+ All Categories
Home > Documents > Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1...

Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1...

Date post: 21-Dec-2020
Category:
Upload: others
View: 8 times
Download: 0 times
Share this document with a friend
22
Bottom spectroscopy on dynamical 2+1 flavor domain wall fermion lattices with a relativistic heavy quark action Min Li, for the RBC and UKQCD collaborations Columbia University Lattice 2008, Williamsburg, Virginia Min Li (Columbia University) Bottom spectroscopy with RHQ action July 14th - July 19th 1 / 19
Transcript
Page 1: Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1 av or domain wall fermion lattices with a relativistic heavy quark action Min Li,

Bottom spectroscopy on dynamical 2+1 flavordomain wall fermion lattices with a relativistic

heavy quark action

Min Li, for the RBC and UKQCD collaborations

Columbia University

Lattice 2008, Williamsburg, Virginia

Min Li (Columbia University) Bottom spectroscopy with RHQ action July 14th - July 19th 1 / 19

Page 2: Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1 av or domain wall fermion lattices with a relativistic heavy quark action Min Li,

Outline

1 IntroductionHeavy quarksReview of charm spectroscopyBottom in this work

2 MethodsPhysical quantities we calculatedExtract RHQ paramters

3 Analysis and ResultsLatticesNumerical run detailsResults

4 Outlook and Summary

Min Li (Columbia University) Bottom spectroscopy with RHQ action July 14th - July 19th 2 / 19

Page 3: Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1 av or domain wall fermion lattices with a relativistic heavy quark action Min Li,

Introduction Heavy quarks

Heavy quarks

Challenge:Charm and Bottom quarks are too heavy for current latticeensembles: m∼1/a

Solutions:Heavy quark effective theory (HQET)Non-relativisitic QCD (NRQCD)Relativisitic Heavy Quarks/ Fermilab (RHQ)

RHQ actionS =

X

ψ`

m0a + γ0D0 + ζ~γ ·~D −

12 rt (D0)2

12 rs(~D)2 +

X

µ,ν

i4 cPσµνFµν

´

ψ

[A. El-Khadra et al.(1997), S. Aoki et al.(2003), N. Christ et al.(2007)]

Works for all lattice spacings and allows continuum limit.Supports non-perturbative methods.Only three paramters need to be tuned.Errors of order O((~pa)2).

Min Li (Columbia University) Bottom spectroscopy with RHQ action July 14th - July 19th 3 / 19

Page 4: Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1 av or domain wall fermion lattices with a relativistic heavy quark action Min Li,

Introduction Heavy quarks

Calculations in full QCD

Instead of using perturbation theory or step scaling to calculatethe spectrum from first principles. We match our calculation toexperimental data to calibrate the RHQ action.

Determine the RHQ parameters for heavy quark systems,with the lattice spacing from other methods. (at least 3quantities needed)Predict other quantities of interest using the determinedRHQ parameters.Determine the lattice scale together with the RHQparameters. (at least 4 quantities needed)

Min Li (Columbia University) Bottom spectroscopy with RHQ action July 14th - July 19th 4 / 19

Page 5: Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1 av or domain wall fermion lattices with a relativistic heavy quark action Min Li,

Introduction Review of charm spectroscopy

What’s been done on Charm

RHQ paramteters are determined(∼1%) from charmoniumspectrum and extrapolated to chiral limit.m0a = 0.251(9) cP = 2.091(17) ζ = 1.242(10)χc0 and χc1 masses are predicted in the chiral limit with lessthan 1% error.mχc0 = 3.424(11)GeV exp. 3.415GeVmχc1 = 3.502(14)GeV exp. 3.511GeVLattice scale is determined from the charmonium andcharm strange spectrum, also with errors ∼ 1%.a−1 = 1.749(14)GeV or a−1 = 1.730(23)GeV (diag corr. matrix)which are consistent with 1.73(2)GeV from Ω baryon.

[M. Li and H. Lin, arxiv:0710.0910 [hep-lat], lattice 07 proceeding]

Min Li (Columbia University) Bottom spectroscopy with RHQ action July 14th - July 19th 5 / 19

Page 6: Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1 av or domain wall fermion lattices with a relativistic heavy quark action Min Li,

Introduction Bottom in this work

Bottom in this work

Explore the validity of this method in a regime with largerheavy quark momenta.Bottom-light has smaller discretization errors (p ∼ ΛQCD),thus is used to determine the RHQ paramters.Bottomonium states are predicted and compared toexperimental numbers.Theoretical estimation of the errors is carried out tounderstand the O((~pa)2) systematic errors found in thenumerical study.

Min Li (Columbia University) Bottom spectroscopy with RHQ action July 14th - July 19th 6 / 19

Page 7: Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1 av or domain wall fermion lattices with a relativistic heavy quark action Min Li,

Methods Physical quantities we calculated

Quantities calculatedSpin-averaged (ηb,Υ,Bs,B∗

s )

mhhsa =

14 (mhh

PS + 3mhhV ) mhl

sa =14 (mhl

PS + 3mhlV ) (1)

Hyperfine splitting

mhhhs = mhh

V − mhhPS mhl

hs = mhlV − mhl

PS (2)

Dispersion relation (mass ratio)

E2 = m21 +

m1m2

p2 (3)

Spin-orbit averaged and splitting (χb0 and χb1)

mhhsos = mhh

AV − mhhS (4)

mhhsoa =

14 (mhh

S + 3mhhAV ) (5)

Heavy-heavy 1P1 state(hb)Min Li (Columbia University) Bottom spectroscopy with RHQ action July 14th - July 19th 7 / 19

Page 8: Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1 av or domain wall fermion lattices with a relativistic heavy quark action Min Li,

Methods Extract RHQ paramters

Determination of the RHQ parameters

Rough search on 163 lattices with initial parameters from tree level.Linear approximation in the appropriate region

Y (a) =

m1am2am3am4a

1

= J ·

m0acPζ

+ A

Obtain parameters and a by minimizing the χ2 defined as:χ2 = (J · X + A − Y (a))T W−1(J · X + A − Y (a))

it is a quadratic function ofX = (m0a, cP , ζ)T if a is known,X New = (m0a, cP , ζ, a)T if a is unknown.

J and A are determined from finite difference approximation to Yderivatives w.r.t. m0a,cP ,ζ ∼ 7.3(±0.5),4.0(±1.0),4.3(±0.3).

Min Li (Columbia University) Bottom spectroscopy with RHQ action July 14th - July 19th 8 / 19

Page 9: Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1 av or domain wall fermion lattices with a relativistic heavy quark action Min Li,

Analysis and Results Lattices

Dynamical DWF lattices

IWASAKI β=2.13 lattices

volume Ls (msea, ms) Traj(step) # of configs243

× 64 16 (0.005,0.04) 900-6880(20) 300x2243

× 64 16 (0.01,0.04) 1460-5060(40) 91x4243

× 64 16 (0.02,0.04) 1885-3605(20) 87x4

For the msea=0.01 and 0.02 ensembles, we placed thesources at time 0 as well as 16, 32 and 48, so there are 4xstatistics hidden for these two cases. For the msea=0.005ensemble we place sources at 0 and 32 for eachconfiguration.

Min Li (Columbia University) Bottom spectroscopy with RHQ action July 14th - July 19th 9 / 19

Page 10: Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1 av or domain wall fermion lattices with a relativistic heavy quark action Min Li,

Analysis and Results Numerical run details

Sample bottom correlators

1e+10

1

1e-10

1e-20

1e-30

1e-40

1e-50

1e-60

1e-70

1e-80 32 28 24 20 16 12 8 4 0

botto

mon

ium

PS

corre

lato

rs

T

1e+10

1

1e-10

1e-20

1e-30

1e-40

1e-50 32 28 24 20 16 12 8 4 0bo

ttom

-stra

nge

PS c

orre

lato

rsT

Here are some sample plots of the bottomonium and bottomstrange pseudo-scalar correlators. One should notice thecorreltors are falling in orders of magnitude about 70 forbottomonium and 40 for bottom strange.

Min Li (Columbia University) Bottom spectroscopy with RHQ action July 14th - July 19th 10 / 19

Page 11: Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1 av or domain wall fermion lattices with a relativistic heavy quark action Min Li,

Analysis and Results Numerical run details

Numerical run details

Box source with size 4Quark propagator precision.

Heavy propagator: Extreme CG stopping condition (10−60)to ensure accuracy.Light propagator: CG stopping condition 10−10.

Mass ratio m1/m2.Obtained from Υ momentum dependence.Only three smallest momentum are used and the fit isuncorrelated.

Fitting ranges.All fitting ranges for the correlators’ time dependences arechosen from a close examination of the correspondingeffective mass plot.

Min Li (Columbia University) Bottom spectroscopy with RHQ action July 14th - July 19th 11 / 19

Page 12: Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1 av or domain wall fermion lattices with a relativistic heavy quark action Min Li,

Analysis and Results Results

Effective masses 5.5

5.45

5.4

5.35

5.3 32 28 24 20 16 12 8 4 0

Effe

ctive

Mas

s

Time

Υ

ηb

6

5.9

5.8

5.7

5.6

5.5 32 28 24 20 16 12 8 4 0

Effe

ctive

Mas

s

Time

hbχb1

χb0

3.4

3.3

3.2

3.1

3

2.9 32 28 24 20 16 12 8 4 0

Effe

ctive

Mas

s

Time

Bs*

Bs

Sample effective mass plots forηb,Υ,χb0,χb1,Bs and B∗

s at msea =0.005. The fitting ranges are 14-30 for ηb and Υ; 5-12 for χb0 andχb1; 10-25 for Bs and B∗

s . Massesfor χb0 and χb1 might be subjectto more systermatic errors as theplateaus are less manifest.

Min Li (Columbia University) Bottom spectroscopy with RHQ action July 14th - July 19th 12 / 19

Page 13: Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1 av or domain wall fermion lattices with a relativistic heavy quark action Min Li,

Analysis and Results Results

RHQ parameters

Determined RHQ parameters using quantities mBs ,mB∗s and

m1/m2 from Υ meson momentum dependence, anda−1=1.73GeV is assumed from Ω baryon/charm study.

msea m0a cP ζ

0.005 7.37(7) 3.84(40) 4.21(3)0.01 7.28(9) 3.28(40) 4.21(3)0.02 7.30(11) 3.52(53) 4.24(4)-mres 7.38(12) 3.93(54) 4.19(4)

Note: m0 is around 12.7GeV, which indicates serious distortionfrom the ma dependence in this regime.

Min Li (Columbia University) Bottom spectroscopy with RHQ action July 14th - July 19th 13 / 19

Page 14: Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1 av or domain wall fermion lattices with a relativistic heavy quark action Min Li,

Analysis and Results Results

Predictions

9.5

9.45

9.4

9.35

9.3

0.03 0.02 0.01 0-0.01

Pred

icted

ηb m

ass

msea

Chiral limit

Experiment(PDG)

BaBar

ηb

Min Li (Columbia University) Bottom spectroscopy with RHQ action July 14th - July 19th 14 / 19

Page 15: Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1 av or domain wall fermion lattices with a relativistic heavy quark action Min Li,

Analysis and Results Results

Predictions cont’d 9.5

9.48

9.46

9.44

9.42

9.4 0.03 0.02 0.01 0-0.01

Pred

icted

Υ m

ass

msea

Chiral limit

Experiment

Υ

9.96

9.94

9.92

9.9

9.88 0.03 0.02 0.01 0-0.01

Pred

icted

hb m

ass

msea

Chiral limit

hb

9.95

9.93

9.91

9.89

9.87

9.85 0.03 0.02 0.01 0-0.01

Pred

icted

χb0

mas

s

msea

Chiral limit

Experiment

χb0

9.95

9.93

9.91

9.89

9.87 0.03 0.02 0.01 0-0.01

Pred

icted

χb1

mas

s

msea

Chiral limit

Experiment

χb1

Min Li (Columbia University) Bottom spectroscopy with RHQ action July 14th - July 19th 15 / 19

Page 16: Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1 av or domain wall fermion lattices with a relativistic heavy quark action Min Li,

Analysis and Results Results

Predictions cont’d

quantities RHQ(MeV) Exp.(MeV) NRQCD(MeV)mηb 9420(14) 9389(3)(3)†

mΥ 9444(17) 9460mχb0 9873(15) 9859mχb1 9897(16) 9893mhb 9908(17) - 9900(3)(6)∗1

mΥ − mηb 23.7(3.7) 71(3)(3)† 61(14)∗

mχb1 − mχb0 24.0(3.5) 33.34

Note:†: Numbers are from the new results from the BaBar collaboration[arxiv:0807.1086].The PDG number for ηb is 9300(28)MeV (from a single event) indicating a hyperfinesplitting of 160(28)MeV.Note: Our results only include the statistical errors.* A Gray et al. Phys.Rev.D72:094507,2005 [hep-lat/0507013v2], errors include statistical,fitting and discretization errors, as well as radiative and relativistic corrections.1 where 3 is the experimental error[PDG2004].

Min Li (Columbia University) Bottom spectroscopy with RHQ action July 14th - July 19th 16 / 19

Page 17: Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1 av or domain wall fermion lattices with a relativistic heavy quark action Min Li,

Analysis and Results Results

Theoretical estimationOur errors for the bottomonium spectrum are typically on theorder of 20-30MeV!

Rough estimate of some a2 operators (eg. O = Ψ~γ · ~D ~D2Ψ)mv2 ∼ (Υ(2S) − Υ(1S)) ∼ 500MeV → 〈O〉 ∼ p4a2

mb∼ 300MeV

Why such small errors in numerical results??Hydrogen atom Coulomb model

|Υ, mj〉 =

Z d3~p1d3~p2(2π)9/2

X

s1s2

δ(3)(~P0 − ~p1 − ~p2)φ(~p1 − ~p2

2)1S

×〈1mj |s1s2〉a†(~p1, s1)b†(~p2, s2)|0〉

Where a and b are free field quark and anti-quark annihination operators as in

Ψ(~x) =

Z d3~pp

2Ep

1(2π)3

X

sus(p)ei~p·~x a(~p, s) + v s(p)e−i~p·~xb†(~p, s)

=⇒ 〈O〉 ∼58

m3bα4

s a2 =

(

∼ 40MeV mb = 4.0GeV ,αs = 0.25∼ 146MeV mb = 4.0GeV , αs = 0.35

Min Li (Columbia University) Bottom spectroscopy with RHQ action July 14th - July 19th 17 / 19

Page 18: Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1 av or domain wall fermion lattices with a relativistic heavy quark action Min Li,

Outlook and Summary

Outlook

What could we do next?Use some phenomenological models which reproduce thebottom spectrum to estimate the O((~pa)2) errors moreaccurately.Heavy-light spectrum on different sea quark masses for bothcharm and bottom system.Predictions/calculations of more states, like χb2, bc mesonsand nucleons with one or more charm quarks etc.Move on to 323

× 64 lattices.Calculate matrix elements.

Min Li (Columbia University) Bottom spectroscopy with RHQ action July 14th - July 19th 18 / 19

Page 19: Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1 av or domain wall fermion lattices with a relativistic heavy quark action Min Li,

Outlook and Summary

Summary

Conclusions:(m0a,cP ,ζ) is determined by matching to physical quantitiesand extrapolated to chiral limit for the bottom system.Predictions of individual masses mostly agreed with theexperiment and indicated small discretization errors(<30MeV). Theoretical estimation using Coulomb modelneeds accurate coupling constant αs. Somephenomenological models might help to do a betterestimate.Also achieved good precision of mass splittings (4MeV), butboth of them deviate from the experimental values.Calculations for bottom-light system would double checkthe validity of the method in this regime and give moreaccurate results for both parameters and predictions.

Min Li (Columbia University) Bottom spectroscopy with RHQ action July 14th - July 19th 19 / 19

Page 20: Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1 av or domain wall fermion lattices with a relativistic heavy quark action Min Li,

Outlook and Summary

Backup Slides

Page 21: Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1 av or domain wall fermion lattices with a relativistic heavy quark action Min Li,

Outlook and Summary

Linearity test

3.2

3.15

3.1

3.05

3 8 7.5 7 6.5

B s m

ass

m0a

3.15

3.1

3.05 5 4.5 4 3.5 3

B s m

ass

cP

3.13

3.11

3.09

3.07 4.8 4.6 4.4 4.2 4 3.8

B s m

ass

ζ

5.6

5.5

5.4

5.3 8 7.5 7 6.5

Υ m

ass

m0a

5.49

5.47

5.45

5.43 5 4.5 4 3.5 3

Υ m

ass

cP

5.51

5.49

5.47

5.45

5.43

5.41 4.8 4.6 4.4 4.2 4 3.8

Υ m

ass

ζ

Page 22: Bottom spectroscopy on dynamical 2+1 flavor domain wall ......Bottom spectroscopy on dynamical 2+1 av or domain wall fermion lattices with a relativistic heavy quark action Min Li,

Outlook and Summary

Lattice scale

Lattice scale and RHQ paramters determined from mBs ,mB∗s ,mΥ

and m1/m2 and extrapolated to the chiral limit.

msea m0a cP ζ a−1GeV0.005 7.72(59) 4.10(25) 4.33(23) 1.71(4)0.01 7.72(57) 3.61(31) 4.36(21) 1.70(4)0.02 7.46(62) 3.71(47) 4.30(24) 1.72(4)-mres 7.91(88) 4.27(45) 4.38(34) 1.70(6)


Recommended