+ All Categories
Home > Documents > Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2...

Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2...

Date post: 31-Mar-2021
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
27
Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control in ORCA2. Journ´ ee th´ ematique - Que peuvent attendre les mod´ elisateurs de l’assimilation ?, Feb 2013, Paris, France. 2013. <hal-00925863> HAL Id: hal-00925863 https://hal.inria.fr/hal-00925863 Submitted on 8 Jan 2014 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destin´ ee au d´ epˆ ot et ` a la diffusion de documents scientifiques de niveau recherche, publi´ es ou non, ´ emanant des ´ etablissements d’enseignement et de recherche fran¸cais ou ´ etrangers, des laboratoires publics ou priv´ es.
Transcript
Page 1: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

Boundary conditions control in ORCA2

Eugene Kazantsev

To cite this version:

Eugene Kazantsev. Boundary conditions control in ORCA2. Journee thematique - Que peuventattendre les modelisateurs de l’assimilation ?, Feb 2013, Paris, France. 2013. <hal-00925863>

HAL Id: hal-00925863

https://hal.inria.fr/hal-00925863

Submitted on 8 Jan 2014

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinee au depot et a la diffusion de documentsscientifiques de niveau recherche, publies ou non,emanant des etablissements d’enseignement et derecherche francais ou etrangers, des laboratoirespublics ou prives.

Page 2: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

Boundary conditions control in ORCA2

Eugene Kazantsev

INRIA, Moise

Journee thematique“Que peuvent attendre les modelisateurs de l’assimilation de donnees ?”

Paris, le 12 fevrier 2013

Eugene Kazantsev Boundary conditions control for ORCA2 page 1 of 19

Page 3: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

Model configuration

ORCA-2 configuration of NEMO

182× 149× 31 nodes in curvilinear (x, y) coordinates;

z levels with partial steps at the bottom;

leap-frog scheme with Asselin filter;

implicit surface pressure gradient with External Gravity Waves filter;

implicit vertical diffusion with TKE Turbulent Closure Scheme;

Solar Radiation + Geothermal Heating + BBL + Surfaceevaporation/precipitation;

surface wind stress.

Eugene Kazantsev Boundary conditions control for ORCA2 page 2 of 19

Page 4: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

Space discretization on the C-grid

∂u

∂t=

(

SxSyv

)

Sy(ω + f)−DxSxu2 + Syv2

2− Sz

(

SxwDzu

)

+DxAhuξ +DyA

huω +

+ g

∫ z

0DxSzρ(x, y, ζ)dζ +Dzz(A

zuu) + gDx(η + Tcφ)

∂T

∂t= −Dx(uSxT )−Dy(vSyT )−Dz(wSzT ) +Ah

T

(

DxDxT +DyDyT

)

+

+ Dzz(AzTT ) + Solar Radiation + Geothermal Heating + BBL

ξ = Dxu+Dyv, ω = Dyu−Dxv, w =

∫ z

Hξ(x, y, ζ)dζ;w(x, y,H) = 0

Interpolations and Derivatives

(Sw)k+1/2 =wk+1 + wk

2k = 1, . . . ,K − 1

(DT )k =Tk+1/2 − Tk−1/2

hk = 1, . . . ,K − 1

Eugene Kazantsev Boundary conditions control for ORCA2 page 3 of 19

Page 5: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

Space discretization on the C-grid

∂u

∂t=

(

SxSyv

)

Sy(ω + f)−DxSxu2 + Syv2

2− Sz

(

SxwDzu

)

+DxAhuξ +DyA

huω +

+ g

∫ z

0DxSzρ(x, y, ζ)dζ +Dzz(A

zuu) + gDx(η + Tcφ)

∂T

∂t= −Dx(uSxT )−Dy(vSyT )−Dz(wSzT ) +Ah

T

(

DxDxT +DyDyT

)

+

+ Dzz(AzTT ) + Solar Radiation + Geothermal Heating + BBL

ξ = Dxu+Dyv, ω = Dyu−Dxv, w =

∫ z

Hξ(x, y, ζ)dζ;w(x, y,H) = 0

Interpolations and Derivatives Modified Near the boundary

(Sw)k+1/2 =wk+1 + wk

2, k = 1, . . . ,K − 2, (Sw)1/2 = αS

0 + αS1w0 + αS

2w1

(DT )k =Tk+1/2 − Tk−1/2

h, i = 2, . . . ,K − 2, (DT )1 = αD

0 +αD1 T1/2 + αD

2 T3/2

h

· · ·w0 w1 w2 w3 wKwK−1wK−2wK−3

T1/2❜

T3/2❜

T5/2❜

T7/2❜

TK−1/2❜

TK−3/2❜

TK−5/2

Eugene Kazantsev Boundary conditions control for ORCA2 page 3 of 19

Page 6: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

Space discretization on the C-grid

∂u

∂t=

(

SxSyv

)

Sy(ω + f)−DxSxu2 + Syv2

2− Sz

(

SxwDzu

)

+DxAhuξ +DyA

huω +

+ g

∫ z

0DxSzρ(x, y, ζ)dζ +Dzz(A

zuu) + gDx(η + Tcφ)

∂T

∂t= −Dx(uSxT )−Dy(vSyT )−Dz(wSzT ) +Ah

T

(

DxDxT +DyDyT

)

+

+ Dzz(AzTT ) + Solar Radiation + Geothermal Heating + BBL

ξ = Dxu+Dyv, ω = Dyu−Dxv, w =

∫ z

Hξ(x, y, ζ)dζ;w(x, y,H) = α0(x, y)

Vertical velocity

wi,j,K−1 = αwb

0 − αwb

1 hzi,j,K−1/2ξi,j,K−1/2

wi,j,k−1 = wi,j,k − hzi,j,k−1/2ξi,j,k−1/2 ∀k : 2 ≤ k ≤ K − 1

wi,j,0 = wi,j,1 + αws

0 − αws

1 hzi,j,1/2ξi,j,1/2

· · ·w0

αw0

αw1 hz1/2︷ ︸︸ ︷

w1 w2 w3 wK

+αw0αw

1 hzK−1/2︷ ︸︸ ︷

wK−1wK−2wK−3

Eugene Kazantsev Boundary conditions control for ORCA2 page 3 of 19

Page 7: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

Space discretization on the C-grid

Vertical diffusion

∂zA

zu

∂u

∂zis replaced by

(

Dzzu

)

i,j,1/2=

(Azu)1

hz1hz1/2

(αDzzUs

2 u3/2 − αDzzUs

1 u1/2)

(

Dzzu

)

i,j,k−1/2=

1

hzk−1/2

( (Azu)k

hzk

(uk+1/2 − uk−1/2) −(Az

u)k−1

hzk−1

(uk−1/2 − uk−3/2)

)

∀k : 2

(

Dzzu

)

i,j,K−1/2=

1

hzK−1/2

[

αDzzUb

2

(Azu)K−1

hzK−1

uK−1/2 − αDzzUb

1

( (Azu)K

hzK

+(Az

u)K−1

hzK−1

)

uK−3/

∂u

∂z

∣∣∣∣w0

= αDzzUs

0 +τx

hz1ρ0

,∂v

∂z

∣∣∣∣w0

= αDzzUs

0 +τy

hz1ρ0

,∂T

∂z

∣∣∣∣w0

=∂S

∂z

∣∣∣∣w0

= αDzzTs

0

u|bottom = v|bottom = αDzzUb

0 T |bottom = S|bottom = αDzzTb

0 (1)

· · ·

hz1/2︷ ︸︸ ︷

hz3/2︷ ︸︸ ︷

hz5/2︷ ︸︸ ︷

hzK−1/2︷ ︸︸ ︷

hzK−3/2︷ ︸︸ ︷

u1/2

︸ ︷︷ ︸

hz1

u3/2

︸ ︷︷ ︸

hz2

u5/2

︸ ︷︷ ︸

hz3

u7/2❜

uK−1/2

︸ ︷︷ ︸

hzK−1

uK−3/2

︸ ︷︷ ︸

hzK−2

uK−5/2

Eugene Kazantsev Boundary conditions control for ORCA2 page 3 of 19

Page 8: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

Adjoint

The models solution depend on initial and boundary conditions :

∂T

∂t= −Dx(uSxT )−Dy(vSyT )−D

(α)z (wS

(α)z T )+Ah

T

(

DxxT+DyyT

)

+Dzz(α)(AzT )T

The model x(t) = M0,t(x0, α)

We calculate the derivatives and their adjoints with respect to

x0, α

by TAPENADE 3.6 (Tropics team, INRIA) that allows us

to avoid a HUGE development/coding (a double of the classical one, at least)

to obtain immediately the derivative with respect to any parameter we want.

Eugene Kazantsev Boundary conditions control for ORCA2 page 4 of 19

Page 9: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

Adjoint

TAPENADE 3.6 (Tropics team, INRIA)with the Memory Usage Optimization:

search for push/pop

CALL PUSHREAL8ARRAY(sold, nx*ny*nz)CALL PUSHREAL8ARRAY(told, nx*ny*nz)CALL PUSHREAL8ARRAY(vold, nx*ny*nz)CALL PUSHREAL8ARRAY(uold, nx*ny*nz)CALL PUSHREAL8ARRAY(ssh, nx*ny)CALL PUSHREAL8ARRAY(s, nx*ny*nz)CALL PUSHREAL8ARRAY(t, nx*ny*nz)CALL PUSHREAL8ARRAY(v, nx*ny*nz)CALL PUSHREAL8ARRAY(u, nx*ny*nz)

replace by

call push uvts(u,v,t,s,ssh)

Procedure push/pop uvts(u,v,t,s,ssh):

does not push n− 1 step and pops appropriate values (divides the requiredmemory by 2)

does not push u, v, t, s in lower level routines

does not push values on continents (divides by 2)

pushes values in Real*4 format (divides by 2)

eventually pushes only odd timesteps and interpolate when poping (dividesby 2)

Total reduction of required memory is up to 25 times.10 hours window =⇒ 10 days window.

Eugene Kazantsev Boundary conditions control for ORCA2 page 4 of 19

Page 10: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

Data

ECMWF data issued from Jason-1 and Envisat altimetric missions andENACT/ENSEMBLES data banque.

January, 1, 2006.

Difference between observations and background during the 1st of January.

Eugene Kazantsev Boundary conditions control for ORCA2 page 5 of 19

Page 11: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

Cost function

The model: xN = M0,N (x0, α) with x = (u, v, T, S, ssh)T

Cost function J

J = ‖x0 − xbgr‖2B−1 + ‖α− αbgr‖

2B−1 +

+N∑

n=0

tn‖HM0,n(x0, α)− yn‖2R−1

Matrices: B−1 = diag(10−4),

R−1 = diag(1/σu, 1/σv , 1/σT , 1/σS , 1/σssh) where σ2u = 1

Nobs

∑(uobs − ubgr)

2

Minimization is performed by M1QN3 (JC Gilbert, C.Lemarechal)

Data Assimilation – Forecast

Assimilation window — 10 days (Jan. 1-10, 2006),Test time — 20 or 30 days (Jan. 1-31, 2006).

Eugene Kazantsev Boundary conditions control for ORCA2 page 6 of 19

Page 12: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

Distance Model-Observations

The model: x(t) = M0,t(x0, α) with x = (u, v, T, S, ssh)T

Distance: ξ(t) =t∑

n=0

‖HM0,n(x0, α)− yn‖R−1

Convergence of J and evolution of ξ

20 Cost function calls with T = 5 days and 40 calls with T = 10 days.

Eugene Kazantsev Boundary conditions control for ORCA2 page 7 of 19

Page 13: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

Optimal IC and Optimal BCz

SSH, North Atlantic, January,1-30 2006.

Optimal IC Optimal BCz

Eugene Kazantsev Boundary conditions control for ORCA2 page 8 of 19

Page 14: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

Optimal IC and Optimal BCz

SSH, North Pacific, January,1-30 2006.

Optimal IC Optimal BCz

Eugene Kazantsev Boundary conditions control for ORCA2 page 9 of 19

Page 15: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

BC for the vertical velocity

Modified formula

wi,j,K−1 = αwb

0 − αwb

2 hzi,j,K−1/2ξi,j,K−1/2

wi,j,k−1 = wi,j,k − hzi,j,k−1/2ξi,j,k−1/2 ∀k : 1 ≤ k ≤ K − 2

wi,j,0 = wi,j,1 + αws

0 − αws

2 hzi,j,1/2ξi,j,1/2

Eugene Kazantsev Boundary conditions control for ORCA2 page 10 of 19

Page 16: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

BC for the vertical velocity

α for the vertical velocity w. North Atlantic.

α0 on the surface α2 on the surface

α0 on the bottom α2 on the bottomEugene Kazantsev Boundary conditions control for ORCA2 page 10 of 19

Page 17: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

Vertical velocity

North Atlantic, January, 30, 2006, surface

Original model Optimal BCz

Eugene Kazantsev Boundary conditions control for ORCA2 page 11 of 19

Page 18: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

Vertical velocity

North Atlantic, January, 30, 2006, y − z section

Original model Optimal BCz

Eugene Kazantsev Boundary conditions control for ORCA2 page 11 of 19

Page 19: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

Vertical velocity

North Atlantic, January, 30, 2006, x− z section

Original model Optimal BCz

Eugene Kazantsev Boundary conditions control for ORCA2 page 11 of 19

Page 20: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

Tourbillon

Levels z = 28 and z = 29

Velocity u Velocity v Velocity w

Velocity u Velocity v Velocity w

Eugene Kazantsev Boundary conditions control for ORCA2 page 12 of 19

Page 21: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

α0 for the operator Dzzu

∂u

∂z

∣∣∣∣w0

= αDzzUs

0 +τx

hz1ρ0,

∂v

∂z

∣∣∣∣w0

= αDzzUs

0 +τy

hz1ρ0,

u|bottom = v|bottom = αDzzUb

0

North Atlantic

Surface Bottom

Eugene Kazantsev Boundary conditions control for ORCA2 page 13 of 19

Page 22: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

Velocity components

North Atlantic, January, 30, 2006, Velocity u, y − z section

Original model Optimal BCzEugene Kazantsev Boundary conditions control for ORCA2 page 14 of 19

Page 23: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

It is not an artefact.

North Atlantic

Modification of the SSH in the North Atlantic is strongly related to the boundaryconditions of u and v especially on the bottom.

Eugene Kazantsev Boundary conditions control for ORCA2 page 15 of 19

Page 24: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

Restrained control

Only α0 on the Bottom for u and v, only in the Vertical diffusion

∂zA

zu

∂u

∂zis replaced by

(

Dzzu

)

i,j,1/2=

(Azu)1

hz1hz1/2

(u3/2−u1/2)

(

Dzzu

)

i,j,k−1/2=

1

hzk−1/2

( (Azu)k

hzk

(uk+1/2 − uk−1/2) −(Az

u)k−1

hzk−1

(uk−1/2 − uk−3/2)

)

∀k : 2

(

Dzzu

)

i,j,K−1/2=

1

hzK−1/2

[ (Azu)K−1

hzK−1

uK−1/2 −

( (Azu)K

hzK

+(Az

u)K−1

hzK−1

)

uK−3/2

]

u|bottom = αu0 v|bottom = α

v0 (2)

Control space dimension

Initial conditions: 1 707 245Full vertical boundary: 1 197 792Only bottom: 33 272

Eugene Kazantsev Boundary conditions control for ORCA2 page 16 of 19

Page 25: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

SSH in the restrained control experiment

North Atlantic

Eugene Kazantsev Boundary conditions control for ORCA2 page 17 of 19

Page 26: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

SSH in the restrained control experiment

North Pacific

Eugene Kazantsev Boundary conditions control for ORCA2 page 18 of 19

Page 27: Boundary conditions control in ORCA2 · 2017. 1. 27. · Boundary conditions control in ORCA2 Eugene Kazantsev To cite this version: Eugene Kazantsev. Boundary conditions control

Que peuvent attendre les modelisateurs de l’assimilation de donnees ?

Extending the set of control parameters we can

find a way to compensate model errors

showing the most influent parameter and the most important geographicalregions.

Automatic adjoint code generation helps us

to generate TLM/AM almost immediately,

to avoid a HUGE development/coding,

to obtain immediately the derivative with respect to any parameter we want.

http://www-ljk.imag.fr/membres/Kazantsev/orca2/index.html

Eugene Kazantsev Boundary conditions control for ORCA2 page 19 of 19


Recommended