+ All Categories
Home > Documents > Bridge Chap2 PDF

Bridge Chap2 PDF

Date post: 07-Jul-2018
Category:
Upload: benedictus-yosia
View: 220 times
Download: 0 times
Share this document with a friend

of 53

Transcript
  • 8/18/2019 Bridge Chap2 PDF

    1/53

     

    3

    CHAPTER 2

    Bridge Engineering Concept 

    2.1 INTRODUCTION

    In the early development of highways there were very few of structures built

    for crossing the roads. Basically, the roads were built to follow the contour of the

    ground. In the design of the road, no visibility in vertical and horizontal direction was

    considered. When the roads encounter the water, the bridge was constructed. At the

    end of the bridges, the level of the road was raised. Since there were no heavy

    equipment to carry the components of the bridges, the bridges were light and The

     bridges were narrow so that they can be handled by man-power.

    The early steel bridge was designed for short span (about 10 m). The type of

    the bridges was truss bridge. The truss members were made of steel angles and plates

    and they are connected with rivet. The rived angles and the plates were used to support

    the floor beams. Often time timber stringers were used for floors.

    Since the advancement of construction techniques and the availability of

    heavy equipment and also the need of wider and stronger bridges to carry heavy loads,

    the bridge engineers started to develop different type of bridges. From the short span

     bridges until the long span of bridges. The steel, concrete and prestressed concrete

     bridges are the most popular types of bridges. In this note, we will discuss the loads

    and the steel bridges.

  • 8/18/2019 Bridge Chap2 PDF

    2/53

      . . Bridges Engineering R. Soegiarso4.

    2.2 BRIDGE COMPOSITION AND TERMS

    Broadly speaking, we can divide the bridges into three parts. The first part isthe super-structure. This part directly supports the loads that come from the

    automobiles, trains, pedestrian and the weight of the structure included the pavement.

    The second part is the sub-structure. The sub-structure supports the supper structure

    and transfers the loads to the ground. The sub-structure can be abutments, piers,

    columns and the foundation. The third part is the bearings. The super-structure and the

    sub-structure are connected with the bearings. The bearing is a small part of the bridge

    structure. However, it may cause a big problem if the bearing does not function

     properly particularly after a certain period of time. Schematically, the longitudinal

    section of the bridge is shown in Figure 2.1.

    Several components of super-structure are as follows:

    •   Bridge floor . The bridge floor can be made of concrete floor, metal deck

    floor or timer floor. This floor directly supports the wheel load of the

    automobiles, own weight of the floor slab and the finishing such as,

     pavement.

    • 

    The beam system. The beam system can be made of cross beams and

    longitudinal beams. The function of the beam system is to transmit the

    loads from the floor to the main structure system. The steel plate girder,

     box girder, truss structure can considered as the main girder.

    • 

    Cross beams and cross-frames. The cross-beams are constructed to prevent the bending in horizontal direction due to horizontal loads such as

    wind or earthquake loads.

    • 

    Support bearings. The support bearings are installed at the contact points

    from the super-structure to the sub-structure and used to transmit the loads

    from the super-structure to the sub-structure.

    Several components of the sub-structure are as follows:

    • 

     Abutments or piers. The abutments and piers are used to transmit to the

    loads from the supper structure to the foundations. For multi-span bridges,

    the abutments are constructed at the two ends of the bridges and the piers

    are constructed between the two ends. The abutments are also used to

    support the lateral loads from the soil.

  • 8/18/2019 Bridge Chap2 PDF

    3/53

      5

    Clearance

    spaneffective 

    spanstructuresub -

     pilesdriven 

     bearing

    length

    spaneffective 

    AbutmentPier 

    structuresuper

    Caison

     pilesBored  

    Figure 2.1: The general cross section

    •  Foundation. The foundations are used to transmit the loads from the

    abutments or piers to the ground. Several types of foundation are

    commonly used such as, driven piles, bored piles, caisson etc. The choice

    of the type of foundation depends on the soil investigation and the

    topography of the area.

    Several types of bearings are as follows:

    • 

    Fixed bearings. These bearings are used to transmit the horizontal loads

    from the super-structure such as wind loads, earthquake loads, impact

    loads etc.

    •   Movable bearings. The movable bearings are used to accommodate the

     possible deformation of the structure such as temperature, shrinkage,

    creep, the movement of the foundation etc.

    2.3 CLASSIFICATION OF BRIDGES

    In the early the development of highways there are a few of crossings are

    required to connect between two separate locations. However, since the availability of

    heavy equipments and high strength materials several types of bridges were designed

    to face the challenge to the need for wider and longer bridges. These days not only the

    design but also the construction will play an important role in the decision to choose

  • 8/18/2019 Bridge Chap2 PDF

    4/53

      . . Bridges Engineering R. Soegiarso6.

    the type of bridges that suitable to a certain condition. Based on several different

    criterias, we can make classification of bridges.

    2.3.1 CLASSIFICATION OF BRIDGES BASED ON THE MATERIAL

    Based on the material used in the super structure the bridges can be classified

    as follows:

    • 

    Wooden bridges. The wooden bridge is constructed for short span and

    light loads.

    • 

    Stone bridges. The stone-bridge is also constructed for short span and

    usually it is constructed with consideration the aesthetic.

    • 

    Steel bridges. The steel bridges are popular in the remote area where thematerial is difficult. It is suitable for short to medium span. The

    advantageous of steel bridge for short span are easy to construct and the

    quality can be controlled easily.

    •  Concrete bridges. The concrete bridges are the most popular for

    interchanges. The advantageous of concrete bridges are cheaper

     particularly for short span and the shape is more flexible than the steel

     bridges. However, the dead load of concrete bridges is heavier than the

    steel bridges.

    •  Composite steel bridges. In the composite steel bridge, the concrete slab is

    an integral part of the superstructure beams. This type of bridge is popularsince the availability of high strength shear connectors to resist the

    horizontal shear between the concrete deck and the steel.

    •   Aluminum bridges. These type bridges are not popular and very seldom

    used in the design.

    2.3.2 CLASSIFICATION OF BRIDGES BASED ON THE SHAPE

    The bridges based on the shape can be classified as follows:

    •  Girder bridges. Broadly, these bridges can be classified into concrete

    girder bridges and steel girder bridges (plate girder bridges). Most of the

    girder bridges are short span bridges. The advantageous of plate girder

     bridges and prestressed I girder bridges that they can be fabricated in the

  • 8/18/2019 Bridge Chap2 PDF

    5/53

      7

    shops. This type of bridges is commonly used in the highway

    intersections.

    • 

    Truss bridges. When the longer span is required, the truss bridges become

    the option. The truss bridges more economically for the medium span

    however, it is difficult to give a good shape to truss bridges. In Indonesia

     particularly, the truss bridges are used to cross small rivers.

    •  Arch bridges. This type of bridge is occasionally used in the construction.

    It has a good shape but the construction is more difficult than the truss or

    girder bridges.

    •  Rigid frame bridges

    •  Cable stayed bridges

    •  Suspension bridges

    The basic concept of the bridge design is to lay the support system (main girders)

     parallel to the road alignment and support the vertical loads. The girder, truss and rigid

    frame bridges are popular in Indonesia. One cable stayed bridges constructed in Batam

    which is part of Barelang project.

    2.4 SURVEYS AND STUDIES

    There are many parameters involved before we make the decision of

    constructing a bridge. Several surveys and studies have to be conducted to support our

    decision. Broadly speaking there are three parameters have to be studied before thedecision is made. The first parameter is called the  feasibility study. In this parameter

    we evaluate the advantageous and disadvantageous of constructing the bridges. In this

    study we will determine whether this bridge is worthwhile to be constructed unless we

    have no option. The second parameter, is the design. In the design, we will study the

    types of bridges that can support the feasibility studies. The third parameter is the

    construction. This is one of the most important aspects in the design of a bridge. For

    instance, we design a bridge across a deep valley where there is no possibility of

    constructing the middle support, the method of construction becomes a dominant

     parameter in making the decision. Eventhough in this studies several different

    disciplines are involved, but they have to work together as a team and the results

    related each other. When the decision has been made that we are planing to construct

    the bridge the next step is to conduct a survey. In order to give a guidance in the

    survey, several surveys that can be considered are tabulated in Table (2.1)

  • 8/18/2019 Bridge Chap2 PDF

    6/53

      . . Bridges Engineering R. Soegiarso8.

    Table 2.1 Types of surveys

    TYPE OF SURVEY CONTENT OF SURVEY PURPOSE OF SURVEY

    1.  Topographical

    survey

    Drawing up topographical map Selection of bridge position,

    length and spacing.

    2.  Geological survey Collection of geological and soil

    history data.

    Drawing up geological map and

     physical properties

    Same as the above.

    Selection of position and

    Structural plan of substructure

    work.

    3. 

    Intersecting roadsetc.

    Condition and future plans forwidth, altitude, clearance limit,

    structure crossing, longitudinal

    grade etc. of intersecting roads

    and railways.

    Underground installations.

    Selection of bridge length,span spacing, clearance,

    construction method.

    4.  Rivers survey Rivers cross section.

    Volume and speed of flow.

    High and low water level and

    river gradient.

     Navigating vessels.

    Selection of span spacing.

    Clearance, pier forms,

    foundation, sunken depth of

     pier.

    Determination of overflow

    and prevention section.

    Determination of construction

    method

    Determination of impact load.

    5.  Survey of sea,

    lakes and

    marches.

    Tidal level, wave height, tide.

     Navigating vessels.

    Selection of estimated high-

    water level.

    Selection of water pressure,

    construction period and

    method.Determination of span

    spacing, height under girder,

    impact load.

  • 8/18/2019 Bridge Chap2 PDF

    7/53

      9

    TYPE OF SURVEY  CONTENT OF SURVEY  PURPOSE OF SURVEY 

    6.  Soil survey. Boring.

    Standard penetration test.

    Soil test.

    Test pit.

    Plate bearing test.

    Pressiometer test

    Measurement of ground water

    level.

    Selection bearing strata for

    use in substructure design.

    Determination of allowable

     bearing capacity.

    Determination of unit weight

    of soil, internal friction angle

    and viscosity.

    Determination of quantity of

    settlement due to consoli-

    dation.

    Selection of constructionmethod.

    7.  Seismological

    survey

    Records of earthquakes and

    earthquake damages.

    Measurement of ground

    microtremor.

    Confirmation of bedrock.

    Determination of design seis-

    mic design coefficient.

    8.  Meteorological

    survey

    Survey of meteorological

    observation records (wind

    velocity, temperature, snow and

    climate)

    Determination of temperature

    variation, wind load and snow

    load.

    Selection of protective

    covering, materials, construc-

    tion period and method.

    9.  Survey of

    additions to

     bridge.

    Underground installation at

     bridge position.

    Plans for construction of

    waterpipes, sewers, electricity

    and telegraph wires.

    Determination of measure-

    ment and weight of addition.

    10. 

    Corrosion. Extent of corrosion of existing

    structures.

    Organic matter, PH.

    Exposure test for paints.

    Selection of material to be

    used.

    Determination of rust preven-

    tion methods.

  • 8/18/2019 Bridge Chap2 PDF

    8/53

      . . Bridges Engineering R. Soegiarso10.

    TYPE OF SURVEY  CONTENT OF SURVEY  PURPOSE OF SURVEY 

    11. 

    Materials survey. Aggregate and water (quality and

    quantity) for concrete.

    Selection and calculation of

    materials.

    12. Construction. Situation of material transporta-

    tion routes.

    Determination of maximum

    transportation load.

    Road plans for construction

    works.

    (JICA, 1977). The purpose of this survey is to give more detail information for

    selection the type of the bridge. However, not all surveys have to be conducted but itdepends on the scale of the bridges.

    2.5 SELECTION THE BRIDGE TYPE (SUPER-STRUCTURE)

    Besides the information from the survey, several considerations in selecting

    the type of the supper-structure of the bridge can be listed as follows:

    a)  The span length. The large portion of the forces in the design of long span

     bridges comes from the weight of the structure itself. Usually, the weight

    of the concrete structure is much heavier than the steel structure.

     b) 

    The purpose of constructing the bridge. For instance, the type of the

     bridge over the road (intersection) might be totally different with the type

    of the bridge over the river or deep valley eventhough the span of the

     bridge is the same.

    c)  The soil condition. When it is difficult to find a good bearing strata, we

    might consider the light bridge.

    d)  The layout and the alignment of the bridge. When the layout makes an

    angle (skewed bridge) or the curve bridge, special attention should be

    given in the design.

    e) 

    The availability of the material. In some areas crush stone is not available

    or it is difficult to deliver good quality of concrete, the steel structure may

     become a good option.

  • 8/18/2019 Bridge Chap2 PDF

    9/53

      11

    2.6 SELECTION SUB-STRUCTURE

    The sub-structure can be divided into two parts. The first part is the structureto the resist directly the loads from the upper structure such as abutments or piers.

    Several considerations in the selection of this part:

    •  The location of the substructure. Mostly, the reinforced concrete structure

    is used to support the super-structure. Unless for some reasons such as

    concreting is not possible, the steel structure will be used.

    •  Within the rivers, the flow of the water during the normal seasons and the

    flood. During flood, the direction of the flow of water might be different

    from the normal flow. For normal flow of water the oval might be a good

    shape. However, where there is a potential flood and the direction of the

    flow of water is uncertain, the circular might be a good shape.

    •  The connections between the piers and foundation. It depends on the

    connection of the super-structure and the first part of the substructure. The

    stability of the piers has to be considered.

    The second part of the sub-structure is foundation. The foundation is part of the

    structure below the ground. The function of the foundation mainly is to transmit the

    loads from the substructure to the foundation. Basically, the considerations in making

    the selection of the foundation are based on the bearing stratum. The types of

    foundation can be listed as follows:

    •  The bearing stratum within 5 m from the ground. When the bearing

    stratum is near the surface the direct foundation can be considered.

    •  The bearing stratum between 5 – 20 m from the ground, the concrete piles

    can be used.

    •  The bearing stratum over 30 m, the steel piles or the bored piles can be

    used.

    2.7 COMPOSITE GIRDER BRIDGE

    The composite girder bridges can be constructed between prestressed concrete

    girder and reinforced concrete slab or between steel girder and reinforced concrete

    slab. When the composite construction between steel beam and concrete slab is

    considered, creep factor should be considered. In designing the composite beams, there

    are four types of loadings have to be considered.

  • 8/18/2019 Bridge Chap2 PDF

    10/53

      . . Bridges Engineering R. Soegiarso12.

    a)  The first type is called long-term loading. Basically the dead load is considered as

    long-term loading. When the dead load is working on the steel section, the creep

    of the concrete is not considered. However, when the dead load is working on the

    composite section such as pavement, curbs and railings the creep of the concrete

    has to be considered.

     b)  The second type is called short-term loading. The live load is considered as short-

    term loading. There is no need to consider creep of slab due to live load.

    c) 

    The third type is impact loading. The span contributes to this load and basically

    the impact load is considered for live load.

    d)  The third type is called temporary loading. Earthquake load and wind load are the

    temporary loads.

    It is important to note that the composite girder is designed based on the assumptionthat the slab and the girder act monolithically. There is no sliding between the steel

    and concrete. In the actual construction, there is a stress in concrete after concrete is

    setting. This phenomenon has to be considered in the design. Finally, the temperature

    difference between the steel and the concrete also contributes to the additional stresses

    in the composite section. The stress computation due to the above loads will be

    discussed in the examples.

    2.7.1 LOADS

    The composite girders are designed to resist the loads imposed on the girders

    and transfer those loads to the substructure. Based on the sequence of construction, the

    loads imposed on the composite girders can be categorized into two categories. The

    first category is the loads during construction. Mostly, these loads are acting on the

    steel section where the composite action has not been developed. The second category

    is the load after construction. These loads are acting after the composite action has

     been developed. Based on the duration, the loads can be divided into two categories.

    The first category is called permanent loads. The gravity loads are considered as

     permanent loads. The second category is called temporary loads. The wind and

    earthquake loads are considered as temporary loads. When the creep is considered, the

    loads can be divided into two types. The first type is called long-term loading. The

    dead loads are considered as long-term loading. The second type is short time loading.

    The live loads can be considered as short-time loading. The detail of this load will be

    discussed in the examples. Besides these loads, there are many other loads that may

  • 8/18/2019 Bridge Chap2 PDF

    11/53

      13

    occur on the structure as shown in Kapsel (Soegiarso, 1999). In this class we will

    study the composite girders due to dead and live loads.

    a)  Dead Loads

    Several examples of the dead load in composite girders are as follows:

    •  The dead load due to the concrete floor or steel floor.

    •  The dead load due to the weight of the structure such as girders, bracings,

    truss structure, gusset plates etc.

    •  The loads due to the wearing surface such as, pavement, handrails and

    curbs.

    •  Other loads that may added due to the circumstances such as the electric

     poles, catwalk etc.

    •  The loads during construction such as construction equipment.

    b) 

    Live loads

    •  The loads due to moving vehicles (automobiles, carts, trains). The

    magnitude and the distribution of these loads should conform to the

    specifications for highway bridges.

    •  The loads due to pedestrian.

    c)  Impact coefficient

    Since the live loads are the fast moving vehicles, a certain impact allowance due to

    live loads has to be considered. The structure elements that are affected to this impact

    allowance will discussed in the subsequent section.

    2.8 AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION

    OFFICIALS (AASHTO)

    2.8.1 Live loads 

    In designing the bridge components loads imposed on the structure have to be

    regulated in the codes. There are many codes that are available and each code isusually used in a particular country. In order to give a reference how the loads are

    imposed, in this section we will discuss the AASHTO loads.

  • 8/18/2019 Bridge Chap2 PDF

    12/53

      . . Bridges Engineering R. Soegiarso14.

    Basically in the design of the bridge, there are two types of loadings have to be

    considered. The first type is called truck loading and the second type is the lane

    loading. Which ever governs between these two loadings will dictate the design of the

     bridge. Based on the intensity of the loads, these two types of loadings (truck loading

    and lane loading) can be further divided into two types. The first type is called H-

    loadings and the second type is called HS-loadings. The HS loadings are heavier than

    the H loadings. Based on the truck axle loads, H loadings are divided into two classes

    i.e., H15-44 and H20-44. The affixing 44 indicates the year when the code was

    instituted which is in 1944. Similarly, HS loadings are divided into two classes i.e., the

    HS20-44 and HS15-44. Hence, there are four standard classes of loading: H15, H20,

    HS15 and HS20. The difference between H15 and H20 or HS 15 and HS 20 is the

    magnitude of the loads. The loading of H20 is 75 percent of HS20. The magnitude and

    the intensity of the lane loads are shown in Figure 2.2. The magnitude of truck loads

    for H20-44, H15-44 are shown in Figure 2.3 and the magnitude of truck loads for

    HS20-44 and HS15-44 are shown in Figure 2.4.

    For continuous span, in computing the maximum negative bending moment,

     besides the concentrated load shown in Figure 2.2, an additional concentrated load is

     provided. These two loads are placed as such to produce the maximum negative

     bending moment.

    In AASHTO specifications, the truck loading is assumed to occupy a width of

    10 feet ( ≈  3.0 m) and these loads shall be placed in a 10-foot wide design traffic lanesas shown in Figure 2.2.

    2.8.2 Impact coefficient

    In considering the impact allowance, the bridge structure is classified into two

    groups i.e., group A and group B. Only the structure in group A, the forces obtained

    from the live loads have to be multiplied with the impact coefficients. The impact

    allowances shall not be applied to the structure in group B. The following are the

    structures categorized in groups A and B.

    Structure in group A (AASHTO 3.8.1.1)

    (1) 

    Superstructure, including steel or concrete supporting columns, steel towers, legs 

    of rigid frames, and generally those portions of the structure that extend down to

    the main foundation.

    (2)  The portion above the ground line of concrete or steel piles that are rigidly

    connected to the superstructure as in rigid frame or continuous structure.

  • 8/18/2019 Bridge Chap2 PDF

    13/53

      15

    P

    load ed Concentrat

    shear for lbs000,26

    momentfor lbs000,18 *

     

    laneload of footlinear lbs640load Uniform

    Loading4420HS

    Loading4420H

    −)a

    P

    load ed Concentrat

    shear for lbs500,19

    momentfor lbs500,13 *

    laneload of footlinear lbs640load Uniform

    Loading4415HS

    Loading4415H

    −) b

     * For the loading of continuous span involving lane loading refer to Article 3.11.3

    which provides for an additional concentrated load.

    Figure 2.2: The lane loading

    Structure in Group B (AASHTO, 3.8.1.2)

    (1)  Abutments, retaining walls, piers, piles, except Group A(2)

    (2)  Foundation pressures and footings

    (3) 

    Timber structures.

    (4)  Sidewalk loads.

    (5)  Culverts and structures having 3 feet or more cover.

    3.8.2 Impact Formula

    3.8.2.1 The amount of the impact allowance or increment is expressed as a fraction of

    the live load stress, and shall be determined by the formula:

  • 8/18/2019 Bridge Chap2 PDF

    14/53

      . . Bridges Engineering R. Soegiarso16.

    125L

    50I

    +=  

    where I is impact fraction (maximum 30 percent) and L is length in feet of the portion

    of the span that is loaded to produce the maximum stress in the member.

    2.9 DESIGN EXAMPLE CONCRETE BRIDGES

    In these design examples, we focus our discussion on the concrete part of the

     bridges. The first is the design of the concrete slab. And the second is the design of the

    slab bridges. The continuous slab bridge is adopted in the second example where the

    influence lines have to be drawn in obtaining the maximum moments at particular

    cross section.

    2.9.1 Bridge slab

    In order to be familiar to those loads, let consider the following example. A

    multi-stringer composite steel bridge deck has the cross section shown in Figure 2.3.

    The slab is continuos over the stringers and half width of flanges is assumed to be 0.15

    m. The yield stress of the reinforcement is 24 MPa and the concrete strength is 30

    MPa. The deck is cast reinforced concrete slab. The reinforcement is perpendicular to

    the traffic. Design the bridge is based on Standard Specifications for Highway Bridges

    (AASHTO, 1983) and the specified loading of HS20-44. In the AASHTO 

    specifications, all formulas are based on US customary units. The future units in theUSA will be metric units.

    m40.2 m40.2 m40.2

    m90.0 m90.0m20.7

    surfacewearingm/kg150 2 m25.0

    h

    'm/kg50

     

    Figure 2.3: The cross section

  • 8/18/2019 Bridge Chap2 PDF

    15/53

      17

    Solution:

    a) 

    Compute the bending moment of the slab.

    In order to compute the maximum bending moment in the slab, we have to identify

    direction of the reinforcement with respect to the traffic. In AASHTO specification it

    is regulated in the following formulas:

    The maximum bending moment based on AASHTO specifications 3.24.3.1.

    Case A- Main reinforcement perpendicular to traffic (spans 2 to 24 feet inclusive)

    HS 20 loading:

    =  

        +

    20P32

    2s Moment in foot-pounds per foot-width of slab.

    HS 15 loading:

      

       +15P

    32

    2s Moment in foot-pounds per foot-width of slab.

    In slabs continuous over three or more supports, a continuity of 0.80 shall be applied

    to the above formulas for both positive and negative moment. In accurate results can

     be obtained from accurate analysis such as using finite element method.

    b) Compute impact coefficient

    ( )30.0

    125L

    50I   ≤+=  

    In order to use the formulas, the units have to be converted.

    c) The thickness of slab

    30

    10sd 

      +=  (Table 8.9.2)

    where s is the span length in feet according to section 8.8 (clear span plus the depth of

    the member).

  • 8/18/2019 Bridge Chap2 PDF

    16/53

      . . Bridges Engineering R. Soegiarso18.

    m40.2

    )L(spanlearc c

     

    Figure 2.4: Effective span of concrete slab

    d Ls c  +=  

    Let assume the span s = 7.5 feet.

    "96.6'58.030

    105.730

    10sd    ≈=+=+≥ . Let consider the thickness of the slab is 7.5”

    d)  The moment due to the dead load:

    Own weight = 150.0x12

    5.7  = 0.094 Ksf

    Weight of overlay (assumed) = 0.030 Ksf

    Total DL = 0.124 Ksf

    ft/Kft698.08

    5.7x124.0x80.0

    MM

    2

    DLDL   ===

      −+

     

    e)  Moment due to lane load

    Type of loading HS20-44, the wheel load 20P = 16 Kips (Article 3.24.3)

    The main reinforcement is perpendicular to the traffic (Article 3.24.3.1)

    ( )ft/Kft75.4ft/lbft750,4000,16x

    32

    25.7P

    32

    2sM 20   ==

    +=

    +=  

    The slab is continuous, the bending moment is multiplied by 0.8 for both positive nad

    negative moment (Article 3.24.3.1)

    ft/Kft8.375.4x80.0MM LLLL   ===  −+  (Non factored)

  • 8/18/2019 Bridge Chap2 PDF

    17/53

      19

    f)  Impact coefficient and moment (Article 3.8.2.1)

    Impact: 377.01255.7

    505.12s

    50I   =+=+=. The maximum impact fraction is 0.3.

    Impact moment:

    ft/Kft14.180.3x30.0MM II   ===  −+  

    Factored moment: AASHTO 3.22.1

    ( )[ ]ILD.MM LD   +β+βγ==  −+  (Article 3.22, Eq. (3.10))

    ( )[ ]

    ( )[ ] ft/Kft63.1114.18.367.1698.03.1 

    MM67.1M3.1MM ILD

    =++=

    ++==   −+ 

    Effective depth (d):

    The effective depth can be computed as follows (Figure 2.5):

    )clearance(c

    hd 

    2. d steel diaonDistributi

    1d entreinforcemMain

    )clearance(c

    hd 

    2. d steel diaonDistributi

    1d entreinforcemMain  

    a) Positive moment b) Negative moment

    Figure 2.5: Effective depth for positive moment

    Positive bending moment

    clearanced 5.0hd  1 −−=  

    Let assume the clearance is 1 in. and 1d   is"75.0 , then the effective depth becomes,

    ( ) "125.6175.05.05.7d  """ =−−=  

     Negative bending moment:

  • 8/18/2019 Bridge Chap2 PDF

    18/53

      . . Bridges Engineering R. Soegiarso20.

    For negative bending moment we may consider the wearing and particularly when

    snow is considered the clearance must be thicker than the area where snow is not

    considered. This is due to the salt that can penetrate at the negative moment area. If we

    consider the bridge on the snowy area then the effective depth becomes,

    wearingclearanced d 5.0hd  21   −−−−=  

    Let assume the clearance and the wearing is "5.2 , 1d   is"75.0  and 2d   is "5.0 , then

    the effective depth becomes,

    ( ) "125.45.25.075.05.05.7d  """" =−−−=  

    g)  Design reinforcement

    In order to make self assessment to the code, let review the following

    equations. From Figure 2.6 we obtain the following:

    h)  To compute   bρ  

    ys b'c f ATand  baf 85.0C   ==   (2.1)

     ba

    'cf 85.0 b

    d 2/ad   b−

     bC

    003.0c =ε

    T

    C

    yε cε

    sA

     

    Figure 2.6: Stress block diagram

    From equilibrium we obtain, bf 85.0

    f Aa

    'c

    ys

     b   =   (2.2)

     ba  is the balance depth equivalent rectangular stress block.

  • 8/18/2019 Bridge Chap2 PDF

    19/53

      21

     b1 b Ca   β=   (2.3)

    where from ACI/318R, Article 10.2.7.3 and AASHTO, Article 8.16.2.7,

    ≥=β

    ≥ 

      

        −−=β

    ≤=β

     psii8000f for 65.0

     ps4000f for 1000

    4000f 05.085.0

     psi4000f for 85.0

    'c1

    'c

    'c

    1

    'c1

      (2.4)

    Let assume  psi000,000,29E s  =  

    000,29/f E/f  yysyy   =ε→=ε   (2.5)

    From Figure 2.6 we obtain,

    C b

    yc

    c =ε+ε

    ε  (2.6)

    The maximum usable strain at extreme concrete compression fiber shall be assume

    equal to 0.003 (ACI/318R-95, Article10.2.4)

    Substitute Eq. (2.5) into Eq. (2.6) yields,

    ( )d f 700,8700,8

    Cf 700,8

    700,8

    C

    y b

    y

     b

    +=→+=   (2.7)

    ( )d f 700,8

    700,8a

    y

    1 b +β=   (2.8)

    From Figure (2.26), the equation for the balance failure is as follows:

    y bys b'c  bdf f A baf 85.0   ρ==   (2.9)

    ( ) by

    'c

     b ad f 

    f 85.0=ρ   (2.10)

    Substitute Eqs. (2.8) into Eq. (2.10) we obtain,

  • 8/18/2019 Bridge Chap2 PDF

    20/53

      . . Bridges Engineering R. Soegiarso22.

    ( )

     

     

     

     

    +

    β

     

     

     

     =ρ

    y

    1

    y

    'c

     b

    f 000,87

    000,87

    f 85.0  (2.11)

    The maximum and minimum reinforcement:

    −≤ρ=ρ

    −ρ=ρ

    )1.5.10Article,108R 318/ACI( f 

    200 and 

    f 3

    )3.3.10Article,108R 318/ACI(75.0

    y

    min

    y

    'c

    min

     bmax

      (2.12)

    i) To compute

    Let consider Figure 2.6, where  ba  is replaced by a.

    ( )2/ad Cor TM n   −=   (2.13)

    ( )    

      

     −=

     bf 85.02

    f Ad f AM

    'c

    ys

    ysn   (2.14)

    ρ=→=ρ  bd A bd 

    As

    s   (2.15)

    From Eqs. (2.14) and (2.15) yield,

    (   )    

      

        ρ−ρ=

     bf 85.02

     bdf d  bdf M '

    c

    yyn   (2.16)

    ( )  bf 85.02

    f d  bf  bd M

    'c

    22y

    22

    y2

    n

    ρ−ρ=   (2.17)

    0 bd 

    Mf 

    f 7.1

    2

    ny'

    c

    22y =+ρ−ρ

      (2.18)

    φ=→=φ ununM

    MMM   (2.19)

    Substitute Eq. (2.20) into Eq. (2.18) yields,

  • 8/18/2019 Bridge Chap2 PDF

    21/53

      23

    0 bd 

    Mf 

    f 7.1

    2

    uy'

    c

    22y =

    φ+ρ−

    ρ  (2.20)

    Let2

    uu

     bd 

    MR φ=   (2.21)

    'c

    2y

    u'c

    2y2

    yy

    f 7.1

    f 2

    R f 7.1

    f 4f f 

     

     

     

     −±

    =ρ  

      

       −−==ρ

    'c

    u

    y

    'c

    f 85.0R 211

    f f 85.0   (2.22)

     j) Reinforcement due to moment positive:

    "125.6d and ft/'K 63.11M   ==+  

    From Eq. (2.21),

    ( )( )

    ( )( )( )344.0

    125.6129.0

    1263.11R 

    2u  ==  

    Substitute uR   into Eq. (2.22) yields,

    ( ) ( )( )

    00602.05.485.0

    344.0211

    000,60

    500,485.0= 

      

     −−==ρ  

    From Eq. (2.11) we obtain,

    ( )( )03018.0

    000,60000,87

    000,87

    000,60

    500,4825.085.0 b   =+=ρ  

    ( ) 0226.003018.075.0max   ==ρ  

    OK 00602.0 max  →ρ〈=ρ  

    ( )( ) 2s in442.0125.61200602.0A   ==+  

  • 8/18/2019 Bridge Chap2 PDF

    22/53

      . . Bridges Engineering R. Soegiarso24.

    Moment negative:

    "

    125.4d and ft/'K 63.11M   ==+

     

    From Eq. (2.21),

    ( )( )

    ( )( )( )759.0

    125.4129.0

    1263.11R 

    2u  ==  

    Substitute uR   into Eq. (2.22) yields,

    ( ) ( )( ) max

    0142.05.485.0

    759.0211

    000,60

    500,485.0ρ〈=

     

      

     −−==ρ  

    ( )( ) 2s in705.0125.4120142.0A   ==−  

    k) Reinforcement due to moment negative

    The reinforcement should be able to carry 1.2 cr M  (AASHTO, Article 8.17.1)

    Where cr M  is the cracking moment.

    t

    gr 

    cr y

    If M   =  (AASHTO, Article 8.13.3)

    where r f    is the modulus of rupture , gI   is the moment of inertia of the concrete

    section about the centroidal axis, neglecting the reinforcement,t

    y   is the distance

    from the centroidal axis to the extreme fiber. (AASHTO, Article 8.15.2.1)

     psi503500,45.7f r    ==  (AASHTO, Article 8.15.2.1.1)

    ( )"K 58.56

    5.75.0

    12/)5.7x12(503M

    3

    cr    ==  

    ( ) "K  67.958.562.1M2.1 cr    ==  

    Check for bottom steel ( 2s in442.0A   =+ )

    ( ) ( )( )( )"

    'c

    ys 578.0125.485.0

    60442.0 bf 85.0

    f Aa   ===  

    ( )2/ad f AM ysn   −φ=φ  

  • 8/18/2019 Bridge Chap2 PDF

    23/53

      25

    ( )( )( ) cr '

    n MK 29.1392/578.0125.660442.09.0M   〉=−=φ  

    Check for top steel ( 2s in705.0A   =− )

    ( )( )

    ( )( )"

    'c

    ys922.0

    125.485.0

    60705.0

     bf 85.0

    f Aa   ===  

    ( )2/ad f AM ysn   −φ=φ  

    ( )( )( ) cr '

    n MK 49.1392/922.0125.460705.09.0M   〉=−=φ  

    l) Check Cracking

    For  psi000,40f y 〉  

    Ad f z cs=  (ACI/318R, Article 10.6.4)

    where,

    armlinternaisd ,dA

    MMMf 

    s

    ILDs   αα

    ++= , cd    is the distance from the centroid of the

    rebars to the outer surface of the slab and A is the area of concrete in tension zone.

    Positive bending moment:

    ( ) "375.1175.05.0d ""

    c   =+=  Let assume the bar spacing is "8 , the total area of concrete surrounding the bar is

    A = 1.375 x 2 x 8 = 2in0.22  

    Let assume 87.0d  =α  

    ( )( )( )

    72.284461.0125.687.0

    1214.18.3698.0f s   =

    ++=  Ksi

    ( ) ( )( ) Ksi14549.890.22375.172.28z 3 〈==  

     Negative bending moment:

    ( ) "375.35.25.075.05.0d  """ =++=  Let assume the bar spacing is "7 , the total area of concrete surrounding the bar is

  • 8/18/2019 Bridge Chap2 PDF

    24/53

      . . Bridges Engineering R. Soegiarso26.

    A = 3.375 x 2 x 7.0 = 2in25.47  

    ( )( )( )

    74.26705.0125.487.0

    1214.18.3698.0f s   =++=  Ksi

    ( ) ( )( ) Ksi1450.14525.47375.374.26z 3 〉==  

    2.9.2 Continuous bridge

    This example is a continuous concrete slab bridge with three spans as shown

    in Figure 2.7. The first span length is 24 feet, the second span (middle span) is 32 feet

    and the third span is 24 feet. The concrete is the normal weight concrete with the

    ultimate compressive strength  psi500,4f 'c  = . The live loads are based on HS20-44. Inthis example we compute the following:

    '24 '24'32

    h

     

    Figure 2.7: Longitudinal section

    a) 

    Draw the maximum and minimum bending moment diagrams and maximumand minimum shear diagrams.

     b)  Design the slabs due to the positive and negative bending moments.

    c)  Check the cracks requirements and the fatigue stress limits.

    Solution:

    The computation is based on one-way slab with the main reinforcement is parallel to

    the traffic.

    1.  The minimum thickness of the slab:

    542.030

    10sh   ≥

    +=  (AASHTO, Table 8.9.2)

    where s is the clear span plus the depth of the member (AASHTO, Article 8.8).

  • 8/18/2019 Bridge Chap2 PDF

    25/53

      27

    Let assume the clear span is the 36 feet.

    542.04.130

    1032h ' ≥=+= . Let h = "17  

    2.  Loads

    2.1 Dead loads:

    Own weight of the slab: 0.15 x 1.40 x 1 = 0.21 K/ft

    Weight of asphalt is assumed = 0.03 K/ft

    Weight of the curb is assumed = 0.02 K/ft

    Total dead load = 0.26 K/ft

    2.2 Live loads:2.2.1 Truck loads

    The wheel loads of HS20-44 are shown in Figure 2.8. These wheel loads are

    distributed over the slab. The width of slab over which the wheel load is

    distributed (E). When the main reinforcement is parallel to the traffic the width E

    is computed based on AASHTO, Article 3.24.3.20

    E = (4 + 0.06S) feet7≤  where S is the span length

    ( )

    ( )

    ≤=+=→=

    ≤=+=→=

    feet792.53206.04E32S

    feet744.52406.04E24S

    ''

    ''

     

    '14 '' 3014 −

    K 4 K 16 K 16

    E

    load Wheel

     

    Figure 2.8: The wheel loads of HS20-44

  • 8/18/2019 Bridge Chap2 PDF

    26/53

      . . Bridges Engineering R. Soegiarso28.

    2.2.2 Lane loads

    Qfor lbs000,26

    Mfor lbs000,18ft/lbs640

     

    The width of slab over which the wheel load is distributed (2E)

    The main reinforcement parallel to the traffic (AASHTO, Article 3.24.3.20

    E = (4 + 0.06S) feet7≤  

    2.3 Impact loads

    ≤=+=→=

    ≤=+=→=

    3.031.012532

    50I32S

    3.033.012524

    50I24S

    '

    '

     

    2.4 Influence lines

    The influence line is based on the configuration of the supports as shown in Figure 2.9.

    This configuration is totally set in a paper with unanimous reference. This is only used

    for study. Later on in this notes a computer program is developed to compute the

    maximum will be developed.

    0 1 122 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20

    L 1.333L L

     

    Figure 2.9: The segments of the bridge

    The ratio of middle span length to the first and the third span length is 1.333. The bridge is divided into 20 segments and a unit load is placed from point 1 to 19

    successively. Plots of influence diagrams are shown in Figures 2.10-2.12. Based on the

    influence line tables, the ordinate in Figures 2.10-2.12 have to be multiplied by L/99

  • 8/18/2019 Bridge Chap2 PDF

    27/53

      29

    where L is the length of the span. Basically, there are two types of loading have to be

    considered. The first type is the truck loading either HS15 or HS20. Only one truck

    load is considered for the whole bridge. Therefore, for long span bridge, most probably

    the truck loading may not govern. The second type is lane load. In producing the

    maximum bending moment, for continuous span, the concentrated loads may be

    applied to different spans (AASHTO  specifications Article 3.11.3). For maximum

     positive moment, only one concentrated load shall be used with uniform loads that

     produce the maximum moment.

    The bending moments and shear forces at particular section can be obtained by

    taking the algebraic sum of the influence line ordinates and multiplied by the length of

    each segment. It is important to note that for bending moment only the influence line

    ordinates have to be multiplied by L/99. In order to illustrate the computation of

     bending moment due to lane load, let consider the influence line of section 1 as shownin Figure 2.9. The algebraic sum of the influence line ordinates between sections 1

    through 6 is as follows:

    55.3647.163.333.650.972.12T   =++++=  

    ( )( )( )96/24d TArea =  where d is the distance between points.

    ( )( )( ) 65.3299/24455.36Area   ==  

    The maximum bending moments and shear forces at each section are as follows:

    Table 2.2: Ordinates for influence diagram for bending moments

    Moment Unit Load at point

    at point 1 2 3 4 5 6 7 8 9

    1 12.72 9.50 6.35 3.63 1.47 0.00 -1.18 -1.98 -2.07

    2 9.44 19.00 12.70 7.27 2.93 0.00 -2.37 -3.97 -4.13

    3 5.90 12.00 19.05 10.90 4.40 0.00 -3.55 -5.95 -6.20

    4 2.37 5.00 8.90 14.50 5.87 0.00 -4.73 -7.93 -8.27

    5 -1.17 -2.00 -1.25 1.70 7.08 0.00 -5.92 -9.92 -10.30

    6 -4.70 -9.00 -11.40 -11.20 -7.70 0.00 -7.10 -11.90 -12.40

    7 -3.90 -7.55 -9.56 -9.39 -6.45 0.00 7.84 1.17 -1.738 -3.10 -6.10 -7.73 -7.58 -5.20 0.00 6.28 14.20 8.95

    9 -2.30 -4.65 -5.89 -5.76 -3.95 0.00 4.71 10.80 19.60

    10 -1.65 -3.20 -4.05 -3.95 -2.70 0.00 3.15 7.35 13.80

  • 8/18/2019 Bridge Chap2 PDF

    28/53

      . . Bridges Engineering R. Soegiarso30.

    Table 2.2- continued

    Moment Unit Load at point

    at point 10 11 12 13 14 15 16 17 18 19

    1 -1.93 -1.58 -1.07 -0.52 0.00 0.38 0.55 0.55 0.43 0.23

    2 -3.87 -3.17 -2.13 -1.03 0.00 0.77 1.10 1.10 0.87 0.47

    3 -5.80 -4.75 -3.20 -1.55 0.00 1.15 1.65 1.65 1.30 0.70

    4 -7.73 -6.33 -4.27 -2.07 0.00 1.53 2.20 2.20 1.73 0.93

    5 -9.67 -7.92 -5.33 -2.58 0.00 1.92 2.75 2.75 2.17 1.17

    6 -11.60 -9.50 -6.40 -3.10 0.00 2.30 3.30 3.30 2.60 1.40

    7 -3.35 -3.67 -2.96 -1.54 0.00 1.05 1.49 1.46 1.15 0.64

    8 4.90 2.15 0.47 0.03 0.00 -0.20 -0.33 -0.38 -0.30 -0.13

    9 13.20 6.97 3.92 1.59 0.00 -1.45 -2.14 -2.21 -1.75 -0.89

    10 21.40 13.80 7.35 3.15 0.00 -2.70 -3.95 -4.05 -3.20 -1.65

    The bending moment at each point is obtained by multiplying the ordinate of the

     particular point in Table 2.2 by L/99, where L is the length based on Figure 2.9

    Table 2.3: Ordinates for influence diagram for shears

    Moment Unit Load at point

    at point 1 2 3 4 5 6 7 8 91 0.786 0.576 0.385 0.220 0.089 0.00 -0.072 -0.111 -0.215

    2 -0.214 0.576 0.385 0.220 0.089 0.00 -0.072 -0.111 -0.215

    3 -0.214 -0.424 0.385 0.220 0.089 0.00 -0.072 -0.111 -0.125

    4 -0.214 -0.424 -0.615 0.220 0.089 0.00 -0.072 -0.111 -0.125

    5 -0.214 -0.424 -0.615 -0.780 0.089 0.00 -0.072 -0.111 -0.125

    6L -0.214 -0.424 -0.615 -0.780 -0.911 0.00 -0.072 -0.111 -0.125

    7 0.046 0.088 0.111 0.108 0.076 0.00 0.905 0.785 0.647

    8 0.046 0.088 0.111 0.108 0.076 0.00 -0.095 0.785 0.647

    9 0.046 0.088 0.111 0.108 0.076 0.00 -0.095 -0.215 0.647

    10 0.046 0.088 0.111 0.108 0.076 0.00 -0.095 -0.215 -0.352

  • 8/18/2019 Bridge Chap2 PDF

    29/53

      31

    Table 2.3- continued

    Shear Unit Load at point

    at point 10 11 12 13 14 15 16 17 18 19

    1 -0.117 -0.096 -0.065 -0.031 0.00 0.023 0.033 0.033 0.026 0.014

    2 -0.117 -0.096 -0.065 -0.031 0.00 0.023 0.033 0.033 0.026 0.014

    3 -0.117 -0.096 -0.065 -0.031 0.00 0.023 0.033 0.033 0.026 0.014

    4 -0.117 -0.096 -0.065 -0.031 0.00 0.023 0.033 0.033 0.026 0.014

    5 -0.117 -0.096 -0.065 -0.031 0.00 0.023 0.033 0.033 0.026 0.014

    6L -0.117 -0.096 -0.065 -0.031 0.00 0.023 0.033 0.033 0.026 -0.046

    7 0.500 0.353 0.215 0.095 0.00 -0.076 -0.108 -0.111 -0.088 -0.046

    8 0.500 0.353 0.215 0.095 0.00 -0.076 -0.108 -0.111 -0.088 -0.046

    9 0.500 0.353 0.215 0.095 0.00 -0.076 -0.108 -0.111 -0.088 -0.046

    10 0.500 0.353 0.215 0.095 0.00 -0.076 -0.108 -0.111 -0.088 -0.046

    In the concrete design for bridges, the shear force may not be crucial in the

    design. But in steel beam, the shear or reaction at the support is carried by the web. In

    addition, in the design of shear connectors to resist fatigue, the range of shear has to be

    computed. The range of shear is the difference between minimum and maximum shear

    envelopes due to live load. The shear force at each point is obtained by multiplying the

    ordinate of the particular point in Table 2.3 by the concentrated load. By computing

    the maximum and minimum shears at particular section, the range of shear can be

    obtained.

  • 8/18/2019 Bridge Chap2 PDF

    30/53

  • 8/18/2019 Bridge Chap2 PDF

    31/53

  • 8/18/2019 Bridge Chap2 PDF

    32/53

      . . Bridges Engineering R. Soegiarso34.

    0 1 122 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20

       -        0  .

            2        1

            4

            0  .

            7        8        0

            0  .

            0        8        9

       -        0  .

            0        7

            2

            0  .

            0        2        3

            0  .

            0        3        3

            0  .

            0        3        3

            0  .

            0        2        6

            0  .

            0        1        4

       -        0  .

            4        2

            4

       -        0  .

            6        1

            5

    4sectionfordiagramInfluence

            0  .

            2        2

            0

       -        0  .

            1        1

            1

       -        0  .

            1        2

            5

       -        0  .

            1        1

            7

       -        0  .

            0        9

            6

       -        0  .

            0        6

            5

       -        0  .

            0        3

            1

       -        0  .

            2        1        4

            0  .

            7        8        0

            0  .

            0        8        9

       -        0  .

            0        7        2

            0  .

            0        2        3

            0  .

            0        3        3

            0  .

            0        3        3

            0  .

            0        2        6

            0  .

            0        1        4

       -        0  .

            4        2        4

       -        0  .

            6        1        5 5sectionfordiagramInfluence

       -        0  .

            9        1        1

       -        0  .

            1        1        1

       -        0  .

            1        2        5

       -        0  .

            1        1        7

       -        0  .

            0        9        6

       -        0  .

            0        6        5

       -        0  .

            0        3        1

       -        0  .

            2        1        4

       -        0  .

            7        8        0

       -        0  .

            0        7        2

            0  .

            0        2        3

            0  .

            0        3        3

            0  .

            0        3        3

            0  .

            0        2        6

            0  .

            0        1        4

       -        0  .

            4        2        4

       -        0  .

            6        1        5

       -        0  .

            9        1        1

       -        0  .

            1        1        1

       -        0  .

            1        2        5

       -        0  .

            1        1        7

       -        0  .

            0        9        6

       -        0  .

            0        6        5

       -        0  .

            0        3        1

       -        1  .

            0        0

            0  .        9

            0        5

       -        0  .        0

            7        6

    7sectionfordiagramInfluence

       -        0  .

            0        9        5

            0  .

            7        8        5

            0  .

            6        4        7

            0  .

            5        0        0

            0  .

            3        5        3

            0  .

            2        1        5

            0  .

            0        9        5

       -        0  .        1

            0        8

       -        0  .        1

            1        1

       -        0  .        0

            8        8

       -        0  .        0

            4        6

       -        0  .

            2        1        5

       -        0  .

            0        7        6

    8sectionfordiagramInfluence

       -        0  .

            0        9        5

            0  .

            7        8        5

            0  .

            6        4        7

            0  .

            5        0        0

            0  .

            3        5        3

            0  .

            2        1        5

            0  .

            0        9        5

       -        0  .

            1        0        8

       -        0  .

            1        1        1

       -        0  .

            0        8        8

       -        0  .

            0        4        6

       -        0  .

            3        5        3

       -        0  .

            0        7        6

    9sectionfordiagramInfluence

       -        0  .

            0        9        5

       -        0  .

            2        1        5

            0  .

            6        4        7

            0  .

            5        0        0

            0  .

            3        5        3

            0  .

            2        1        5

            0  .

            0        9        5

       -        0  .

            1        0        8

       -        0  .

            1        1        1

       -        0  .

            0        8        8

       -        0  .

            0        4        6

    0.80

    6.57

    2.47

    0.52

    9.95

    0.18

    2.47

    0.52

    0.52

    2.47

    13.77

    1.72

    0.19

    12.18

    1.72

    1.72

    8.80

    0.81

    1.72

    1.72

    1.96

    5.96

    1.72

            0  .

            0        7        6

            0  .

            1        0        8

            0  .

            1        1        1

            0  .

            0        8        8

            0  .

            0        4        6

            0  .

            0        7        6

            0  .

            1        0        8

            0  .

            1        1        1

            0  .

            0        8        8

            0  .

            0        4        6

            0  .

            0        7        6

            0  .

            1        0        8

            0  .

            1        1        1

            0  .

            0        8        8

            0  .

            0        4        6

            0  .

            9        0        5

       -        0  .

            0        7        6

            0  .

            7        8        5

            0  .

            6        4        7

            0  .

            5        0        0

            0  .

            3        5        3

            0  .

            2        1        5

            0  .

            0        9        5

       -        0  .

            1        0        8

       -        0  .

            1        1        1

       -        0  .

            0        8        8

       -        0  .

            0        4        6

    1.7215.99

    1.72        0  .

            0        7        6

            0  .

            1        0        8

            0  .

            1        1        1

            0  .

            0        8        8

            0  .

            0        4        6

    6R sectionfordiagram Influence

            1  .

            0        0

    6Lsectionfordiagram Influence

     

    Figure 2.12: Influence diagram for shear

  • 8/18/2019 Bridge Chap2 PDF

    33/53

      35

    0 1 122 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20

       -        0  .

            3        5        3

       -        0  .

            0        7        6

    10sectionfordiagramInfluence

       -        0  .

            0        9        5

       -        0  .

            2        1        5

            0  .

            5        0        0

            0  .

            3        5        3

            0  .

            2        1        5

            0  .

            0        9        5

       -        0  .

            1        0        8

       -        0  .

            1        1        1

       -        0  .

            0        8        8

       -        0  .

            0        4        6

       -        0  .

            5        0        0

    1.72

    3.65

    3.65

    1.72

            0  .

            0        7        6

            0  .

            1        0        8

            0  .

            1        1        1

            0  .

            0        8        8

            0  .

            0        4        6

     

    Figure 2.12: Influence diagram for shear (-continued)

    2.5 Maximum bending moments due to truck loading

    The points in the following are refereed to Figure 2.9

    •  Point 1 of Figure 2.9

    ( ) ft/K 89.1055.272.1244.5

    16

    99

    24M '=

    +=+  

    ( ) ( ) ft/K 10.238.044.5

    4

    99

    2433.198.1

    92.5

    16

    99

    24M '−=

    +

    +−=−  

    •  Point 2

    ( ) ft/K 59.1446.10.1944.516

    9924M '=

    +=+  

    ( ) ( ) ft/K 20.477.044.5

    4

    99

    2497.365.2

    92.5

    16

    99

    24M '−=

    +

    +−=−  

    •  Point 3

    ( ) ft/K 58.13005.1944.5

    16

    99

    24M '=

    +=+  

    ( ) ( ) ft/K 30.615.144.5

    4

    99

    2498.395.5

    92.5

    16

    99

    24M '−=

    +

    +−=−  

  • 8/18/2019 Bridge Chap2 PDF

    34/53

      . . Bridges Engineering R. Soegiarso36.

    •  Point 4

    ( ) ft/K 18.11185.15.1444.516

    99

    24

    M'

    =

    +=

    +

     

    ( ) ( ) ft/K 40.853.144.5

    4

    99

    243.593.7

    92.5

    16

    99

    24M '−=

    +

    +−=−  

    •  Point 5

    ( ) ft/K 05.508.744.5

    16

    99

    24M '=

    =+  

    ( ) ( ) ft/K 20.1163.692.992.516

    0.244.5

    4

    99

    24

    M'

    −=

    ++−=

     

    •  Point 6

    ( ) ft/K 07.30.23.244.5

    16

    99

    24M '=

    +=+  

    ( ) ( ) ( ) ft/K 23.1795.792.5

    49.11

    92.5

    164.11

    44.5

    16

    99

    24M '−=

    ++−=−  

    •  Point 7

    ( ) ( ) ( ) ft/K 72.515.144.5

    453.0

    44.5

    1684.7

    92.5

    16

    99

    24M '=

    ++=+  

    ( ) ( ) ft/K 12.951.392.5

    1656.9

    44.5

    16

    99

    24M '−=

    +−=−  

    • 

    Point 8

    ( ) ( ) ft/K 13.1020.044.5

    4

    99

    2431.12.14

    92.5

    16

    99

    24M '=

    +=+  

    ( ) ft/K 77.639.610.344.5

    16

    99

    24M '−=

    +−=−  

  • 8/18/2019 Bridge Chap2 PDF

    35/53

  • 8/18/2019 Bridge Chap2 PDF

    36/53

  • 8/18/2019 Bridge Chap2 PDF

    37/53

      39

    ( ) ( )

    ( ) ( ) ft/K 17.786.35

    92.52

    64.02.14

    92.52

    18

    99

    24M '=+

    =+  

    ( ) ( )

    ( ) ( ) ft/K 87.430.181.28

    44.52

    64.073.7

    44.52

    18

    99

    24M '−=

    ++−=−  

    •  Point 9

    ( ) ( )

    ( ) ( ) ft/K 41.1095.58

    92.52

    64.06.19

    92.52

    18

    99

    24M '=+

    =+  

    ( ) ( )

    ( ) ( ) ft/K 13.418.887.21

    44.52

    64.089.5

    44.52

    18

    99

    24M '−=

    ++−=−  

    • 

    Point 10

    ( ) ( )

    ( ) ( ) ft/K 56.1188.67

    92.52

    64.04.21

    92.52

    18

    99

    24M '=+

    =+  

    ( ) ( )

    ( ) ( ) ft/K 40.308.1508.15

    44.52

    64.005.4

    44.52

    18

    99

    24M '−=+−

    −=−  

    2.7 Shear forces due to truck loading

    •  Point 0

    ( ) K 83.3303.00.144.5

    16Q   =+=+  

    ( ) K 41.0031.0118.092.5

    16Q   −=−−=−  

    • 

    Point 1

    ( ) K 76.2155.0786.044.5

    16Q   =+=+  

    ( ) ( ) K 95.0214.044.516

    118.092.5

    16

    Q   −=−+−=−

     

    •  Point 2

  • 8/18/2019 Bridge Chap2 PDF

    38/53

      . . Bridges Engineering R. Soegiarso40.

    ( ) K 84.105.0576.044.5

    16Q   =+=+  

    ( ) ( ) K 58.1125.092.5

    16424.0

    44.5

    16Q   −=−+−=−  

    •  Point 3

    ( ) K 13.1385.044.5

    16Q   ==+  

    ( ) ( ) K 15.2125.092.5

    16615.0

    44.5

    16Q   −=−+−=−  

    • 

    Point 4

    ( ) K 65.022.044.5

    16Q   ==+  

    ( ) ( ) ( ) K 66.2048.092.5

    4125.0

    92.5

    1678.0

    44.5

    16Q   −=−++−=−  

    •  Point 5

    ( ) K 26.0089.044.5

    16Q   ==+  

    ( ) ( ) K 71.3118.092.5

    4324.0911.0

    44.5

    16Q   −=−+−−=−  

    •  Point 6L

    ( ) K 12.0014.0028.044.5

    16Q   =+=+  

    ( ) K 11.452.00.192.5

    16Q   −=−−=−  

    • 

    Point 6R

    ( ) ( ) K 33.41.044.5

    4574.000.1

    92.5

    16Q   =++=+  

  • 8/18/2019 Bridge Chap2 PDF

    39/53

      41

    ( ) K 42.0066.0076.044.5

    16Q   −=−−=−  

    •  Point 7

    ( ) ( ) K 68.3110.044.5

    4427.0905.0

    92.5

    16Q   =++=+  

    ( ) K 42.0066.0076.044.5

    16Q   −=−−=−  

    •  Point 8

    ( )  ( )

    K 83.244.5

    076.04284.0785.0

    92.5

    16Q   =−+=+  

    ( ) ( ) ( ) K 89.0046.044.5

    4092.0

    44.5

    16215.0

    92.5

    16Q   −=−+−+−=−  

    •  Point 9

    ( ) ( ) K 20.2038.044.5

    4155.0647.0

    92.5

    16Q   =++=+  

    ( ) ( ) K 28.1110.044.5

    16353.0

    92.5

    16Q   −=−−=−  

    •  Point 10

    ( ) ( ) ( ) K 71.1111.044.5

    16047.0

    92.5

    4500.0

    92.5

    16Q   =++=+  

    K 71.1Q   =−  

    2.8 Shear forces due to lane loading

    •  Point 1

    ( )  ( )[ ] K 30.2786.0x2652.065.664.0

    44.52

    1Q   =++=+  

  • 8/18/2019 Bridge Chap2 PDF

    40/53

      . . Bridges Engineering R. Soegiarso42.

    ( )  ( ) ( )[ ]

    ( )  ( ) ( )[ ]214.02643.064.0

    92.52

    1125.02647.264.0

    44.52

    1Q   −+−+−+−=−  

    K 94.0Q   −=−  

    • 

    Point 2

    ( )  ( ) ( )[ ] K 64.1576.02652.093.364.0

    44.52

    1Q   =++=+  

    ( )  ( ) ( )[ ]

    ( )  ( ) ( )[ ]125.02647.264.0

    92.52

    1424.02670.164.0

    44.52

    1Q   −+−=−+−=−  

    K 52.1Q   −=−  

    •  Point 3

    ( ) ( )[ ] K 04.1385.02652.001.264.044.5

    1Q   =++=+  

    ( )  ( ) ( )[ ]

    ( )  ( ) ( )[ ]125.02671.264.0

    92.52

    1615.02678.364.0

    44.52

    1Q   −+−++−=−  

    K 11.2Q   −=−  

    • 

    Point 4

    ( ) ( )[ ] K 60.022.02652.080.064.044.5

    1Q   =++=+  

    ( )  ( ) ( )[ ]

    ( )  ( ) ( )[ ] K 66.2125.02647.264.0

    92.52

    178.02657.664.0

    44.52

    1Q   −=−+−++−=−

     

    •  Point 5

    ( )  ( ) ( )[ ] K 25.0089.02652.018.064.0

    44.52

    1Q   =++=+  

    ( )  ( ) ( )[ ]

    ( )  ( ) ( )[ ] K 45.3125.02647.264.0

    92.52

    1911.02695.964.0

    44.52

    1Q   −=−+−++−=−

     

    •  Point 6

  • 8/18/2019 Bridge Chap2 PDF

    41/53

      43

    ( )

      ( ) ( )[ ] K 11.0033.02652.064.044.52

    1Q   =+=+  

    ( )  ( ) ( )[ ]

    ( )  ( ) ( )[ ] K 61.3125.02647.264.0

    92.52

    100.12677.1364.0

    44.52

    1Q   −=−+−++−=−

     

    • 

    Point 7

    ( )  ( )[ ]

    ( )  ( ) ( )[ ] K .752905.02618.1264.0

    92.52

    172.164.0

    44.52

    1Q   =++=+  

    ( )  ( ) ( )[ ]

    ( )  ( ) ( )[ ] K 59.0111.02672.164.0

    44.52

    1095.02619.064.0

    92.52

    1Q   −=−+−+−−=−

     

    •  Point 8

    ( )  ( )[ ]

    ( )  ( ) ( )[ ] K 30.2785.0268.864.0

    92.52

    172.164.0

    44.52

    1Q   =++=+  

    ( )  ( ) ( )[ ]

    ( )  ( ) ( )[ ] K 88.0215.02681.064.0

    92.52

    1111.02672.164.0

    44.52

    1Q   −=−−+−−=−  

    •  Point 9

    ( )  ( )[ ]

    ( )  ( ) ( )[ ] K 84.1647.02696.564.0

    92.52

    172.164.0

    44.52

    1Q   =++=+  

    ( )  ( ) ( )[ ]

    ( )  ( ) ( )[ ] K 25.1353.02696.164.0

    92.52

    1111.02672.164.0

    44.52

    1Q   −=−+−++−=−

     

    •  Point 10

    ( )  ( )[ ]

    ( )  ( ) ( )[ ] K 40.150.02665.364.0

    92.52

    172.164.0

    44.52

    1Q   =++=+  

    ( )

      ( ) ( )[ ]

    ( )

      ( ) ( )[ ] K 66.150.02665.364.092.52

    1111.02672.164.0

    44.52

    1Q   −=−+−++−=−  

  • 8/18/2019 Bridge Chap2 PDF

    42/53

  • 8/18/2019 Bridge Chap2 PDF

    43/53

      45

    ft/'K 40.22MIL  =

    The ultimate moment based on AASHTO 3.10 and group IA is as follows:

    ( )[ ]ILDu MM2.2M3.1M   ++=  

  • 8/18/2019 Bridge Chap2 PDF

    44/53

      . . Bridges Engineering R. Soegiarso46.

       P  o

       i  n   t

       I   L

       A

      r  e  a

       P

      o  s   i

       t   i  v  e

       I   L

       A  r  e  a

       N  e  g  a

       t   i  v  e

       )   f   t   /

       K   (   M   '

       D

       )   f   t   /

       K   (   M

       '

      m  a  x

       L   L

          +

       )   f   t   /

       K   (   M

       '

      m  a  x

       L   L

       −

       )   f   t   /

       K   (   M

       '

       L   L

       I  m  p  a  c   t

       −

       )   f   t   /

       K   (   M

       '

       L   L

       I  m  p  a  c   t

          +

       )

       f

       t

       /   K   (   M   '

       I

       L      +      +

       )   f   t   /

       K   (   M   '

       I

       L   −      +

       )   f   t   /

       K   (   M

       '

       I

       L

       D      +

          +

          +

       )   f   t   /

       K   (   M

       '

       I

       L

       D   −

          +

          +

       )   f   t   /

       K   (  r  a  n  g  e

       M   '

       1 2 3 4 5 6 7 8 9    1   0

       3   4

     .   7   3

       5   3

     .   9   6

       5   6

     .   9   2

       4   3

     .   8   6

       1   8

     .   5   3

       1   2

     .   5   1

       8 .   3

       1

       3   5

     .   8   6

       5   8

     .   9   5

       6   7

     .   8   8

       1   0

     .   0   2

       2   0

     .   0   2

       3   0

     .   0   6

       4   0

     .   0   8

       5   4

     .   0   6

       5   3

     .   9   8

       3   0

     .   1   1

       3   0

     .   0   5

       3   0

     .   1   6

       1   0   2

     .   7   9

       6 .   4

       2

       8 .   8

       2

       6 .   9

       9

       0 .   9

       8

      -   9 .   2

       4

      -   2   3

     .   4   8

      -   1   1

     .   8   7

       1 .   5

       0

       7 .   5

       1

       9 .   8

       1

       1   0

     .   8   9

       1   4

     .   5   9

       1   3

     .   5   8

       1   1

     .   1   8

       5 .   0

       5

       3 .   0

       7

       5 .   7

       2

       1   0

     .   1   3

       1   4

     .   2   9

       1   5

     .   3   1

      -   2 .   1

       0

      -   4 .   2

       0

      -   6 .   3

       0

      -   8 .   4

       0

      -   1   1

     .   2   0

      -   1   7

     .   2   3

      -   9 .   1

       2

      -   6 .   7

       7

      -   5 .   3

       0

      -   4 .   6

       6

       3 .   2

       7

       4 .   3

       8

       4 .   0

       7

       3 .   3

       5

       1 .   5

       2

       0 .   9

       2

       3 .   0

       4

       1 .   7

       2

       4 .   2

       9

       4 .   5

       9

      -   0 .   6

       3

      -   1 .   2

       6

      -   1 .   8

       9

      -   2 .   5

       2

      -   3 .   3

       6

      -   5 .   1

       7

      -   2 .   7

       4

      -   2 .   0

       3

      -   1 .   5

       9

      -   1 .   4

       0

       1   4 .   1   6

       1   8 .   9   7

       1   7 .   6   5

       1   4 .   5   3

       6 .   5   7

       3 .   9   9

       7 .   4   4

       1   3 .   7   7

       1   8 .   5   8

       1   9 .   9   0

      -   2 .   7

       3

      -   5 .   4

       6

      -   8 .   1

       9

      -   1   0

     .   9   2

      -   1   4

     .   5   6

      -   2   2

     .   4   0

      -   8 .   8

       0

      -   1   1

     .   8   6

      -   6 .   8

       9

      -   6 .   0

       6

       2   0

     .   5   8

       2   7

     .   7   9

       2   4

     .   6   4

       1   5

     .   5   1

      -   2 .   6

       7

      -   1   9

     .   4   9

      -   4   5

     .   8   8

      -   2   3

     .   7   3

      -   7 .   3

       0

      -   4 .   4

       3

       1   5

     .   2   7

       2   6

     .   0   9

       2   9

     .   7   1

       3 .   6

       9

       3 .   3

       6

      -   1 .   2

       0

      -   9 .   9

       4

      -   2   3

     .   8   0

       0 .   6

       2

       3 .   7

       5

       1   6 .   2

       9

       2   4 .   4

       3

       2   5

     .   8   4

       2   5 .   4

       5

       2   1 .   1

       3

       2   9 .   3

       9

       1   9

     .   3   0

       2   2 .   5

       7

       2   5 .   4

       7

       2   5 .   9

       6

       l  o  a   d

       L   i  v  e

      a  n

       d

       L  o  a

       d

       D  e  a   d

        t  o

       d  u  e

       M  o  m  e  n

       t

      :

       2 .   4

       T  a

       b   l  e

           (

           )

       2   6

     .   0  x

       A

       A

       M   D   L

       −

          +

       −

        =

     

  • 8/18/2019 Bridge Chap2 PDF

    45/53

  • 8/18/2019 Bridge Chap2 PDF

    46/53

      . . Bridges Engineering R. Soegiarso48.

    Table 2.6: The maximum shear forces due to Dead Load and Truck loading

    Point +A   −A   )K (QD  

    )K (

    QL+  )K (

    QL−  )K (

    Q IL++  )K (

    Q IL−+  )K (

    Q ILD+ ++  )K (

    Q ILD− ++  

    0 10.74 -2.47 2.15 3.83 -0.41 4.98 -0.53 7.13 1.62

    1 7.17 -2.90 1.11 2.76 -0.95 3.58 -1.24 4.69 -0.13

    2 4.45 -4.17 0.07 1.84 -1.58 2.39 -2.05 2.46 -1.98

    3 2.53 -6.49 -1.03 1.13 -2.15 1.47 -2.80 0.44 -3.83

    4 1.32 -9.04 -2.00 0.65 -2.66 0.85 -3.46 1.15 -5.46

    5 0.70 -12.42 -3.05 0.26 -3.71 0.34 -4.82 -2.71 -7.87

    6L 0.52 -16.24 -4.09 0.12 -4.11 0.16 -5.34 -3.93 -9.436R 17.71 -1.72 4.16 4.33 -0.42 5.23 -0.55 9.39 3.74

    7 13.9 -1.91 3.12 3.68 -0.42 4.78 -0.55 7.90 2.57

    8 10.52 -2.53 2.08 2.83 -0.89 3.67 -1.16 5.75 0.92

    9 7.68 -3.68 1.04 2.20 -1.28 2.86 -1.66 3.90 -0.62

    10 5.37 -5.37 0.00 1.71 -1.71 2.22 -2.22 2.22 -2.22

    Table 2.7: The maximum shear forces due to Dead load and Lane loading

    Point +A   −A   )K (

    QD  )K (

    QL+

     )K (

    QL−

     )K (

    Q ILD+

    ++  )K (

    Q ILD−

    ++  

    1 7.17 -2.90 1.10 2.30 -0.94 4.09 -0.12

    2 4.45 -4.17 0.07 1.64 -1.52 2.20 -1.91

    3 2.53 -6.49 -1.03 1.04 -2.11 0.32 -3.77

    4 1.32 -9.04 -2.00 0.60 -2.66 -1.22 -5.46

    5 0.70 -12.42 -3.05 0.25 -3.45 -2.73 -7.54

    6 0.52 -16.24 -4.09 0.11 -3.61 -3.95 -8.78

    7 13.9 -1.91 3.12 2.75 -0.59 6.70 2.358 10.52 -2.53 2.08 2.30 -0.88 5.07 0.94

    9 7.68 -3.68 1.04 1.84 -1.25 3.43 -0.59

    10 5.37 -5.37 0.00 1.40 -1.66 1.82 -2.16

  • 8/18/2019 Bridge Chap2 PDF

    47/53

      49

    1 102 3 4 5 6 7 8 90

    Load Dead toduemomentBendinga)

    42.682.8

    99.6

    98.0

    24.9−

    48.23−

    87.11−

    50.1−

    51.7

    81.9

    1 102 3 4 5 6 7 8 90

    58.20

    82.827.15

    69.3 36.320.1−

    94.9−

    80.23−

    88.45−

    73.23−

    30.7−

    62.0

    75.3

    79.27

    64.24

    51.15

    67.2−

    49.19−

    43.4−

    09.26

    71.29

     pactImLLDLtoduemomentBendingMin.&Max. b)   ++

     

    Figure 2.13: The maximum and minimum bending moments at each section

  • 8/18/2019 Bridge Chap2 PDF

    48/53

      . . Bridges Engineering R. Soegiarso50.

    1 102 3 4 5 6 7 8 90

    Load Dead todue forcesSheara)

    10.1

    05.3−00.2−

    12.3

    16.4

    08.2

    04.1

    0.0

    1 102 3 4 5 6 7 8 90

    13.0−

    35.2

    69.4

    46.2

    32.0

    55.1−

    93.3−

    75.5

    90.3

    59.0−

    16.2−83.3−

    46.5−

    71.2−

    90.7

    94.0

    43.9−

     pactImLLDLtoduemomentBendingMin.&Max. b)   ++

    07.0

    03.1−

    09.4−

    22.2

    87.7−

    98.1−

    62.1

    13.7

    74.3

    39.9

     

    Figure 2.14:Maximum&Minimum shear forces at each section

  • 8/18/2019 Bridge Chap2 PDF

    49/53

      51

    2.12 Moment positive reinforcement:

    The maximum positive moment occurs at section 10:

    ft/'K 59.4M,ft/'K 31.15M ,ft/'K 8.9M ILLDL   ===  +++  

    Based on AASHTO 3.22.1 Group 1 and Article 3.5, the following load combination is

    applied:

    ( )[ ]ILLDLu MM67.1M3.1M   ++=  

    ( )[ ] ft/'K 94.5559.431.1567.18.93.1M u   =++=  

    There is no centrifugal force in this problem.

    The depth (d) = h – clearance - 2/d 1  

    Let assume the clearance is "1  and 1d   is "75.0 .

    "625.15"375.0"1"17d    =−−=  

    Considering Eq. (2.21) we obtain,

    ( )( )

    ( )( )( )254.0

    625.15129.0

    1294.55

     bd 9.0

    MR 

    22

    uu   ===  

    The required ρ  from Eq. (2.11),

    ( ) ( )( )

    0044.05.485.0

    254.0211

    000,60

    500,485.0= 

      

     −−==ρ  

    Check the maxρ from Eq. (2.11),

    ( )( )0311.0

    000,60000,87

    000,87

    000,60

    500,4825.085.0 b   =+=ρ  

    ( ) 0233.00311.075.0max   ==ρ  

    OK 0044.0 max →ρ〈=ρ  

    ( )( ) 2s in766.05.14120044.0A   ==+  

    Use bar # 6, the spacing between bars is,

  • 8/18/2019 Bridge Chap2 PDF

    50/53

      . . Bridges Engineering R. Soegiarso52.

    "89.6"12x766.0

    44.0=  

    The #[email protected]”, the total cross sectional area is 0.81 2in  

    2.13 The cracking control

    For  psi000,40f y 〉  

    Ad f z cs=  (ACI/318R, Article 10.6.4)

    where,

    armlinternaisd ,

    dA

    MMMf 

    s

    ILLDLs   αα

    ++=  and cd   is the distance from the centroid of

    the rebars to the outer surface of the slab and A is the area of concrete in tension zone.

    ( ) "25.115.05.0d  ""c   =+=  

    Let assume the bar spacing is "5.6 , the total area of concrete surrounding the bar is

    A = 1.25 x 2 x 6.5 = 2in25.16  

    Let assume 87.0d  =α  

    ( )( )( ) 22.34766.0625.1587.0

    1259.43.158.9

    f s   =

    ++

    =  Ksi

    ( ) ( )( ) Ksi14538.9625.16375.136.32z 3 〈==  

    2.14 Moment negative reinforcement

    The maximum negative moment occurs at section 6:

    ft/'K 17.5M,ft/'K 23.17M ,ft/'K 48.23M ILLDL   −=−=−=  +++  

    Similarly with positive moment, based on AASHTO 3.22.1 Group 1 and Article 3.5,

    the following load combination is applied:

    ( )[ ]ILLDLu MM67.1M3.1M   ++=  

    ( )[ ] ft/'K 15.7917.523.1767.148.233.1M u   −=−−+−=  

    mailto:#[email protected]:#[email protected]:#[email protected]:#[email protected]

  • 8/18/2019 Bridge Chap2 PDF

    51/53

      53

    )clearance("5.2

    "17"5.13

    Distribution steel dia. 0.5"

    Main reinforcement #8 

    The arrangement of the negative reinforcement is assumed based on the above figure,

    Let assume the clearance and the wearing is "5.2 , 1d   is "75.0  and 2d   is "5.0  

    "625.13"5.0"375.0"5.20.17d    =−−−=  ( )( )

    ( )( )( )47.0

    625.13129.0

    1215.79

     bd 9.0

    MR 

    22

    uu   ===  

    The required ρ from Eq. (2.11),

    ( ) ( )( )

    0084.05.485.0

    47.0211

    000,60

    500,485.0= 

      

     −−==ρ  

    The maxρ from Eq. (2.11),

    ( )( ) 0311.0000,60000,87

    000,87

    000,60

    500,4825.085.0 b   =+=ρ  

    ( ) 0233.00311.075.0max   ==ρ  

    OK 0084.0 max →ρ〈=ρ  

    ( )( ) 2s in37.1625.13120084.0A   ==−  

    Use steel bar # 8, the spacing is in9.612x37.1

    79.0=  

    The #[email protected]”, the total cross sectional area is 1.45 2in  

    2.15 The cracking control

    In computing cd   the wearing surface thickness is reduced.

    mailto:#[email protected]:#[email protected]:#[email protected]:#[email protected]

  • 8/18/2019 Bridge Chap2 PDF

    52/53

      . . Bridges Engineering R. Soegiarso54.

    "375.2"5.0"375.0"5.1d c   =++=  

    Let assume the bar spacing is "5.6 , the total area of concrete surrounding the bar is

    A = 2.375 x 2 x 6.5 = 2in875.30  

    Let assume 87.0d  =α  

    ( )( )( )

    93.2745.1625.1587.0

    1217.523.1748.23f s   =

    ++=  Ksi

    ( ) ( )( ) Ksi14594.130875.30375.393.27z 3 〈==  

    2.16 Minimum steel requirement

    The reinforcement should be able to carry 1.2 cr M  (AASHTO, Article 8.17.1)

    Where cr M  is the cracking moment.

    t

    gr 

    cr y

    If M   =  (AASHTO, Article 8.13.3)

    where r f    is the modulus of rupture , gI   is the moment of inertia of the concrete

    section about the centroidal axis, neglecting the reinforcement, ty   is the distance

    from the centroidal axis to the extreme fiber. (AASHTO, Article 8.15.2.1)

     psi503500,45.7f r    ==  (AASHTO, Article 8.15.2.1.1)

    ( )"K 58.56

    5.75.0

    12/)5.7x12(503M

    3

    cr    ==  

    ( ) "K  67.958.562.1M2.1 cr    ==  

    Check for bottom steel ( 2s in442.0A   =+ )

    ( )( )

    ( )( )"

    'c

    ys578.0

    125.485.0

    60442.0

     bf 85.0

    f Aa   ===  

    ( )2/ad f AM ysn   −φ=φ  

    ( )( )( ) cr '

    n MK 29.1392/578.0125.660442.09.0M   〉=−=φ  

  • 8/18/2019 Bridge Chap2 PDF

    53/53

      55

    Check for top steel ( 2s in705.0A   =− )

    ( )( )

    ( )( )"

    'c

    ys922.0

    125.485.060705.0

     bf 85.0f Aa   ===  

    ( )2/ad f AM ysn   −φ=φ  

    ( )( )( ) cr '

    n MK 49.1392/922.0125.460705.09.0M   〉=−=φ  


Recommended