtheningaftervisualdeprivationandcorrelateswellwithothermethodsusedtoassessODplasticityincludingsingleunitelectrophysiology(7,8,27,28),visualevokedpotentials(VEPs)(8,11,29),orintrinsicsignalimaging(8,24,3033).ThewidthofArcmRNAinductiondoesnotexpandintransgenicmiceknowntolackODplasticityasmeasuredbyothermethods(20,28,33),whereasthereisanincreaseinwidthofArcmRNAsignalinmiceknowntohaveincreasedODplasticity(14,15,24).

    Fig.2.TimedgeneticdeletionofPirBenhancesODplasticity.

    (A)Schematicofmousevisualsystem.Eachretina(right:red,left:blue)projectsprimarilycontralaterallytothelateralgeniculatenucleus(LGN),whichprojectstovisualcortex(V1).Asmallbinocularzone(BZ,purple)inV1receivesinputfrombotheyesinresponsetodeprivationofoneeye(forexample,left),therepresentationoftheopen(rightipsilateral)eyeexpands(arrows).(B)TimelineofinducibleknockoutofPirBandassessmentofODplasticityviaArcmRNAinduction.(C)ExamplemicrographsofinsituhybridizationsforArcmRNAinducedinBZofvisualcortexafteropeneyestimulation.Eachblackdotisacell.MEfromP28toP32resultsinexpansionoftheipsilateral(open)eyerepresentation(betweenredasterisks),ascomparedwithnormalrearing(NR).Cre=PirBflox/flox.Cre+=UbCCreERT2PirB

    flox/flox.WidthofArcsignalinL4wasmeasured(seefig.S1).Corticallayersindicatedatleftscalebar,500m.CP,criticalperiod.(D)CumulativehistogramsofwidthofArcmRNAsignalbyindividualsection.NRCre:n=41sectionsNRCre+:n=44MECre:n=39MECre+:n=52.(E)Graphofdatain(D),withmeanandSEMbyanimal:deletionofPirBduringthecriticalperiodenhancesODplasticity.NRCre:n=7miceversusNRCre+:n=7,P=0.65MECre:n=7versusMECre+:n=7,****indicatesP

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 4/12

    View larger version:In this page In a new window

    Download PowerPoint Slide for Teaching

    View larger version:In this page In a new window

    Download PowerPoint Slide for Teaching

    inallcells.Next,weinvestigatedwhetherlossofPirBspecificallyinforebrainexcitatoryneuronswassufficienttoenhanceODplasticity.PirBflox/floxmicewerecrossedwithaCamKIIaCreline,whichexpressesCreexclusivelyinforebrainexcitatoryneurons(34,35),generatingCamKIIaCrePirBflox/floxconditionalknockouts,andCamKIIaCrePirB+/+littermatecontrols.PCRgenotypingofbrainandearconfirmsbrainspecificdeletionofthefloxedregionofPirB(Fig.3A).ToconfirmthespatialpatternofCredeletion,CamKIIaCremicewerealsocrossedtotheAi14TdTomatoreporterline(36).ResultsshowfaithfulCreactivityatP30inpyramidalneuronsofhippocampusandcortex(Fig.3B).PreviousstudieshaveshownthatexcisionoffloxedregionsofDNAinthisCrelineisgradual,withcompletedeletionoccurringaround3monthsofage(35),permittingustoexamineeffectsofPirBdeletioninadulthood.

    Fig.3.CremediateddeletionofPirBfromforebrainexcitatoryneuronsenhancesadultODplasticity.

    (A)GenotypingofsamplesfromearandcerebralcortexfromP100CamKIIaCrePirBflox/flox(cKO)orCamKIIaCrePirBWT(wildtype),showingdeletionoffloxedPirBincortexbutnotear.(B)CamKIIaCrePirBflox/+breederswerecrossedwiththeAi14TdTomatoreporterline,generatingredfluorescenceinthepresenceofCre.Sagittalsectionthroughvisualcortex(layersindicatedatright)andhippocampusofaP30mouseshowsCrepresentinpyramidalneurons.(C)GraphsofwidthofL4regionactivatedbystimulationofipsilateral(open)eyeinvisualcortex,assessedusingArcmRNAinduction.DeletionofPirBfromforebrainexcitatoryneuronsincreasesopeneyeexpansioninadultmiceafterMEfromP100toP110.NRWT:n=5miceversusNRcKO:n=4,P=0.91.MEWT:n=8miceversusMEcKO:n=5,P=

    0.006.NRversusMEWT:P=0.39,NRversusMEcKO:P=0.0002,bytwowayANOVAwithTukeyposthoctest.**P

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 5/12

    infusion(1mg/ml).Scalebar,1mm.(EandF)MinipumpinfusionsofsPirBduringcriticalperiod(CP).Timelineasshown.(E)ExampleArcmRNAinsituhybridizationmicrographsofvisualcortexafterBSA(top)orsPirB(bottom)treatment.Scalebar,500m.RedasterisksindicatebordersofArcmRNAsignalinducedbystimulatingtheipsilateral(open)eyeinlayer4.(F)GraphscomparingwidthofArcmRNAsignalinL4afteropeneyestimulation.WidthofterritoryactivatedbyopeneyestimulationafterMEisgreateraftersPirBinfusionthanwithBSA.NRBSA:n=4mice,NRsPirB:n=4,MEBSA:n=5versusMEsPirB:n=6,P

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 6/12

    View larger version:

    In this page In a new windowDownload PowerPoint Slide for Teaching

    germlinePirBknockoutmicerearedwithnormalvision.IthasbeenproposedthattheseextraspinesrepresentapreexistingstructuralsubstratethatisthenrecruitedforthemorerapidandrobustODplasticityobservedinthesemice(24).Indeed,previoussensoryexperienceinvisualorauditorysystemsincreasesplasticity,andisaccompaniedbyincreasedstructuralconnectivity(4144).WetestedwhetherPirBmightcontributetothesestructuralchanges.

    sPirBinfusionmighttriggeranincreaseinspinedensityevenwithoutvisualdeprivation.Totestthishypothesis,visualcortexofnormallyrearedwildtypeThy1YFPHtransgenicmice(45),inwhichcorticalL5pyramidalneuronsareyellowfluorescentprotein(YFP)labeled,receivedminipumpinfusionsofeithersPirBorBSAfromP63toP74(Fig.5,AandB).SpinesonapicaldendritesofL5pyramidalneuronswereexaminedinthebinocularzoneatadistanceposteriortotheinfusionsitecomparabletothatstudiedaboveforassessmentofODplasticity.InthisregionaftersPirBinfusion,pyramidalneuronsomata,dendrites,andspinesappearedintactandhealthy,withoutfragmentationorblebbing(Fig.5A).SpinedensityonL5apicaldendritictuftsofanimalsrearedwithnormalvisionwas38%greaterinthepresenceofsPirBthanofBSA(Fig.5B).SpinedensityonL5neuronsintheuninfusedhemispherewasnotaltered,andatwowayANOVAconfirmsasignificantinteractioneffectbetweenhemisphereandtreatment(P=0.03).TheobserveddensityincreasecouldariseifsPirBactsonasubclassofdendriticspines.However,afteran11dayinfusionofeithersPirBorBSA,therewasnosignificantdifferenceintheproportionofspinesclassifiedasmushroom,thin,orstubby(46)(fig.S4B).Together,resultsshowthatinadultvisualcortex,itispossibletogeneratealocalincreaseinspinedensityonL5neuronsbyinfusingsPirB,evenintheabsenceofavisualmanipulationordeprivation.

    Fig.5.sPirBincreasesspinedensityandfunctionalsynapsesonL5pyramidalneuronsofnormallyrearedmice.

    (A)Timelineofminipumpinfusions[BSA(1mg/ml)orsPirBfromP63toP74]andexampledendritesofYFPlabeledL5pyramidalneuronsinbinocularzoneofvisualcortexinWTThy1YFPHanimalsrearedwithnormalvisualexperience.Scalebar,10m.(B)HistogramsofspinedensityonapicaltuftsofL5neuronsinsPirBinfusedversusintheuninfused(unif.)contralateralhemisphere,orinBSAcontrols:BSAinfused:n=5miceversussPirBinfused:n=5,P=0.01,onetotwocellsperanimal.BSAuninf.:n=5versussPirBuninf.:n=5,P=0.96,BSAinf.versusuninf.:P=0.99,sPirBinf.versusuninf.:P=0.016,bytwowayANOVAandTukeyposthoc

    test.(C)ExampletracesofmEPSCresponsesrecordedfromvisualcorticalslices(P70toP77)fromL5pyramidalneuronsafterBSAorsPirBinfusion,asin(A).(D)IncreasedmEPSCfrequencywithsPirBinfusion:BSA:n=12neuronsversussPirBn=13,P=0.046,byMannWhitneyUtest.(E)NochangeinmEPSCamplitude:BSA:n=12neuronsversussPirBn=13,P=0.70,byMannWhitneyUtest.

    Toexaminewhethertheincreaseinspinedensityrepresentsnewfunctionalsynapses,miniatureexcitatorypostsynapticcurrents(mEPSCs)wererecordedfromL5pyramidalneuronsinslicesofvisualcortex(P70toP77),after7to11daysofsPirBminipumpinfusioninvivo,inmicerearedwithnormalbinocularvision(Fig.5C).mEPSCfrequencywassignificantlygreateraftersPirBtreatmentthaninBSAlittermates(Fig.5D),withnochangeinmEPSCamplitude(Fig.5E).ThisfindingisconsistentwiththeideathatsPirBinfusioncausesanincreaseinsynapticconnectivity,suggestingthatnewlyformedspinesrepresentsitesoffunctionalsynapses.

    sPirBtreatmentafterLTMDenablesrecoveryofspinedensity

    LTMDisawellstudiedanimalmodelofamblyopiabecauseitinvolvesanexperiencedependentdevelopmentallossoffunctioninthedeprivedeye(47,48).Inrodents,LTMDprofoundlydecreasesvisualacuity,aswellasthenumberofcorticalneuronsvisuallydrivenbythedeprivedeye.Thereislittle,ifany,recovery,evenafterrestorationofbinocularvision(4,12,13,17,49).Ithasbeenproposedthatadecreaseindendriticspinedensityunderliesthesefunctionaldeficits(4,49).Forexample,LTMDgeneratesasignificantdeclineinspinedensityonbasolateraldendritesofL5pyramidalneuronscontralateraltothedeprivedeye(49).

    GiventherapidandgenerativeeffectofsPirBonspinedensityandmEPSCfrequencydescribedaboveinnormalvisualcortex,wewonderedwhethersPirBtreatmentmightgenerateaspinedensityincreasethatcouldfacilitaterecoveryfromLTMD.Thy1YFPwildtypemicewereeithernormallyrearedorreceivedLTMDspanningtheentirecriticalperiodforODplasticity(P19toP47).AtP47,thedeprivedeyewasreopenedtorestorebinocularvisionfor1week.ThenatP54,minipumpscontainingeithersPirBorBSAwereimplantedinthevisualcortexcontralateraltothedeprivedeyeuntilP61(Fig.6A),atwhichtime,spinedensityonL5basolateraldendriteswasmeasured.

    Fig.6.sPirBallowsstructuralandfunctionalrecoveryfromamblyopiaafterLTMD.

    (A)Experimentaltimeline:LTMDfromP19toP47,eyereopeningatP47,andminipumpinfusionfromP54toP61.(B)RepresentativeYFPlabeledL5cellsomaandbasolateral(arrow)dendritesinvisualcortexofWTThy1YFPHmice.Scalebar,50m.(C)Bargraphsshowingchangesin

    basolateraldendriticspinedensity:LTMDcausesa

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 7/12

    View larger version:In this page In a new window

    Download PowerPoint Slide for Teaching

    significantdeclineinspinedensity(BSALTMD)thatcanbefullyreversedwithsPirBinfusion(sPirBLTMD)(BSANR:n=5miceversusBSALTMD:n=4,P=0.02.sPirBLTMD:n=5,sPirBversusBSALTMD,P=0.001,sPirBNR:n=5animals,onetotwocellsperanimal,sPirBversusBSANR:P=0.003).*P

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 8/12

    showntoproducerapidincreasesinspinedensity,sPirBtreatmentproducesalargermagnitudechangeanddoessointheabsenceofnovelstimuliortraining.Together,ourobservationsimplythattargetinganddisruptingPirBfunctionincreasesynapticconnectivityandplasticity,evenafterthecriticalperiod.BecausePirBisexpressedbypyramidalneuronsthroughouttheneocortex(14),ourresultsmayalsoapplytocorticalareasotherthanthevisualsystem.

    sPirBasanacuteregulatorofspineandsynapsedensity

    InfusionofsPirBdecreasesPirBdownstreamsignaling(Fig.4C),consistentwithitspreviouslydemonstratedsequestrationofendogenousPirBligands(14,19,20,23).Inadulthood,acuteblockadewithsPirBresultsinenhancedODplasticityandproducesarapidincreaseinspinedensityandmEPSCfrequency,evenintheabsenceofalteredvision.ManyinterventionsthataffectsynapticconnectivityandspinedynamicsalsoenhanceODplasticity,includingtransplantationofinhibitoryneuronprogenitors(53)ordisruptionofNgR1NogoAfunction(16,54,55).Spinedensityincreasesalsocorrelatewithenhancedsubsequentplasticity(41,44):newspinesgeneratedduringaninitialMDcanbecooptedformorerobustODplasticityduringasubsequentMD(24,41,44).Furthermore,ingermlinePirB/mice,enhancedODplasticityisassociatedwithalargeincreaseinspinedensityonL5neuronsandanincreaseinthemagnitudeofL4toL2/3longtermpotentiation(LTP)invisualcortex(24).Collectively,theseexperimentsconnectanincreaseinspinedensityandfunctionalconnectivitytoenhancedsynapticplasticity.Thus,sPirBmaygenerategreaterODplasticitybycreatingamorehighlyinterconnectedstructuralsubstratethatcanbeaccessedformorerapidandrobustsynapticchange.

    sPirBasapotentialtherapyforrecoveryfromamblyopia

    LTMDthroughoutthecriticalperiod,usedhereasananimalmodelofamblyopia,leadstoaprofoundlossofvisualacuity,aswellastolossofvisualresponsivenessofcorticalneuronstostimulationofthedeprivedeyebotharehighlyresistanttorecoveryevenwhenbinocularvisionissubsequentlyrestored(4,12,13,17,49).DecreasesinspinedensityonbothL2/3pyramidalcells(4)andpyramidalneuronsthroughoutcortexhavealsobeenreportedafterLTMDorchronicMD(49).Althoughreversalofthisspinelossoncorticalpyramidalneuronshasbeenseen,reversalrequiredthattheformerlyopeneyebesuturedclosedincombinationwithfairlydisruptivetreatmentssuchaschondroitinaseABCtodigestextracellularmatrix(4),or10daysofdarkexposurefollowedbyvisualstimulation(49,56).RecoveryofspinesinbothofthesecaseswasaccompaniedbyrobustrecoveryofVEPacuity.Inourstudy,wefoundthatsPirBinfusion,combinedwithbinocularvision,wassufficientbyitselftobringspinedensityvaluesandVEPacuityestimatesclosetonormal.VisualacuityasmeasuredbyVEPspredictsphysiologicallyrelevantrecoveryofvisualfunctioninthedeprivedeye,indicatingthatvisionthroughthedeprivedeyeinsPirBtreatedmicehasgreatlyimproved(4,43,44).Togetherwiththedataonspinerecovery,theseresultssuggestthatsPirBcanenablesignificantstructuralandfunctionalrecoveryfromamblyopiaafterLTMDwithinjust7daysoftreatment.

    TheseobservationsimplythatsPirBasolublereceptorectodomainisapotentialtherapeuticagent,andtheyprovideproofofconceptforgeneratingotherPirBblockingreagents.Thestandardtreatmentforhumanamblyopicpatientsmandatesearlyinterventionduringadevelopmentalcriticalperiodandinvolvesalternatingpatchingbetweenthetwoeyestostrengthentheamblyopiceye,butthistreatmentinterfereswithdevelopmentofbinoculardepthperception(6).ThereareseveralPirBhomologsinhumans(LilrBs),andLilrB2proteinisexpressedinthehumanbrain(25).TargetingLilrB2orothermembersoftheLilrBreceptorfamilymightpermitrecoveryfromamblyopiawithoutrequiringeyepatching,asimpliedbytheresultsoftheLTMDexperimentsinmice.

    Thereareanumberoflimitationsandissuestoconsiderintranslatingourfindings.First,itwouldbeimportanttodeterminewhethertheincreaseinspinedensityandfunctionalrecoveryfromamblyopiapersistsstablybeyondtheperiodofsPirBinfusion.Second,itispossiblethatalongerinfusionorhigherconcentrationofsPirBwouldproduceamorerobustrecoveryforallanimals.Inaddition,ratherthanminipumpinfusions,itwouldbepreferabletodevelopasmallmoleculedrugthatcancrossthebloodbrainbarrier.Finally,asmentionedabove,LilrB2ispresentinhumanbrain,butbecausethereareotherfamilymembers,itwillbeimportanttocharacterizetheirexpressionandfunctioninhumancentralnervoussystem.

    PirB:Anendogenoustargetformanipulationsofsynapseandsystemslevelplasticity

    Ourobservationsaddtoagrowingbodyofresearchthathasunmaskedactiverolesformoleculesinthebrainactingasnegativeregulatorsoffunctionalandstructuralplasticitybothindevelopmentandinadulthood(17,50,54).InthecaseofPirB,thisnegativeregulationmayalsobehijacked,asinAD,whereamyloidoligomersbindtoPirB/LilrB2withnanomolaraffinity,resultinginlossofODplasticityanddeficitsincorticalandhippocampalsynapticplasticity(20).Thus,sPirBandhumansolublereceptorhomologsmightevenbeviabletherapeuticsforAD.BygeneratingarecombinantsPirBprotein,wehavedemonstratedauseforselectivelyblockingPirBreceptorinteractionwithendogenousligands.TheseresultsfurthersupportthevalueofcreatingPirB/LilrBantagoniststhatcrossthebloodbrainbarrier,enhancingplasticityandincreasingsynapseandspinedensityincasesofdisease,dysfunction,injury,orevenforcognitiveenhancementinnormalindividuals.

    MATERIALSANDMETHODS

    Studydesign

    TheobjectiveofthisstudywastodevisemethodstodeletePirBfunctionacutely,thenmonitortheeffectsonmeasuresofsynapticandODplasticity,andrecoveryfromLTMD.Twomethodswereused:tamoxifeninducedPirBdeletionviaaPirBconditionalallele,orsPirBminipumpinfusion.BecauseODplasticityisinducedbychangesinvisualexperience,experimentsweredesignedtocaptureaninteractioneffectbetween

    BacktoTop

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 9/12

    genotype/treatmentandvisualmanipulationfourgroupsandatwowayANOVAdesignwereusedtotestforinteractions.Allexperimentswereperformedblindtogenotypeand/ortreatment.Littermateswereusedtocontrolforgeneticvariation,andmicewererandomlyassignedtodifferentvisualmanipulationsandtreatmentswithinalitter.Todetectgenotypeeffectssimilarorgreaterthanthosepreviouslyreported,samplesizeswerechosenonthebasisofastatisticalpowerof80%withanvalueof0.05(14,24).Thenumberofreplicatemeasurementsandanimalsisgivenineachfigurelegend.

    Mousestrains

    PirB/andPirBflox/floxmiceweregeneratedasdescribed(14).APirBWTlinewasmaintainedonthesamebackgroundandusedforallminipumpinfusionexperimentsperformedduringthecriticalperiod(P21toP32).Foradultminipumpexperiments(P63toP74),PirBWTandPirB/micewerecrossedwiththeThy1YFPHtransgenicline(JAX#003782),whichexpressesYFPinasubsetofL5pyramidalneurons(45).Forinducibleknockoutexperiments,UbCCreERT2mice(JAX#007001)(25)werebredwithPirBfloxmicetogenerateUbCCreERT2PirBflox/floxmiceandPirBflox/floxlittermates.Forconditionalknockoutexperiments,CamKIIaCrePirBflox/+mice(57)werebredwithPirBflox/+micetogenerateCamKIIaCrePirBflox/floxmiceandCamKIIaCrePirB+/+littermates.CamKIIaCremicewerealsobredwithAi14TdTomatoreportermice(36).AllexperimentswereperformedinaccordancewithprotocolsapprovedbyStanfordUniversityAnimalCareandUseCommitteeinkeepingwiththeNationalInstitutesofHealthsGuidefortheCareandUseofLaboratoryAnimals.

    sPirBproteinproduction

    TocreateasPirBmimic,thePirBectodomainwasclonedintoaplasmidcontainingaHistagforpurificationandaMyctagforantibodydetectionwithasequenceidenticaltopreviouspublications(14,19,20,40).Forminipumpinfusions,InvitrogenCustomServicesproducedsPirBinlargerquantitiesinFreeStyleHEK293cellsandpurifieditonanickelcolumn(NiHis,Invitrogen).

    OsmoticminipumpimplantationsandsPirBinfusion

    Craniotomieswereperformed,andminipumps(ALZETmodel10020.25l/hour,100lcapacity)containingeithersPirB(1mg/ml)orBSA(1mg/ml)(VWREM2930)in0.1Mphosphatebufferedsalinewereimplantedsubcutaneously,connectedtoacannula.Thecannulawasinsertedjustanteriortoprimaryvisualcortex(2.5mmlateraland3mmposteriortobregma).

    ArcmRNAinductionandinsituhybridization

    ArcmRNAwasinducedbyplacingmiceovernightintotaldarkness(16to18hours),followedbybrightilluminationfor30mintopermitvisionthroughtheopeneyebeforeeuthanasiaviaisofluraneanesthesiaanddecapitation(8).AdigoxigeninlabeledArcantisensemRNAprobewasusedforcolorimetricinsituhybridizationsperformedonbrainsections(8,33).ImageswereacquiredviabrightfieldmicroscopyandanalyzedusingtheLineScanfunctionofNeuroLenssoftwaretomeasurethewidthoftheArcmRNAhybridizationsignalipsilateraltotheopen(nondeprived)eyealongL4ofthevisualcortex,atthe3to4border(fig.S1).Multiplesectionswerescannedandaveragedperanimal(forexample,Fig.2).

    VEPrecordings

    Animalswereanesthetizedwithurethane(0.6to1.2g/kgSigma)andchlorprothixene(5mg/kgSigma),andatincisionswithlidocaine(2%,SparhawkLaboratories),andthenthescalpwasexposedandtheminipumpwascannularemoved.AfteracraniotomycenteredoverV1,aglasspipettefilledwithACSF(artificialcerebrospinalfluid)wasinsertedtorecordlocalfieldpotentialsatadepthof450to600m.Responsestosinusoidalgratingstimuliwereaveragedoverstimulusblocks,andapeakresponseamplitudewithina500mswindowafterstimulusonsetwasdetermined.Visualacuitywasestimatedbyfindingthexinterceptofasemilogarithmicregressionofresponseamplitudesacrossdifferentspatialfrequencies(11,29).

    Statisticalanalyses

    AllstatisticalanalyseswereperformedwithPrismsoftware(Graphpad).Whenonlytwogroupswereinvolved,twosamplettestswereused,withWelchscorrectionforunequalvariancesappliedwhereappropriate.DataforwhichanormaldistributioncouldnotbeassumedwereanalyzedwithMannWhitneyUtests.Incaseswherebothtreatment/genotypeandvisualmanipulationorhemispherewerevaried,atwowayANOVAwasconducted,withTukeyposthoctestsforindividualpairsofcolumns.

    SUPPLEMENTARYMATERIALS

    www.sciencetranslationalmedicine.org/cgi/content/full/6/258/258ra140/DC1

    MaterialsandMethods

    Fig.S1.ExamplelinescanmeasurementsofArcmRNAinsituhybridizationsignalinvisualcortexinducedbystimulationoftheipsilateraleye.

    Fig.S2.PlasticityindicesforgeneticorpharmacologicaldisruptionofPirBfunction.

    Fig.S3.CharacterizationofsPirBminipumpinfusionareaandeffectonODplasticity.

    BacktoTop

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 10/12

    Fig.S4.EffectofminipumpinfusionsofsPirBorBSAondendriticspinesbycellsandbyspinetype.

    REFERENCESANDNOTES

    1. D.H. Hubel,T.N. Wiesel,Theperiodofsusceptibilitytothephysiologicaleffectsofunilateraleyeclosureinkittens.J.Physiol. 206,419436(1970). Abstract/FREEFullText

    2. E.I. Knudsen,Sensitiveperiodsinthedevelopmentofthebrainandbehavior.J.Cogn.Neurosci. 16,14121425(2004). CrossRef Medline WebofScience GoogleScholar

    3. C.N. Levelt,M. Hbener,Criticalperiodplasticityinthevisualcortex.Annu.Rev.Neurosci. 35,309330(2012). CrossRef Medline WebofScience GoogleScholar

    4. T. Pizzorusso,P. Medini,S. Landi,S. Baldini,N. Berardi,L. Maffei,Structuralandfunctionalrecoveryfromearlymonoculardeprivationinadultrats.Proc.Natl.Acad.Sci.U.S.A. 103,85178522(2006).

    Abstract/FREEFullText

    5. D.M. Levi,Visualprocessinginamblyopia:Humanstudies.Strabismus14,1119(2006). CrossRefMedline GoogleScholar

    6. E. Kanonidou,Amblyopia:Aminireviewoftheliterature.Int.Ophthalmol. 31,249256(2011). CrossRefMedline GoogleScholar

    7. J.A. Gordon,M.P. Stryker,Experiencedependentplasticityofbinocularresponsesintheprimaryvisualcortexofthemouse.J.Neurosci. 16,32743286(1996). Abstract/FREEFullText

    8. Y. Tagawa,P.O. Kanold,M. Majdan,C.J. Shatz,Multipleperiodsoffunctionaloculardominanceplasticityinmousevisualcortex.Nat.Neurosci. 8,380388(2005). CrossRef Medline WebofScience

    GoogleScholar

    9. M. Sato,M.P. Stryker,Distinctivefeaturesofadultoculardominanceplasticity.J.Neurosci. 28,1027810286(2008). Abstract/FREEFullText

    10. K. Lehmann,S. Lwel,Agedependentoculardominanceplasticityinadultmice.PLOSOne 3,e3120(2008). CrossRef Medline GoogleScholar

    11. N.B. Sawtell,M.Y. Frenkel,B.D. Philpot,K. Nakazawa,S. Tonegawa,M.F. Bear,NMDAreceptordependentoculardominanceplasticityinadultvisualcortex.Neuron 38,977985(2003). CrossRef

    Medline WebofScience GoogleScholar

    12. H.Y. He,B. Ray,K. Dennis,E.M. Quinlan,Experiencedependentrecoveryofvisionfollowingchronicdeprivationamblyopia.Nat.Neurosci. 10,11341136(2007). CrossRef Medline WebofScience

    GoogleScholar

    13. E. Kang,S. Durand,J.J. LeBlanc,T.K. Hensch,C. Chen,M. Fagiolini,Visualacuitydevelopmentandplasticityintheabsenceofsensoryexperience.J.Neurosci. 33,1778917796(2013).

    Abstract/FREEFullText

    14. J. Syken,T. Grandpre,P.O. Kanold,C.J. Shatz,PirBrestrictsoculardominanceplasticityinvisualcortex.Science 313,17951800(2006). Abstract/FREEFullText

    15. A. Datwani,M.J. McConnell,P.O. Kanold,K.D. Micheva,B. Busse,M. Shamloo,S.J. Smith,C.J. Shatz,ClassicalMHCImoleculesregulateretinogeniculaterefinementandlimitoculardominanceplasticity.Neuron 64,463470(2009). CrossRef Medline WebofScience GoogleScholar

    16. A.W. McGee,Y. Yang,Q.S. Fischer,N.W. Daw,S.M. Strittmatter,ExperiencedrivenplasticityofvisualcortexlimitedbymyelinandNogoreceptor.Science 309,22222226(2005). Abstract/FREEFullText

    17. H. Morishita,J.M. Miwa,N. Heintz,T.K. Hensch,Lynx1,acholinergicbrake,limitsplasticityinadultvisualcortex.Science 330,12381240(2010). Abstract/FREEFullText

    18. S.A. Marik,O. Olsen,M. TessierLavigne,C.D. Gilbert,Deathreceptor6regulatesadultexperiencedependentcorticalplasticity.J.Neurosci. 33,1499815003(2013). Abstract/FREEFullText

    19. J.K. Atwal,J. PinkstonGosse,J. Syken,S. Stawicki,Y. Wu,C. Shatz,M. TessierLavigne,PirBisafunctionalreceptorformyelininhibitorsofaxonalregeneration.Science 322,967970(2008).

    Abstract/FREEFullText

    20. T. Kim,G.S. Vidal,M. Djurisic,C.M. William,M.E. Birnbaum,K.C. Garcia,B.T. Hyman,C.J. Shatz,HumanLilrB2isaamyloidreceptoranditsmurinehomologPirBregulatessynapticplasticityinanAlzheimersmodel.Science 341,13991404(2013). Abstract/FREEFullText

    21. A. Maeda,M. Kurosaki,M. Ono,T. Takai,T. Kurosaki,RequirementofSH2containingproteintyrosinephosphatasesSHP1andSHP2forpairedimmunoglobulinlikereceptorB(PIRB)mediatedinhibitorysignal.J.Exp.Med. 187,13551360(1998). Abstract/FREEFullText

    22. A. Nakamura,E. Kobayashi,T. Takai,ExacerbatedgraftversushostdiseaseinPirb/mice.Nat.Immunol. 5,623629(2004). CrossRef Medline WebofScience GoogleScholar

    23. J.D. Adelson,G.E. Barreto,L. Xu,T. Kim,B.K. Brott,Y.B. Ouyang,T. Naserke,M. Djurisic,X. Xiong,C.J. Shatz,R.G. Giffard,NeuroprotectionfromstrokeintheabsenceofMHCIorPirB.Neuron73,11001107(2012). CrossRef Medline WebofScience GoogleScholar

    24. M. Djurisic,G.S. Vidal,M. Mann,A. Aharon,T. Kim,A. FerraoSantos,Y. Zuo,M. Hbener,C.J. Shatz,PirBregulatesastructuralsubstrateforcorticalplasticity.Proc.Natl.Acad.Sci.U.S.A. 110,2077120776(2013). Abstract/FREEFullText

    25. Y. Ruzankina,C. PinzonGuzman,A. Asare,T. Ong,L. Pontano,G. Cotsarelis,V.P. Zediak,M. Velez,A. Bhandoola,E.J. Brown,DeletionofthedevelopmentallyessentialgeneATRinadultmiceleadstoagerelatedphenotypesandstemcellloss.CellStemCell 1,113126(2007). CrossRef Medline

    WebofScience GoogleScholar

    26. S. Chowdhury,J.D. Shepherd,H. Okuno,G. Lyford,R.S. Petralia,N. Plath,D. Kuhl,R.L. Huganir,P.F. Worley,Arc/Arg3.1interactswiththeendocyticmachinerytoregulateAMPAreceptortrafficking.

    BacktoTop

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 11/12

    Neuron 52,445459(2006). CrossRef Medline WebofScience GoogleScholar

    27. T.K. Hensch,M. Fagiolini,N. Mataga,M.P. Stryker,S. Baekkeskov,S.F. Kash,LocalGABAcircuitcontrolofexperiencedependentplasticityindevelopingvisualcortex.Science 282,15041508(1998).

    Abstract/FREEFullText

    28. P.O. Kanold,Y.A. Kim,T. GrandPre,C.J. Shatz,CoregulationofoculardominanceplasticityandNMDAreceptorsubunitexpressioninglutamicaciddecarboxylase65knockoutmice.J.Physiol. 587,28572867(2009). Abstract/FREEFullText

    29. V. Porciatti,T. Pizzorusso,L. Maffei,ThevisualphysiologyofthewildtypemousedeterminedwithpatternVEPs.VisionRes. 39,30713081(1999). CrossRef Medline WebofScience GoogleScholar

    30. S. Schuett,T. Bonhoeffer,M. Hbener,Mappingretinotopicstructureinmousevisualcortexwithopticalimaging.J.Neurosci. 22,65496559(2002). Abstract/FREEFullText

    31. M. Tohmi,H. Kitaura,S. Komagata,M. Kudoh,K. Shibuki,Enduringcriticalperiodplasticityvisualizedbytranscranialflavoproteinimaginginmouseprimaryvisualcortex.J.Neurosci. 26,1177511785(2006).

    Abstract/FREEFullText

    32. M. Tohmi,K. Takahashi,Y. Kubota,R. Hishida,K. Shibuki,Transcranialflavoproteinfluorescenceimagingofmousecorticalactivityandplasticity.J.Neurochem. 109(Suppl.1),39(2009). CrossRef

    Medline WebofScience GoogleScholar

    33. C.M. William,M.L. Andermann,G.J. Goldey,D.K. Roumis,R.C. Reid,C.J. Shatz,M.W. Albers,M.P. Frosch,B.T. Hyman,SynapticplasticitydefectfollowingvisualdeprivationinAlzheimersdiseasemodeltransgenicmice.J.Neurosci. 32,80048011(2012). Abstract/FREEFullText

    34. J.Z. Tsien,D.F. Chen,D. Gerber,C. Tom,E.H. Mercer,D.J. Anderson,M. Mayford,E.R. Kandel,S. Tonegawa,Subregionandcelltyperestrictedgeneknockoutinmousebrain.Cell 87,13171326(1996). CrossRef Medline WebofScience GoogleScholar

    35. N. Ramanan,Y. Shen,S. Sarsfield,T. Lemberger,G. Schtz,D.J. Linden,D.D. Ginty,SRFmediatesactivityinducedgeneexpressionandsynapticplasticitybutnotneuronalviability.Nat.Neurosci. 8,759767(2005). CrossRef Medline WebofScience GoogleScholar

    36. L. Madisen,T.A. Zwingman,S.M. Sunkin,S.W. Oh,H.A. Zariwala,H. Gu,L.L. Ng,R.D. Palmiter,M.J. Hawrylycz,A.R. Jones,E.S. Lein,H. Zeng,ArobustandhighthroughputCrereportingandcharacterizationsystemforthewholemousebrain.Nat.Neurosci. 13,133140(2010). CrossRef Medline

    WebofScience GoogleScholar

    37. S. Davis,N.W. Gale,T.H. Aldrich,P.C. Maisonpierre,V. Lhotak,T. Pawson,M. Goldfarb,G.D. Yancopoulos,LigandsforEPHrelatedreceptortyrosinekinasesthatrequiremembraneattachmentorclusteringforactivity.Science 266,816819(1994). Abstract/FREEFullText

    38. R.J. Cabelli,D.L. Shelton,R.A. Segal,C.J. Shatz,BlockadeofendogenousligandsoftrkBinhibitsformationofoculardominancecolumns.Neuron 19,6376(1997). CrossRef Medline WebofScience

    GoogleScholar

    39. J. Holash,S. Davis,N. Papadopoulos,S.D. Croll,L. Ho,M. Russell,P. Boland,R. Leidich,D. Hylton,E. Burova,E. Ioffe,T. Huang,C. Radziejewski,K. Bailey,J.P. Fandl,T. Daly,S.J. Wiegand,G.D. Yancopoulos,J.S. Rudge,VEGFTrap:AVEGFblockerwithpotentantitumoreffects.Proc.Natl.Acad.Sci.U.S.A. 99,1139311398(2002). Abstract/FREEFullText

    40. H. Matsushita,S. Endo,E. Kobayashi,Y. Sakamoto,K. Kobayashi,K. Kitaguchi,K. Kuroki,A. Sderhll,K. Maenaka,A. Nakamura,S.M. Strittmatter,T. Takai,DifferentialbutcompetitivebindingofNogoproteinandclassImajorhistocompatibilitycomplex(MHCI)tothePIRBectodomainprovidesaninhibitionofcells.J.Biol.Chem. 286,2573925747(2011). Abstract/FREEFullText

    41. S.B. Hofer,T.D. MrsicFlogel,T. Bonhoeffer,M. Hbener,Priorexperienceenhancesplasticityinadultvisualcortex.Nat.Neurosci. 9,127132(2006). CrossRef Medline WebofScience GoogleScholar

    42. E.I. Knudsen,W. Zheng,W.M. DeBello,Tracesoflearningintheauditorylocalizationpathway.Proc.Natl.Acad.Sci.U.S.A. 97,1181511820(2000). Abstract/FREEFullText

    43. B.A. Linkenhoker,C.G. vonderOhe,E.I. Knudsen,Anatomicaltracesofjuvenilelearningintheauditorysystemofadultbarnowls.Nat.Neurosci. 8,9398(2005). CrossRef Medline WebofScience

    GoogleScholar

    44. S.B. Hofer,T.D. MrsicFlogel,T. Bonhoeffer,M. Hbener,Experienceleavesalastingstructuraltraceincorticalcircuits.Nature 457,313317(2009). CrossRef Medline WebofScience GoogleScholar

    45. G. Feng,R.H. Mellor,M. Bernstein,C. KellerPeck,Q.T. Nguyen,M. Wallace,J.M. Nerbonne,J.W. Lichtman,J.R. Sanes,ImagingneuronalsubsetsintransgenicmiceexpressingmultiplespectralvariantsofGFP.Neuron 28,4151(2000). CrossRef Medline WebofScience GoogleScholar

    46. K.M. Harris,F.E. Jensen,B. Tsao,Threedimensionalstructureofdendriticspinesandsynapsesinrathippocampus(CA1)atpostnatalday15andadultages:Implicationsforthematurationofsynapticphysiologyandlongtermpotentiation.J.Neurosci. 12,26852705(1992). Abstract

    47. D.E. Mitchell,K.R. Duffy,Thecasefromanimalstudiesforbalancedbinoculartreatmentstrategiesforhumanamblyopia.OphthalmicPhysiol.Opt. 34,129145(2014). CrossRef Medline GoogleScholar

    48. F. Sengpiel,Experimentalmodelsofamblyopia:Insightsforpreventionandtreatment.Strabismus19,8790(2011). CrossRef Medline GoogleScholar

    49. K.L. Montey,E.M. Quinlan,Recoveryfromchronicmonoculardeprivationfollowingreactivationofthalamocorticalplasticitybydarkexposure.Nat.Commun. 2,317(2011). CrossRef Medline

    GoogleScholar

    50. M. Beurdeley,J. Spatazza,H.H. Lee,S. Sugiyama,C. Bernard,A.A. DiNardo,T.K. Hensch,A. Prochiantz,Otx2bindingtoperineuronalnetspersistentlyregulatesplasticityinthematurevisualcortex.J.Neurosci. 32,94299437(2012). Abstract/FREEFullText

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 12/12

    51. T. Xu,X. Yu,A.J. Perlik,W.F. Tobin,J.A. Zweig,K. Tennant,T. Jones,Y. Zuo,Rapidformationandselectivestabilizationofsynapsesforenduringmotormemories.Nature 462,915919(2009). CrossRef

    Medline WebofScience GoogleScholar

    52. G. Yang,F. Pan,W.B. Gan,Stablymaintaineddendriticspinesareassociatedwithlifelongmemories.Nature 462,920924(2009). CrossRef Medline WebofScience GoogleScholar

    53. D.G. Southwell,R.C. Froemke,A. AlvarezBuylla,M.P. Stryker,S.P. Gandhi,Corticalplasticityinducedbyinhibitoryneurontransplantation.Science 327,11451148(2010). Abstract/FREEFullText

    54. F.V. Akbik,S.M. Bhagat,P.R. Patel,W.B. Cafferty,S.M. Strittmatter,AnatomicalplasticityofadultbrainistitratedbyNogoReceptor1.Neuron 77,859866(2013). CrossRef Medline WebofScience

    GoogleScholar

    55. A. Zemmar,O. Weinmann,Y. Kellner,X. Yu,R. Vicente,M. Gullo,H. Kasper,K. Lussi,Z. Ristic,A.R. Luft,M. RioultPedotti,Y. Zuo,M. Zagrebelsky,M.E. Schwab,NeutralizationofNogoAenhancessynapticplasticityintherodentmotorcortexandimprovesmotorlearninginvivo.J.Neurosci. 34,86858698(2014). Abstract/FREEFullText

    56. K.L. Montey,N.C. Eaton,E.M. Quinlan,Repetitivevisualstimulationenhancesrecoveryfromsevereamblyopia.Learn.Mem. 20,311317(2013). Abstract/FREEFullText

    57. J.Z. Tsien,Behavioralgenetics:Subregionandcelltyperestrictedgeneknockoutinmousebrain.Pathol.Biol.(Paris)46,699700(1998). Medline GoogleScholar

    58. Acknowledgments:WethankN.SoteloKury,P.Kemper,andC.Chechelskiforlogisticsandmousebreeding,andG.Vidalformicroscopyadviceandtraining.WethankB.Q.ZhuangandL.HsiehWilsonattheCaliforniaInstituteofTechnologyforthesPirBplasmid,andJ.Schafferforillustrating(Fig.2A.WealsothankL.Luo,E.Knudsen,andT.Clandininforhelpfulfeedback.Funding:ThisprojectwassupportedbyNIHgrantsEY02858andMH07166,theMathersCharitableFoundation,andtheRosenbergFamilyFoundationtoC.J.S.NIHgrantEY018861toY.D.NationalScienceFoundationGraduateResearchFellowshipstoD.N.B.andJ.D.A.andNationalDefenseScienceandEngineeringFellowshiptoJ.D.A.R.W.S.receivedaBioXSummerUndergraduateResearchFellowship.Authorcontributions:D.N.B.andC.J.S.proposedandoutlinedtheexperimentalplan.D.N.B.performedallexperimentsinvolvingtamoxifeninduceddeletionD.N.B.andR.W.S.performedminipumpimplantationsurgeriesandsubsequentanalysisJ.D.A.,R.W.S.,andM.D.performedandanalyzedthestudiesofCamKIIaCrePirBflox/floxvisualcortex.S.Z.performedtheVEPrecordingsandanalysis,andY.D.supervisedthatcollaboration.H.L.performedwholecellrecordingsofmEPSCsinL5neurons.M.D.characterizedanewbatchofthePirBantibodyusedhereandmadesubstantialintellectualcontributionstotheproject.J.S.createdthefloxedPirBandPirB/mouseintheShatzlaboratory.D.N.B.andC.J.S.wrotethemanuscriptandreviewedalldatacollectionandanalysis.Competinginterests:C.J.S.andJ.S.areinventorsonU.S.Patentapplication12/087799assignedtothePresidentandFellowsofHarvardCollegeonCompositionsandmethodsforenhancingneuronalplasticityandregeneration.Theotherauthorsdeclarethattheyhavenocompetinginterests.

    Receivedforpublication24July2014.Acceptedforpublication17September2014.Copyright2014,AmericanAssociationfortheAdvancementofScience

    Citation:D.N.Bochner,R.W.Sapp,J.D.Adelson,S.Zhang,H.Lee,M.Djurisic,J.Syken,Y.Dan,C.J.Shatz,BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia.Sci.Transl.Med.6,258ra140(2014).


Recommended