+ All Categories
Home > Documents > Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Date post: 18-Dec-2015
Category:
Upload: bertha-simon
View: 217 times
Download: 0 times
Share this document with a friend
Popular Tags:
33
Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC
Transcript
Page 1: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Brachistochrone Under Air Resistance

Christine Lind

2/26/05

SPCVC

Page 2: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Source of Information:

Page 3: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Collaborator:

Page 4: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Brachistochrone Setup:

• Initial PointP(x0,y0)

• Final PointQ(x1,y1)

• Resistance ForceFr

• Slope Angle

Page 5: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Geometric Constraints

• Parametric Approach:– Start by using arclength

(s) as the parameter

• Parametrized by arclength:

(curves parametrized by arclength have unit speed)

x'(s) − cos(ϕ (s)) = 0

y'(s) − sin(ϕ (s)) = 0

Page 6: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Energy Constraint?

• Normally we use conservation of energy to solve for velocity in terms of the other variables

• We have a Non-Conservative system, so what do we do?

Page 7: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Energy Constraint?

• Energy is lost to work done by the resistance force:

ΔE = ΔW

ΔT + ΔU = ΔW

Page 8: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Energy Constraint

• Non-conservative system:

• Constraint parametrized by time:

• Constraint parametrized by arclength:

dT

dt+

dU

dt=

dW

dt

T(t) = 12 mv 2

U(t) = −mgy

W (t) = Frvdτ0

t

dv

dt− gsinϕ + R(v) = 0

vv'−gsinϕ + R(v) = 0€

d

dt= v

d

ds

⎝ ⎜

⎠ ⎟

Page 9: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Problem Formulation:

• Boundary & Initial Conditions:

• Minimize the time integral:

• Other constraints:How do we incorporate them?

x(0) = x0, y(0) = y0, v(0) = v0

x(l) = x1, y(l) = y1,

T =ds

v0

l

x'−cosϕ = 0

y'−sinϕ = 0

vv'−gsinϕ + R(v) = 0

Page 10: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Lagrange Multipliers

• Introduce multipliers, vector:

• Create modified functional:

where

G(s,q,q') =1

v+ κ (x '−cosϕ ) + λ (y'−sinϕ ) + μ(vv'−gsinϕ + R(v))

κ(s), λ (s), μ(s)

q(s) = (v, x,y,ϕ ,κ ,λ ,μ)

F[q, l] = G(s,q,q')ds0

l

Page 11: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Euler-Lagrange Equations

• System of E-L equations:

• Additional boundary conditions:

F[q, l] = G(s,q,q')ds0

l

∂G

∂q−

d

ds

∂G

∂q'

⎝ ⎜

⎠ ⎟= 0

−∂G

∂q's= 0

δq0 +∂G

∂q's= l

δq1 + G − q'∂G

∂q'

⎝ ⎜

⎠ ⎟s= l

δl = 0

Page 12: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

7 Euler-Lagrange Equations:

1

v 2− μ v'+

dR

dv

⎝ ⎜

⎠ ⎟+ μv( )'= 0

κ sinϕ − λ cosϕ − gμ cosϕ = 0

κ '= 0

λ '= 0

x'−cosϕ = 0

y'−sinϕ = 0

vv'−gsinϕ + R(v) = 0

Note:

κ(s) = C1

λ (s) = C2

Note:Additional Constraints Appear as E-L equations!

Page 13: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Natural Boundary Conditions:

Note:v1 is not necessarily zero, so:

1

v1

−κ1 cosϕ1 − λ1 sinϕ1 + μ1 −gsinϕ1 + R(v1)( ) = 0

μ1v1 = 0

μ1 = μ(l) = 0

Page 14: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Lagrange Multipliers - Solved!

• Using:

• Determine the Lagrange Multipliers:

κ sinϕ − λ cosϕ − gμ cosϕ = 0s= l

1

v1

−κ1 cosϕ1 − λ1 sinϕ1 + μ1 −gsinϕ1 + R(v1)( ) = 0

κ(s) =cosϕ1

v1

, λ (s) =sinϕ1

v1

,

μ(s) =sin(ϕ −ϕ1)

gv1 cosϕ

Note:κ(s),(s) constants

μ(s)=μ((s))

Page 15: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

First Integral

• Recall:

No explicit s-dependence!

• First Integral:€

G(s,q,q') =1

v+ κ (x '−cosϕ ) + λ (y'−sinϕ ) + μ(vv'−gsinϕ + R(v))

G(q,q') − q'∂G

∂q'= const.

1

v−κ cosϕ − λ sinϕ + μ(−gsinϕ + R(v)) = const.€

κ(s) =cosϕ1

v1

, λ (s) =sinϕ1

v1

,

μ(s) =sin(ϕ −ϕ1)

gv1 cosϕ

Page 16: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Parametrize by Slope Angle

κ(s) =cosϕ1

v1

, λ (s) =sinϕ1

v1

,

μ(s) =sin(ϕ −ϕ1)

gv1 cosϕ

Page 17: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Parametrize by Slope Angle

• Define f() to be the inverse function of (s):

• f() continuously differentiable, monotonic

• Now we minimize:€

s = f (ϕ ), f (ϕ 0) = 0

T =˙ f dϕ

vϕ 0

ϕ 1∫

ds = ˙ f dϕ( )

Still need constraints...

Page 18: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Modified Functional

• Transform modified problem in terms of :

H(ϕ ,p, ˙ p ) =˙ f

v+ κ ( ˙ x − ˙ f cosϕ ) + λ ( ˙ y − ˙ f sinϕ ) + μ(v ˙ v − ˙ f gsinϕ + ˙ f R(v))

p(ϕ ) = (v,s = f (ϕ ),x, y,κ ,λ ,μ)

L[p,ϕ 0,ϕ1] = H(ϕ ,p, ˙ p )dϕϕ 0

ϕ 1∫

x(ϕ 0) = x0, y(ϕ 0) = y0,

x(ϕ1) = x1, y(ϕ1) = y1,

v(ϕ 0) = v0, f (ϕ 0) = 0

G(s,q,q') =1

v+ κ (x'−cosϕ ) + λ (y '−sinϕ ) + μ(vv'−gsinϕ + R(v))

⎝ ⎜

⎠ ⎟

Page 19: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

7 Euler-Lagrange Equations

˙ f

v 2− μ ˙ v + ˙ f

dR

dv

⎝ ⎜

⎠ ⎟+

d μv( )dϕ

= 0

d

1

v−κ cosϕ − λ sinϕ + μ(−gsinϕ + R(v))

⎝ ⎜

⎠ ⎟= 0

˙ κ = 0˙ λ = 0

˙ x − ˙ f cosϕ = 0

˙ y − ˙ f sinϕ = 0

v ˙ v − ˙ f gsinϕ + ˙ f R(v) = 0

1

v 2− μ v'+

dR

dv

⎝ ⎜

⎠ ⎟+ μv( )'= 0

κ sinϕ − λ cosϕ − gμ cosϕ = 0

κ '= 0

λ '= 0

x'−cosϕ = 0

y'−sinϕ = 0

vv'−gsinϕ + R(v) = 0

(Old Equations)

First Integral!

Page 20: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Same Natural B.C.’s & Lagrange Multipliers

1

v1

−κ1 cosϕ1 − λ1 sinϕ1 + μ1 −gsinϕ1 + R(v1)( ) = 0

μ1v1 = 0

κ(ϕ ) =cosϕ1

v1

, λ (ϕ ) =sinϕ1

v1

,

μ(ϕ ) =sin(ϕ −ϕ1)

gv1 cosϕ

Page 21: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Solve for v()

• Using Lagrange Multipliers and First Integral:

• Obtain:

d

1

v−κ cosϕ − λ sinϕ + μ(−gsinϕ + R(v))

⎝ ⎜

⎠ ⎟= 0

1

v−

cosϕ1

v1 cosϕ+

sin(ϕ −ϕ1)

gv1 cosϕR(v) = 0

Page 22: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Solve for Initial Angle 0

• Evaluate at 0:

• Obtain Implicit Equation for

initial slope angle:€

1

v−

cosϕ1

v1 cosϕ+

sin(ϕ −ϕ1)

gv1 cosϕR(v) = 0

cosϕ 0 −v0

v1

+ v0R(v0)sin(ϕ 0 −ϕ1)

gv1

= 0

Page 23: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Solving for f()

• Rearrange E-L equation:

• Obtain ODE:

( Recall that we already have v(), 0, & initial condition f(0) = 0 )

˙ f

v 2− μ ˙ v + ˙ f

dR

dv

⎝ ⎜

⎠ ⎟+

d μv( )dϕ

= 0

˙ f (ϕ ) =μv 3

μv 2 dR

dv−1

Page 24: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Solving for x() and y()

• Integrate the E-L equations

• Obtain

˙ x − ˙ f cosϕ = 0

˙ y − ˙ f sinϕ = 0

x(ϕ ) = x0 + ˙ f (ϑ )cosϑ dϑϕ 0

ϕ

y(ϕ ) = y0 + ˙ f (ϑ )sinϑ dϑϕ 0

ϕ

Page 25: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Seems like we are done...

• What about parameters 1 & v1?

Appear everywhereeverywhere, due to:

• How can we solve for them?€

κ(ϕ ) =cosϕ1

v1

, λ (ϕ ) =sinϕ1

v1

, μ(ϕ ) =sin(ϕ −ϕ1)

gv1 cosϕ

Page 26: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Newton’s Method...

• Use the equations for x() and y() and the corresponding boundary conditions:

• Now we really are done!

M(ϕ1,v1) = x0 + ˙ f (ϑ ,ϕ1,v1)cosϑ dϑϕ 0

ϕ 1∫ − x1 = 0

N(ϕ1,v1) = y0 + ˙ f (ϑ ,ϕ1,v1)sinϑ dϑϕ 0

ϕ

∫ − y1 = 0

Page 27: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Example: Air Resistance

Page 28: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Example: Air Resistance

• Take R(v) = k v(k - coefficient

of viscous friction)– Newtonian fluid– first order approx. for air resistance

• Let x0 = 0, y0 = 0, v0 = 0,

cosϕ 0 −v0

v1

+ v0R(v0)sin(ϕ 0 −ϕ1)

gv1

= 0

cosϕ 0 −v0

v1

+ kv02 sin(ϕ 0 −ϕ1)

gv1

= 0 0 = /2

Page 29: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Solve for v()

1

v−

cosϕ1

v1 cosϕ+

sin(ϕ −ϕ1)

gv1 cosϕR(v) = 0

1−cosϕ1

v1 cosϕv +

sin(ϕ −ϕ1)

gv1 cosϕkv 2 = 0

v =g

2k

cosϕ1

sin(ϕ −ϕ1)1− 1− 4

kv1

g

sin(ϕ −ϕ1)cosϕ

cos2 ϕ1

⎝ ⎜

⎠ ⎟

Quadratic Formula:

( take the negative root to satisfy v(0) = 0 )

Page 30: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Many Calculations...

Page 31: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Results:

(Straight Line)

(Cycloid)

Page 32: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Conclusions

• Different approach to the Brachistochrone – parametrization by the slope angle – use of Lagrange Multipliers

• Gained:– analytical solution for non-conservative

velocity-dependent frictional force

• Lost ( due to definition s = f() ):– ability to descibe free-fall and cyclic motion

Page 33: Brachistochrone Under Air Resistance Christine Lind 2/26/05 SPCVC.

Questions ?


Recommended