+ All Categories
Home > Education > BP219 class 4 04 2011

BP219 class 4 04 2011

Date post: 07-Dec-2014
Category:
Upload: waddling
View: 355 times
Download: 2 times
Share this document with a friend
Description:
BioPhysics 219 Crystallography Class
Popular Tags:
169
B1 219 ROBERT M. STROUD • Understanding crystallography and structures • Interactive – Bring conundra – • Laboratory course: – Crystallize a protein – Determine structure – Visit ‘Advanced Light Source’ (ALS) for data
Transcript
Page 1: BP219 class 4 04 2011

B1 219 ROBERT M. STROUD

• Understanding crystallography and structures• Interactive – Bring conundra –• Laboratory course:

– Crystallize a protein– Determine structure– Visit ‘Advanced Light Source’ (ALS) for data

Page 2: BP219 class 4 04 2011

Determining Atomic Structure• X-ray crystallography = optics l ~ 1.5Å (no lenses)• Bond lengths ~1.4Å• Electrons scatter X-rays; ERGO X-rays ‘see electrons’• Resolution –Best is l/2 Typical is 1 to 3 Å• Accuracy of atom center positions ±1/10 Resolution

2q

Page 3: BP219 class 4 04 2011

Where do X-rays come from?=accelerating or decelerating electrons

Page 4: BP219 class 4 04 2011

Resources:

Crystallography accessible to no prior knowledge of the field or its mathematical basis. The most comprehensive and concise reference Rhodes' uses visual and geometric models to help readers understand the basis of x-ray crystallography.

http://www.msg.ucsf.eduComputingCalculation software-all you will ever needOn line course for some items:http://www-structmed.cimr.cam.ac.uk/course.html

http://bl831.als.lbl.gov/~jamesh/movies/

Dr Chris Waddling msg.ucsf.edu

Dr James Holton UCSF/LBNL

Page 5: BP219 class 4 04 2011

Optical image formation, - without lenses

Page 6: BP219 class 4 04 2011

TopicsSummmary: Resources1 Crystal lattice optical analogues photons as waves/particles2 Wave addition complex exponential3. Argand diagram4. Repetition ==sampling fringe function5. Molecular Fourier Transform Fourier Inversion theorem sampling the transform as a product6. Geometry of diffraction7. The Phase problem heavy atom Multiple Isomorphous Replacement) MIR Anomalous Dispersion Multi wavelength Anomalous Diffraction MAD/SAD8. Difference Maps and Errors9. Structure (= phase) Refinement Thermal factors Least squares Maximum likelihood methods10. Symmetry –basis, consequences

Page 7: BP219 class 4 04 2011

Topics11. X-ray sources: Storage rings, Free Electron Laser (FELS)12. Detector systems

13. Errors, and BIG ERRORS! –RETRACTIONS

14. Sources of disorder15. X-ray sources: Storage rings, Free Electron Laser (FELS)

Page 8: BP219 class 4 04 2011

If automated- why are there errors? What do I trust? Examples of errors trace sequence backwards, mis assignment of helices etc

The UCSF beamline 8.3.1

UCSF mission bay

Page 9: BP219 class 4 04 2011

NH3 sites and the role of D160 at 1.35Å Resolution

Page 10: BP219 class 4 04 2011

Data/Parameter ratio is the same for all molecular sizes at the same resolution dmin

ie. quality is the same!

30S 50S

Page 11: BP219 class 4 04 2011

Growth in number and complexity of structures versus time

Macromolecular Structures

Page 12: BP219 class 4 04 2011

The universe of protein structures: Our knowledge about protein structures is increasing..

• 65,271 protein structures are deposited in PDB (2/15/2010).

• This number is growing by > ~7000 a year • Growing input from Structural Genomics HT structure

determination (>1000 structures a year)

Page 13: BP219 class 4 04 2011

X-Ray Crystallography for Structure Determination

Goals: 1. How does it work2. Understand how to judge where errors may lurk3. Understand what is implied, contained in the Protein Data Bank PDB http://www.pdb.org/pdb/home/home.do

Resolution: - suspect at resolutions >3 ÅR factor, and Rfree : statistical ‘holdout test’Wavelength ~ atom sizeScattering from electrons = electron densityAdding atoms? howObservations Intensity I(h,k,l) = F(hkl).F*(hkl)Determine phases y(hkl)Inverse Fourier Transform === electron densityJudging electron density- How to interpret?Accuracy versus Reliability

Page 14: BP219 class 4 04 2011

A Typical X-ray diffraction pattern

~100 microns

Page 15: BP219 class 4 04 2011

qmax=22.5° if l=1ÅResolution 1.35Å2qmax=45°

Page 16: BP219 class 4 04 2011

The Process is re-iterative, and should converge-but only so far!

Intensities I(h,k,l) Electron density r(x,y,z)

Phases f(h,k,l)

Atom positions (x,y,z)

Known:Amino acid sequenceLigandsBond lengths anglesConstraints on geometry

Crystal

Experimentalheavy atom labelsselenium for sulfurTrial & error similar structure

calculated I(h,k,l)

Page 17: BP219 class 4 04 2011

Resolution dmin = l /2 sin (qmax)differs from Rayleigh criterion

dmin = l /2 sin (qmax) is the wavelength of the shortest wave used to construct the density map

Page 18: BP219 class 4 04 2011

The Rayleigh Criterion• The Rayleigh criterion is the generally accepted criterion for

the minimum resolvable detail - the imaging process is said to be diffraction-limited when the first diffraction minimum of the image of one source point coincides with the maximum of another.

compared withsin (qmax) = l /2 dmin

Page 19: BP219 class 4 04 2011

How do we judge the Quality of structure?

2. Overall quality criteria: agreement of observations with diffraction calculated from the interpreted structure.

3. Since we refine the structureTo match the Ihkl overfitting ?

Define Rfree for a ‘hold-out ‘ set of observations.

4. OK? R < 20%, R free< 25%

5. But the experimental errors in measuring Fo are ~ 3%.inadequate models of solvent, atom motion, anharmonicisity

6 Accuracy ~ 0.5*res*R

Page 20: BP219 class 4 04 2011

Crystal lattice is made up of many ‘Unit Cells’Unit cell dimensions are 3 distances a,b,c and angles between them , ,a b g

Repetition in ‘Real space’

Causes Sampling in ‘scattering space’

A ‘section’ throughScattering patternof a crystal l=0Note symmetry,Absences for h=even k=even

h

k

Page 21: BP219 class 4 04 2011

Crystal lattice is made up of many ‘Unit Cells’Unit cell dimensions are 3 distances a,b,c and angles between them , ,a b g

Repetition in ‘Real space’

Causes Sampling in ‘scattering space’

Vabc = |a.(bxc)|Vabc = |b.(cxa)|Vabc = |c.(axb)|

Page 22: BP219 class 4 04 2011

Scattering

Adding up the scattering of Atoms:‘interference’ of waves

Waves add out of phaseby 2p[extra path/l]

Page 23: BP219 class 4 04 2011

In general they add up to somethingamplitude In between -2f and +2f.For n atoms

Page 24: BP219 class 4 04 2011

Just 2 atoms…

Page 25: BP219 class 4 04 2011

Many atoms add by the same rules.

Different in every direction.

Page 26: BP219 class 4 04 2011

Summary of the Process from beginningto structure..

Page 27: BP219 class 4 04 2011

Optical Equivalent: eg slide projector; leave out the lens..Optical diffraction = X-ray diffraction

Image of the object

Remove the lens= observe scatteringpattern

object

film

object

object

object

Page 28: BP219 class 4 04 2011
Page 29: BP219 class 4 04 2011

Scattering

Adding up the scattering of Atoms:‘interference’ of waves

Page 30: BP219 class 4 04 2011

vectors revisited…• Vectors have magnitude and direction• Position in a unit cell

– r = xa + yb + zc where a, b, c are vectors, x,y,z are scalars 0<x<1– a.b = a b cos (q) projection of a onto b -called ‘dot product’– axb = a b sin (q) a vector perpendicular to a, and b proportional to area in magnitude

-- called cross product– volume of unit cell = (axb).c = (bxc).a = (cxa).b = -(bxa).c = -(cxb).a – additivity: a + b = b + a– if r = xa + yb + zc and s = ha* + kb* + lc* then

• r.s = (xa + yb + zc ).(ha* + kb* + lc* ) • = xh a.a* + xka.b* + xla.c* +yhb.a* + ykb.b* + ylb.c* + zhc.a* +zhc.a* + zkc.b* + zlc.c*

– as we will see, the components of the reciprocal lattive can be represented in terms of a* + b* + c*, where a.a* = 1, b.b*=1, c.c*=1

– and a.b*=0, a.c*=0 etc.. r.s = (xa + yb + zc ).(ha* + kb* + lc* ) • = xh a.a* + xka.b* + xla.c* +yhb.a* + ykb.b* + ylb.c* + zhc.a* +zhc.a* + zkc.b* + zlc.c*• = xh + yk + zl

Page 31: BP219 class 4 04 2011

Adding up the scattering of Atoms:‘interference’ of waves

2pr.S

Page 32: BP219 class 4 04 2011

Adding up the scattering of Atoms:‘interference’ of waves

2pr.SF(S)

Page 33: BP219 class 4 04 2011

Revisit..

Page 34: BP219 class 4 04 2011
Page 35: BP219 class 4 04 2011
Page 36: BP219 class 4 04 2011
Page 37: BP219 class 4 04 2011
Page 38: BP219 class 4 04 2011

Revision notes on McClaurin’stheorem.

It allows any function f(x) to be definedin terms of its value at some x=a valueie f(a), and derivatives of f(x) at x=a,namely f’(a), f’’(a), f’’’(a) etc

Page 39: BP219 class 4 04 2011
Page 40: BP219 class 4 04 2011
Page 41: BP219 class 4 04 2011

Extra Notes on Complex Numbers(p25-28)

Page 42: BP219 class 4 04 2011
Page 43: BP219 class 4 04 2011
Page 44: BP219 class 4 04 2011
Page 45: BP219 class 4 04 2011

2pr.SF(S)Argand Diagram.. F(S) = |F(s)| eiq

Intensity = |F(s)|2

How to represent I(s)?

I(s) = |F(s)|2 = F(S) .F*(S)

proof?

Where F*(S) is defined to be the ‘complex conjugate’ of F(S) = |F(s)| e-iq

so |F(s)|2 = |F(s)|[cos(q) + isin(q)].|F(s)|[cos(q) - isin(q)] = |F(s)|2 [cos2 (q) + sin2 (q)] = |F(s)|2 R.T.P.

q

Page 46: BP219 class 4 04 2011

-2pr.S

F*(S)

-q

F*(S) is the complex conjugate of F(S), = |F(s)| e-iq

(c+is)(c-is)=cos2 q - c q is q + c q is q + sin2q

so |F(s)|2 = F(S) .F*(S)

Page 47: BP219 class 4 04 2011
Page 48: BP219 class 4 04 2011

Origin Position is arbitrary..proof..

So the origin is chosen by choice of: a) conventional choice in each space group-eg Often on a major symmetry axis- BUT for strong reasons—see ‘symmetry section’.

Even so there are typically 4 equivalent major symmetry axes per unit cell..

b) chosen when we fix the first heavy metal (or Selenium) atom position, -all becomes relative to that.

c) chosen when we place a similar moleculefor ‘molecular replacement’ = trial and errorsolution assuming similarity in structure.

Page 49: BP219 class 4 04 2011

Adding waves from j atoms…F(S)= G(s) =

Page 50: BP219 class 4 04 2011

and why do we care?

How much difference will it make to the average intensity? average amplitude?

if we add a single Hg atom?

Page 51: BP219 class 4 04 2011

The ‘Random Walk’ problem? (p33.1-33.3)

What is the average sum of n steps in random directions?

(What is the average amplitude<|F(s)|> from an n atom structure?)

-AND why do we care?!........

How much difference from adding amercury atom (f=80).

Page 52: BP219 class 4 04 2011

The average intensity for ann atom structure, each of f electronsis <I>= nf2

The average amplitude is Square rootof n, times f

Page 53: BP219 class 4 04 2011

and why do we care?

How much difference will 10 electrons make to the average intensity? average amplitude?

average difference in amplitude?average difference in intensity?

if we add a single Hg atom?

Page 54: BP219 class 4 04 2011

and why do we care?

How much difference will 10 electrons make to the average intensity? 98,000 e2

average amplitude? 313

average difference in amplitude?average difference in intensity?

if we add a single Hg atom?

Page 55: BP219 class 4 04 2011

and why do we care?

How much difference will 10 electrons make to the average intensity? 98,000 e2

average amplitude? 313 e

average difference in amplitude?2.2% of each amplitude! average difference in intensity?98,100-98000=100 (1%)

if we add a single Hg atom?

Page 56: BP219 class 4 04 2011

and why do we care?

How much difference will 80 electrons make to the average intensity? 98,000 e2

average amplitude? 313 e

average difference in amplitude?18 % of each amplitude! average difference in intensity?104,400-98000=6400 (6.5%)

or Hg atom n=80e

Page 57: BP219 class 4 04 2011

WILSON STATISTICS

What is the expectedintensity of scattering versus the observedfor proteins of i atoms,?

on average versus resolution |s|?

Page 58: BP219 class 4 04 2011
Page 59: BP219 class 4 04 2011

Bottom Lines:

This plot should provide The overall scale factor(to intercept at y=1)

The overall B factor

In practice for proteins it has bumpsin it, they correspond to predominantor strong repeat distances in the protein.For proteins these are at 6Å (helices)3Å (sheets), and 1.4Å (bonded atoms)

Page 60: BP219 class 4 04 2011

Topic: Building up a Crystal

1 Dimension

Scattering from an array of points, is the same as scattering from one point,SAMPLED at distances ‘inverse’ to the repeat distance in the object

The fringe function

Scattering from an array of objects, is the same as scattering from one object,SAMPLED at distances ‘inverse’ to the repeat distance in the object eg DNA

Page 61: BP219 class 4 04 2011

Scattering from a molecule is described by

F(s)= Si fi e(2pir.s)

Page 62: BP219 class 4 04 2011
Page 63: BP219 class 4 04 2011
Page 64: BP219 class 4 04 2011
Page 65: BP219 class 4 04 2011
Page 66: BP219 class 4 04 2011

Consequences of being a crystal?• Repetition = sampling of F(S)

34Å 1/34Å-1

Page 67: BP219 class 4 04 2011

Object repeated 1/l2/l

Page 68: BP219 class 4 04 2011
Page 69: BP219 class 4 04 2011
Page 70: BP219 class 4 04 2011

Transform of two hoizontal lines defined y= ± y1

F(s) = Int [x=0-inf exp{2pi(xa+y1b).s} + exp{2pi(xa-y1b).s}dVr ]=2 cos (2py1b).s * Int [x=0-inf exp{2pi(xa).s dVr]

for a.s=0 the int[x=0-inf exp{2pi(xa).s dVr] = total e content of the linefor a.s≠0 int[x=0-inf exp{2pi(xa).s dVr] = 0

hence r(r) is a line at a.s = 0 parallel to b, with F(s) = 2 cos (2py1b).s -along a vertical line perpendicular to the horizontal lines.

Transform of a bilayer..

b=53Å

Page 71: BP219 class 4 04 2011

4.6Å

53Å Repeat distance 40Å inter bilayer spacing

Page 72: BP219 class 4 04 2011

4.6Å

53Å Repeat distance

40Å inter bilayer spacing

Page 73: BP219 class 4 04 2011

The Transform of a Molecule

Page 74: BP219 class 4 04 2011
Page 75: BP219 class 4 04 2011

How to calculate electron density?

Proof of the Inverse Fourier Transform:

Page 76: BP219 class 4 04 2011
Page 77: BP219 class 4 04 2011
Page 78: BP219 class 4 04 2011

Definitions:

Page 79: BP219 class 4 04 2011
Page 80: BP219 class 4 04 2011

Build up a crystal from Molecules…

First 1 dimension,a direction

Page 81: BP219 class 4 04 2011
Page 82: BP219 class 4 04 2011
Page 83: BP219 class 4 04 2011
Page 84: BP219 class 4 04 2011
Page 85: BP219 class 4 04 2011
Page 86: BP219 class 4 04 2011

a.s=h

b.s=k

Page 87: BP219 class 4 04 2011

hkl=(11,5,0)

Measure I(hkl)F(hkl)= √I(hkl)Determine f(s) = f(hkl)

Calculate electron density map

Page 88: BP219 class 4 04 2011
Page 89: BP219 class 4 04 2011

The density map is made up of interfering density waves through the entire unit cell…

Page 90: BP219 class 4 04 2011
Page 91: BP219 class 4 04 2011
Page 92: BP219 class 4 04 2011
Page 93: BP219 class 4 04 2011
Page 94: BP219 class 4 04 2011
Page 95: BP219 class 4 04 2011

Geometry of Diffraction

Page 96: BP219 class 4 04 2011
Page 97: BP219 class 4 04 2011

A Typical X-ray diffraction pattern

~100 microns

Page 98: BP219 class 4 04 2011
Page 99: BP219 class 4 04 2011
Page 100: BP219 class 4 04 2011
Page 101: BP219 class 4 04 2011
Page 102: BP219 class 4 04 2011

A Typical X-ray diffraction pattern

~100 microns

Page 103: BP219 class 4 04 2011
Page 104: BP219 class 4 04 2011
Page 105: BP219 class 4 04 2011
Page 106: BP219 class 4 04 2011

l=2dhklsin(q)

Page 107: BP219 class 4 04 2011
Page 108: BP219 class 4 04 2011
Page 109: BP219 class 4 04 2011
Page 110: BP219 class 4 04 2011

What if ‘white radiation’? representationLaue picture.

Page 111: BP219 class 4 04 2011

Compute a Transform of a series of parallel lines

Page 112: BP219 class 4 04 2011
Page 113: BP219 class 4 04 2011

Adding up the scattering of Atoms:‘interference’ of waves

2pr.S

s0sss

s0

s1 S

radius = 1/l

I(S)= F(S).F(S)*

F(S)

Page 114: BP219 class 4 04 2011

2pr1.S

f1=6 electrons

f7=8 electrons

2pr7.S

F(S)

Sum of 7 atoms scattering

Result is a wave of amplitude F(S)phase f(s)

Page 115: BP219 class 4 04 2011

2pr1.S

f1=6 electrons

f7=8 electrons

2pr7.S

F(S)

Sum of 7 atoms scattering

Result is a wave of amplitude F(S)phase F(S)

cos(q)

sin(q)

e(iq) = cos(q) + i sin(q)

i = √(-1)

Page 116: BP219 class 4 04 2011

2pr1.S

f1=6 electrons

f7=8 electrons

2pr7.S

F(S)

Sum of 7 atoms scattering

Result is a wave of amplitude |F(S)|phase F(S)

cos(q)

sin(q)

e(iq) = cos(q) + i sin(q)

i = √(-1)

F(S) = f1 e(2pir1.S) + f2 e(2pir2.S) +….

Page 117: BP219 class 4 04 2011

2pr1.S

f1=6 electrons

f7=8 electrons

2pr7.S

F(S)

Sum of 7 atoms scattering

Result is a wave of amplitude |F(S)|phase F(S)

cos(q)

sin(q)

e(iq) = cos(q) + i sin(q)

i = √(-1)

F(S) = Sj fj e(2pirj.S)

Page 118: BP219 class 4 04 2011

2pr1.S

f1=6 electrons

f7=8 electrons

2pr7.S

F(S)

Sum of 7 atoms scattering

Page 119: BP219 class 4 04 2011

2pr1.S

f1=6 electrons

f7=8 electrons

2pr7.S

F(S)

Page 120: BP219 class 4 04 2011

F(S) = Sj fj e(2pirj.S)

e(iq) = cos(q) + i sin(q)

Page 121: BP219 class 4 04 2011

The Process is re-iterative, and should converge-but only so far!

Intensities I(h,k,l) Electron density r(x,y,z)

Phases f(h,k,l)

Atom positions (x,y,z)

Known:Amino acid sequenceLigandsBond lengths anglesConstraints on geometry

Crystal

Experimentalheavy atom labelsselenium for sulfurTrial & error similar structure

Page 122: BP219 class 4 04 2011

F(S) = Sj fj e(2pirj.S)

Scattering pattern is the Fourier transform of the structure

Structure is the ‘inverse’Fourier transform of the Scattering pattern

r(r) = S F(S) e(-2pir.S)

Page 123: BP219 class 4 04 2011
Page 124: BP219 class 4 04 2011
Page 125: BP219 class 4 04 2011
Page 126: BP219 class 4 04 2011
Page 127: BP219 class 4 04 2011
Page 128: BP219 class 4 04 2011
Page 129: BP219 class 4 04 2011
Page 130: BP219 class 4 04 2011

Rosalind Franklin and DNA

Page 131: BP219 class 4 04 2011
Page 132: BP219 class 4 04 2011
Page 133: BP219 class 4 04 2011
Page 134: BP219 class 4 04 2011
Page 135: BP219 class 4 04 2011
Page 136: BP219 class 4 04 2011

F(S) = Sj fj e(2pirj.S)

Scattering pattern is the Fourier transform of the structure

Structure is the ‘inverse’Fourier transform of the Scattering pattern

r(r) = S F(S) e(-2pir.S)

FT

FT-1

FT-1

FT

This is all there is? YES!!

a

b

1/a

1/b

Page 137: BP219 class 4 04 2011

F(S) = Sj fj e(2pirj.S)

Scattering pattern is the Fourier transform of the structure

Structure is the ‘inverse’Fourier transform of the Scattering pattern

r(r) = S F(S) e(-2pir.S)

FT

FT-1

FT-1

FT

But we observe |F(S)|2 and there are ‘Phases’

a

b

1/a

1/bWhere F(S) has phaseAnd amplitude

Page 138: BP219 class 4 04 2011

F(S) = Sj fj e(2pirj.S)

Scattering pattern is the Fourier transform of the structure

Structure is the ‘inverse’Fourier transform of the Scattering pattern

r(r) = S F(S) e(-2pir.S)

FT

FT-1

FT-1

FT

This is all there is?

a

b

1/a

1/bF(h,k,l) = Sj fj e(2pi (hx+ky+lz))

r(x,y,z) = S F(h,k,l) e(-2pir.S)

S

Sh=15, k=3,

Page 139: BP219 class 4 04 2011

Relative Information in Intensities versus phases

r(r) = S F(S) e(-2pir.S)

r(r) duck r(r) cat

F(S) = Sj fj e(2pirj.S)F(S) duck |F(S)|

f(s)

F(S) cat

|F(S)|duck

f(s) cat

Looks like a …..

Page 140: BP219 class 4 04 2011

Relative Information in Intensities versus phases

r(r) = S F(S) e(-2pir.S)

r(r) duck r(r) cat

F(S) = Sj fj e(2pirj.S)F(S) duck |F(S)|

f(s)

F(S) cat

|F(S)|duck

f(s) cat

Looks like a CATPHASES DOMINATE:-Incorrect phases = incorrect structure-incorrect model = incorrect structure-incorrect assumption = incorrect structure

Page 141: BP219 class 4 04 2011

The Process is re-iterative, and should converge-but only so far!

Intensities I(h,k,l) Electron density r(x,y,z)

Phases f(h,k,l)

Atom positions (x,y,z)

Known:Amino acid sequenceLigandsBond lengths anglesConstraints on geometry

Crystal

Experimentalheavy atom labelsselenium for sulfurTrial & error similar structure

Page 142: BP219 class 4 04 2011

Consequences of being a crystal?• Repetition = sampling of F(S)

34Å

Page 143: BP219 class 4 04 2011

Consequences of being a crystal?• Repetition = sampling of F(S)

34Å 1/34Å-1

Page 144: BP219 class 4 04 2011

Consequences of being a crystal?• Sampling DNA = repeating of F(S)

34Å 1/34Å-1

3.4Å 1/3.4Å-1

Page 145: BP219 class 4 04 2011

Object repeated 1/l2/l

Page 146: BP219 class 4 04 2011
Page 147: BP219 class 4 04 2011

Object ScatteringBuild a crystal

Page 148: BP219 class 4 04 2011

Early Definitions:

Page 149: BP219 class 4 04 2011
Page 150: BP219 class 4 04 2011
Page 151: BP219 class 4 04 2011
Page 152: BP219 class 4 04 2011

a.s=h

b.s=k

Page 153: BP219 class 4 04 2011

hkl=(11,5,0)

Measure I(hkl)F(hkl)= √I(hkl)Determine f(s) = f(hkl)

Calculate electron density map

Page 154: BP219 class 4 04 2011
Page 155: BP219 class 4 04 2011

The density map is made up of interfering density waves through the entire unit cell…

Page 156: BP219 class 4 04 2011

Measure I(hkl)

Page 157: BP219 class 4 04 2011

The Process is re-iterative, and should converge-but only so far!

Intensities I(h,k,l) Electron density r(x,y,z)

Phases f(h,k,l)

Atom positions (x,y,z)

Known:Amino acid sequenceLigandsBond lengths anglesConstraints on geometry

Crystal

Experimentalheavy atom labelsselenium for sulfurTrial & error similar structure

Page 158: BP219 class 4 04 2011
Page 159: BP219 class 4 04 2011
Page 160: BP219 class 4 04 2011
Page 161: BP219 class 4 04 2011
Page 162: BP219 class 4 04 2011
Page 163: BP219 class 4 04 2011

Anomalous diffraction

Page 164: BP219 class 4 04 2011
Page 165: BP219 class 4 04 2011
Page 166: BP219 class 4 04 2011
Page 167: BP219 class 4 04 2011
Page 168: BP219 class 4 04 2011
Page 169: BP219 class 4 04 2011

Recommended