+ All Categories
Home > Documents > Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler,...

Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler,...

Date post: 11-Apr-2020
Category:
Upload: others
View: 8 times
Download: 6 times
Share this document with a friend
73
1 Chapter 1: Composition and history of Buckling‐restrained Braces Buckling‐restrained Braces and Applications 1 BUCKLING-RESTRAINED BRACE HISTORY, DESIGN and APPLICATIONS Toru Takeuchi, Akira Wada Ryota Matsui, Ben Sitler, Pao-Chun Lin, Fatih Sutcu, Hiroyasu Sakata, Zhe Qu
Transcript
Page 1: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

1

Chapter 1: Composition and history of Buckling‐restrained Braces

Buckling‐restrained Braces and Applications1

BUCKLING-RESTRAINED BRACEHISTORY, DESIGN and APPLICATIONS

Toru Takeuchi, Akira WadaRyota Matsui, Ben Sitler, Pao-Chun Lin,

Fatih Sutcu, Hiroyasu Sakata, Zhe Qu

Page 2: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

2

Chapter 1: Composition and history of Buckling‐restrained Braces

Buckling‐restrained Braces and Applications2

Concept of Buckling-restrained Brace

Types of restrainerAppearance of typical BRB

1.1 Composition of buckling‐restrained Braces (BRB)

Mortar

Page 3: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

3

Chapter 1: Composition and history of Buckling‐restrained Braces

Buckling‐restrained Braces and Applications3

-600-400-200

0200400600

-40 -20 0 20 40Axial deformation (mm)

Axi

al fo

rce

(kN

)

Hysteresis of well‐designed BRB

Clearance and eccentricity

Development of higher buckling mode

RestrainerCore plate

Page 4: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

4

Chapter 1: Composition and history of Buckling‐restrained Braces

Buckling‐restrained Braces and Applications4

1972: Takeda et al. tried to improve the post-buckling behaviour ofH-section braces by encasing the steel section in reinforcedconcrete. However, because no debonding mechanism wasprovided, the restrainer received a significant compressiveforce, cracked and ultimately experienced overall buckling.

1979: Motizuki et al. proposed introducing a debonding layerbetween the core plate and reinforced concrete restrainer.However, the system tended to buckle at the unrestrained coreextension

1988: The first practical buckling-restrained brace was achieved bySaeki, Wada, et al. employed rectangular steel tubes with in-filled mortar for the restrainer, and determined the optimaldebonding material specifications to obtain stable andsymmetric hysteresis behaviour.

1.2 History of Development

Page 5: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

5

Chapter 1: Composition and history of Buckling‐restrained Braces

Buckling‐restrained Braces and Applications5

The first application of Buckling‐restrained Brace (Unbonded Brace, 1987)

Nippon Steel Headquarter No.2 (Tokyo) BRB installation

BRB experiment 1987

M Fujimoto, A Wada, E Saeki, T Takeuchi, A Watanabe: Development of Unbonded Braces, Quarterly Column, No.115, pp.91‐96, 1990.1

1.2 History of Development

Page 6: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

6

Chapter 1: Composition and history of Buckling‐restrained Braces

Buckling‐restrained Braces and Applications6

Plant & Environmental Sciences, UC Davis     Bennett Federal BuildingRetrofit/ Salt Lake City

Early US applications in 2000’s

Page 7: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

7

Chapter 1: Composition and history of Buckling‐restrained Braces

Buckling‐restrained Braces and Applications7

1.3 BRB TYPES (Mortar in‐filled type)

Restrainer

Core Plate

Spacer

Slit

Connection

RestrainerRestrainer

Core Plate

Page 8: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

8

Chapter 1: Composition and history of Buckling‐restrained Braces

Buckling‐restrained Braces and Applications8

1.3 BRB TYPES (Dry type)

Restrainer Tube

Core Tube

Pin End

Solid End

Bolt End Restrainer Tube

Core Tube

Restrainer TubeCore Tube

Core Tube

Restrainer Tube

Core Plate

RestrainerUnbonded Sheet

Slit

Core Plate

Core Plate

Bolt

Restrainer Bolt

Page 9: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

9

Chapter 2: Restrainer Design and Clearances

Buckling‐restrained Braces and Applications9

Quality Requirement for Hysteresis models

Inappropriate clearance

Plastic strainconcentration

Local buckling Local bulging

Uneven stiffness

Degradationin compression side

Unevenstrength

Unevenstrength Local bulging Degradation

in compression sideBulging-induced failure

Tearing

FractureSlack 

(pin connection)

Buckling

Buckling-induced failure

Page 10: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

10

Chapter 2: Restrainer Design and Clearances

Buckling‐restrained Braces and Applications10

2.1 Restrainer Design

Global Stability, including:

Restrainer End

Higher Mode Buckling

Connection Strength

Fatigue Fracture

ConnectionsRestrainer

BRB Stability and Strength

1.Restrainer successfully suppresses core first‐mode buckling (Chapter 2)2.Debonding mechanism decouples axial demands and allows for Poisson effects (Chapter 2)3.Restrainer wall bulging due to higher mode buckling is suppressed (Chapter 3)4.Global out‐of‐plane stability is ensured, including connection (Chapter 4)5.Low‐cycle fatigue capacity is sufficient for expected demands (Chapter 5)

Page 11: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

11

Chapter 2: Restrainer Design and Clearances

Buckling‐restrained Braces and Applications11

Ecr c

c c Ecr cu

N aa yN N

2( )

1 1cuB Bcu c

cu c c yB Bcu cr cu cr

N a s eN aM N a y MN N N N

a: Fabrication tolerances of core and/or brace s:Clearance or thickness of debonding material (per face)e:Eccentricity of the axial forceMB

y:flexural strength of the restrainerNcu= da Ny:core yield force amplified by overstrength and strain hardening

da =1.4~1.5NB

cr :Euler buckling strength of the restrainer, given by:2

2B Bcr

B

EINl

Where initial imperfections ec/lB ≤ 1/500, a relatively slender restrainerwith lB/Dr > 20 and with an overall safety factor of eα ≥ 1.5;

2

2B Bcr e cu

B

EIN Nl

Page 12: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

12

Chapter 3: Local Bulging Failure

Buckling‐restrained Braces and Applications12

in‐plane local bulging failure

out‐of‐plane local bulging failure

(Tokyo Institute of Technology)

(National Center for Research on Earthquake Engineering)

3.1 Failure Caused by High Mode Buckling

Page 13: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

13

Chapter 3: Local Bulging Failure

Buckling‐restrained Braces and Applications13

3.1 Failure Caused by High Mode Buckling

core strain

axial force

Compression

Tension

mortarsteel core steeltube wall

section s‐s

Bc

section w‐w

srs

srwtc

debondinglayer

Bc Br

Dr

BrBc

tc

Dr

srw

srs

ww

s

s

Page 14: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

14

Chapter 3: Local Bulging Failure

Buckling‐restrained Braces and Applications14

3.1 Failure Caused by High Mode Buckling

core strain

axial force

Compression

Tension

ww

s

s

section s‐s

section w‐w

N N

N N

Compression is initially applied

Flexural buckling waves form in both the in‐plane and out‐of‐plane directions

Page 15: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

15

Chapter 3: Local Bulging Failure

Buckling‐restrained Braces and Applications15

srs+0.5γp Bc ɛt

srw+0.5 γp tc ɛt

core strain

axial force

Compression

Tension

ww

s

s

Bc

tc

srw

srs

ɛt

section s‐s

section w‐w

Maximum tensile strain is applied

γp =0.5, Poisson ratio of steel inelastic deformation Clearances increase because of the Poisson effect

3.1 Failure Caused by High Mode Buckling

Page 16: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

16

Chapter 3: Local Bulging Failure

Buckling‐restrained Braces and Applications16

lp,s

lp,w

Bc

tc

core strain

axial force

Compression

Tension

ww

s

s

Ny

Ny

Ny

Ny

Ny

2srs+γp Bc ɛt

2srw+ γp tc ɛt

section s‐s

section w‐w

Compression reaches yield strength Ny

High mode buckling waves form and generating the outward forces.

outward force

outward force

3.1 Failure Caused by High Mode Buckling

Page 17: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

17

Chapter 3: Local Bulging Failure

Buckling‐restrained Braces and Applications17

Pd,s

Pd,w Pd,w

Pd,w Pd,w

core strain

axial force

Compression

Tension

ww

s

s

Ncu

lp,w

core strain

axial force

Compression

Tension

Ncu

Ncu

Ncu

Ncu

2srs+γp Bc ɛt

2srw+ γp tc ɛt

section s‐s

section w‐w

lp,s

Compression reaches maximum compressive capacity Ncu

High mode buckling wavelengths remain, the maximum outwards are fully developed.

3.1 Failure Caused by High Mode Buckling

Page 18: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

18

Chapter 3: Local Bulging Failure

Buckling‐restrained Braces and Applications18

ww

s

s

out‐of‐plane local bulging failure

in‐plane local bulging failure

in‐plane bulging

out‐of‐plane bulging

section s‐s

section w‐w

core strain

axial force

Compression

Tension

Ncu

Local bulging failure when restrainer is too weak in sustaining outward forces

3.1 Failure Caused by High Mode Buckling

Page 19: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

19

Chapter 3: Local Bulging Failure

Buckling‐restrained Braces and Applications19

3.2 Estimation on Outward Force (demand)

0.5Pd,s

0.5Pd,s0.5lp,s

Bc

,

,

4 2cu rs p c td s

p s

N s ν B εP

l

,

,

4 2cu rw p c td w

p w

N s ν t εP

l

In‐plane outward force Pd,s

Out‐of‐plane outward force Pd,w

Ncu

Ncu

2srs+γp Bc ɛt

0.5Pd,w

Ncu

0.5Pd,w

0.5lp,w

tc

2srw+ γp tc ɛtNcu

Apply moment equilibrium condition on the free body,

Page 20: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

20

Chapter 3: Local Bulging Failure

Buckling‐restrained Braces and Applications20

B

A’

B’

Bc

D

D’

x

Pc,w

Pc,w

Ab

b

x

External work =  Pc,wδw

t

w

section w‐w

section t‐ta

Br

δw

3.4 Estimation on Steel Tube Resistance (capacity)out‐of‐plane bulging failure

Bc

A

D

B

B’

A’

D’

2x

3‐D view

Bc

t

w

δw

Page 21: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

21

Chapter 3: Local Bulging Failure

Buckling‐restrained Braces and Applications21

small deformation curvature

3.4 Estimation on Steel Tube ResistanceYield line patterns

B

A’

B’

D’

A

α

D

B

A’

B’

D’

A D

45。

B

A’

B’

D’

A D

45。

B

A’

B’

D’

A D

Condition 1

Yield lines AD and A’D’ ignored residual stress at tube corners

Condition 2 Condition 3 Condition 4

α

(Yoshida et al. 2010) (Lin et al. 2010)

Internal energy: E9(9 yield lines)α = 45°

Internal energy: E9(9 yield lines)α: minimizing E9

Internal energy: E5(5 yield lines)α = 45°

Internal energy: E5(5 yield lines)α: minimizing E5

2,

2,

41

41

c w r ry

c r

c s r ry

c r

P t σB B

P t σt D

2,

2,

4 214 21

c rc w r ry

c r

c rc s r ry

c r

B BP t σ

B Bt D

P t σt D

2,

2,

21

21

c w r ry

c r

c s r ry

c r

P t σB B

P t σt D

2,

2,

2121

c rc w r ry

c r

c rc s r ry

c r

B BP t σ

B Bt D

P t σt D

A D

(resistance factor) (resistance factor) (resistance factor) (resistance factor)

Page 22: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

22

Chapter 3: Local Bulging Failure

Buckling‐restrained Braces and Applications22

3.5 Test Results and Evaluations

,exp2

,

,exp2

,

4 2out‐of‐plane: 

4 2in‐plane: 

cu rw p c t

p w r ry

cu rs p c t

p s r ry

N s ν t ε

l t σ

N s ν B ε

l t σ

Experimental resistance factor

● 15 specimens without bulging× 14 out‐of‐plane bulged specimens ▲ 5 in‐plane in‐plane bulged specimens

resistan

ce fa

ctor

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Bc/Br or tc/Dr

0

2

4

6

8

10

12

14

Condition 2Condition 1

Condition 3

Condition 4

resis

tance factor

Bc/Br or tc/Dr

example:●

× ▲

× ▲

Appropriate: bulging did not occur in test and was not in expectation

Conservative: bulging is in expectation but did not occur in test

Appropriate: bulging occurred in test and was in expectation

Dangerous: bulging occurred in test but was not in expectation

(9 dangerous estimation)

(9 dangerous estimation)

(over‐conservative)

(recommended)

Page 23: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

23

Chapter 3: Local Bulging Failure

Buckling‐restrained Braces and Applications23

3.5 Test Results and EvaluationsProposed design method:

0

2

4

6

8

10

12

14

resistan

ce fa

ctor

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Bc/Br or tc/Dr

,2

, ,

,2

, ,

4 21.0

2

4 21.0

2

cu rw p c td w r cw

c w r c r ry p w

cu rs p c td s r cs

c s r c r ry p s

N s ν t εP B BDCR

P B B t σ l

N s ν B εP D tDCR

P D t t σ l

0.85

7.7

in‐plane bulgingtcDr

BrBc

0.85c

r

BB

0.85c

r

tD

● 15 specimens without bulging× 14 out‐of‐plane bulged specimens ▲ 5 in‐plane in‐plane bulged specimens

out‐of‐plane bulging

Page 24: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

24

Chapter 3: Local Bulging Failure

Buckling‐restrained Braces and Applications24

3.6 Required Mortar Strength for Local Pressure

3.7 Local Bulging Criteria for Circular Restrainer

Bc

lc

Pd,wcontact surface

steel core

restrainer

, 'd wc

c c

Pf

l B

,

, ,

4 221.0cu rs p c td s r r

scc s m m c r r ry p s

N s ν B εP B tDCR

P c t t πt B σ l

Page 25: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

25

Chapter 4: Connection Design and Global Stability

Buckling‐restrained Braces and Applications25

The AIJ Recommendations provide rigorous evaluation methods for BRB connection out‐of‐plane buckling.  Two concepts below are presented:

AIJ (2009) Recommendations for stability design of steel structures. Architectural Institute of Japan.

4.2 Design Concepts

Moment transfercapacity is lost at the

end of restrainer

EIB

JEIB

JEIB

L0

L0

lB L0

Connectionzone

Connectionzone

Restrainedzone

=Plasticzone

EIB

>

Bendingmomenttransfer

Gusset plate

JEIB EIB

>JEIB EIB

KRg

KRg

Restrainer-endzone

Connectionzone

Connectionzone

Restrainer-endzone

Plasticzone

Restrainedzone

1: Cantilevered gusset 2: Restrainer end continuity

Page 26: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

26

Chapter 4: Connection Design and Global Stability

Buckling‐restrained Braces and Applications26

Type A Type B Type C(a) low stiffness

(US/NZ detailes)(b) high stiffness

(JP details)

(a) One-way (b) ChevronBRB configurations in frame

BRB configurations

Not rotationallybraced

Page 27: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

27

Chapter 4: Connection Design and Global Stability

Buckling‐restrained Braces and Applications27 Toru Takeuchi, Tokyo Institute of Technology

Tsai and Nakamura’s proposal (2002) Koetaka and Inoue’s proposal (2008)

2

20

(1 2 )(2 )

J Bcr

r EINL

* *

(1 2 )( )( )

Ncr R

N N

lN Kl d l d l

1 2

1 2 0

1(1 )cr RN K

L

Stability assessment

0r

c

Li

Page 28: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

28

Chapter 4: Connection Design and Global Stability

Buckling‐restrained Braces and Applications28 Toru Takeuchi, Tokyo Institute of Technology

Hikino and Okazaki’s proposal (2013)*

1 1 2*

1 1 2 1 2 0

11 21 (1 )

R Rcr R

K L K dN KL L L l d L

Takeuchi’s proposal (2013)0

10

( )( ) ( ) 1

r r rp r cr

lim cur r Bp r cr

M M a NN N

M M a N

2

2 20

(1 2 )(2 ) 24 /

Rgr J Bcr

Rg

EIN

L

0Rg

RgJ B

K LEI

20 24 /2

(1 2 )Rg

rc Rg

Li

point of rotation

LinDneck

a) mortar‐filled BRB

yielding

b) steel tube‐in‐tube BRB

Lin

Page 29: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

29

Chapter 4: Connection Design and Global Stability

Buckling‐restrained Braces and Applications29 Toru Takeuchi, Tokyo Institute of Technology

Takeuchi’s proposal (cont’d)

0 02

0 0

(1 2 )

(1 2 ) ( ) 1

g r r rp p r

lim cug r r r Bp p r cr

M M M M aN N

M M M M a N

In case of plastic hinges produced at joint ends

Stable Unstable

Page 30: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

30

Chapter 4: Connection Design and Global Stability

Buckling‐restrained Braces and Applications30

4.6 In‐plane pinching 

(a) Frame pinching (b) Frame opening

horizontal stiffener

verticalstiffener

Expected Failure Recommended Proposal

Page 31: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

31

Chapter 5: Cumulative Deformation Capacity until Fracture

Buckling‐restrained Braces and Applications31

Expected Plastic Zone

Plastic Zone

(a) Ordinary Tube Brace

(b) Incomplete Buckling-restrained Brace

(c) Complete Buckling-restrained Brace

Local Buckling Mechanism

Plastic stress concentration

Mild local buckling and averaged strain distribution along plastic zone

Friction

Local buckling distribution until fracture

Cumulative energy‐dissipation capacity

Page 32: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

32

Chapter 5: Cumulative Deformation Capacity until Fracture

Buckling‐restrained Braces and Applications32

1 21 2

m mt f fC N C N

0.1

1

10

100

0.01 1 10 100 100

01000

010000

0

LY100SS400LY235

Steel material fatigue performance4)

Cycle Number Nf

Stra

in Am

pilitu

deΔε

eq(%

)

BRB < Steel Material

BRB fatigue performance6),7)

Exp. Data5)

4) Saeki, E et al. 1995. A Study on Low Cycle Fatigue Characteristics of Low Yield Strength Steel, J. Struct. Constr. Eng., AIJ, No. 472, 139‐1475) Nakamura, H., Takeuchi, T., et al. 2000. Fatigue Properties of Practical Scale Unbonded Braces, Nippon Steel Technical Report, Nippon Steel Corporation, No. 82, 51‐576) Takeuchi, T. et al. 2008. A. Estimation of Cumulative Deformation Capacity of Buckling Restrained Braces, J. Struct. Eng., ASCE, Vol. 134, No. 5, 822‐8317) Takeuchi, T. et al. 2006. Cumulative Deformation Capacity and Damage Evaluation for Elasto‐plastic Dampers at Beam Ends, J. Struct. Constr. Eng., AIJ, No. 600, 115‐122

Elastic region

Plastic region

Manson‐CoffinFatigue Formula

Steel material fatigue performance4)

BRB Fatigue Performance under Cyclic Loading

Page 33: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

33

Chapter 5: Cumulative Deformation Capacity until Fracture

Buckling‐restrained Braces and Applications33

s0=1.0mm, tc=25mm

s0=2.0mm, tc=25mm

s0=5.0mm, tc=25mm

s0=0mm (Steel material)

1 10 100 1000 10000

Strain amplitu

de Δε n

(%)

0.1

1

10

100

0.01Fracture cycle Nf

s0=2.0mm, tc=12mm

5) Nakamura, H., Takeuchi, T., et al. 2000. Fatigue Properties of Practical Scale Unbonded Braces, Nippon Steel Technical Report, Nippon Steel Corporation, No. 82, 51‐579) Takeuchi, T., Ohyama, T., and Ishihara, T. 2010. Cumulative Cyclic Deformation Capacity of High Strength Steel Frames with Energy Dissipation Braces (Part 1), Journal of Structural and Constructional Engineering, Architectural Institute of Japan, Vol. 75, No. 655, 1671‐1679 (in Japanese)

Experiment s0=1mm, tc=25mm5)

Experiment  s0=2mm, tc=12mm9)

SN400B

Fatigue performance of BRBdecreases as clearance between core plate and restrainer increases

Fatigue Performance of BRB using Plastic Strain Concentration Mechanism

Page 34: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

34

Chapter 5: Cumulative Deformation Capacity until Fracture

Buckling‐restrained Braces and Applications34

0 0.5 1 1.5 2

Damage Index

Gradually Increasing

FatigueShaking Table

(Theory)

05

1 02 04 06 08 0

1 0 01 2 0

0.52

5

1.22

5

1.92

5

2.62

5

3.32

5

4.02

5

4.72

5

5.42

5

6.12

5

6.82

5

7.52

5

8.22

5

8.92

5

9.62

5

10.3

2

11.0

2

11.7

3

12.4

3

F r e q u e n c y Nfi

( c y c l e s )

S t r a i n A m p l i t u d e i ( % )

0.001

0.01

0.1

1

10

100

1 10 100 1000 104 105 106

Constant Amp.

Strain Amp. Δε (%)

Failure Cycles Nf (cycles)

εe=0.5・N

f

-0.14

εp=54.0・N

f

-0.71

Estimation by Miner’s Method

Strain Amplitude Frequency

Fatigue Curve under Constant Amplitude

Accuracy by Miner’s Method

Page 35: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

35

Chapter 6: Performance Test Specification for BRB

Buckling‐restrained Braces and Applications35

 

Single Brace test

Single Brace test with rotational deformation(ANSI/AISC 341-05)

6.1 Test Configurations1) Uniaxial test

Page 36: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

36

Chapter 6: Performance Test Specification for BRB

Buckling‐restrained Braces and Applications36

2) Inclined test

Inclined layout with column

Inclined layout with initial out-of-plane drift

Page 37: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

37

Chapter 6: Performance Test Specification for BRB

Buckling‐restrained Braces and Applications37

3) In‐frame test 

Page 38: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

38

Chapter 6: Performance Test Specification for BRB

Buckling‐restrained Braces and Applications38

(a) ANSI/AISC 341-05 and US practiceCycle Inelastic Deformation Cumulative strain Cumulative

(Story drift angle) ( bm = 4 by ) ( by =0.25%) Inelastic strain

by ×2 =2×4× by - by ) =0 by =2×4×0.25=2% =2×4×0=0%0.5 bm ×2 =2×4× by - by ) =8 by =2×4×0.5=4% =2×4×0.25=2%1.0 bm ×2 =2×4× by - by ) =24 by =2×4×1.0=8% =2×4×0.75=6%1.5 bm ×2 =2×4× by - by ) =40 by =2×4×1.5=12% =2×4×1.25=10%

.0 bm ×2 =2×4× by - by ) =56 by =2×4×2.0=16% =2×4×1.75=14%1.5 bm ×4 =4×4× by - by ) =80 by =4×4×1.5=24% =4×4×1.25=20%

Total =208 by =56% =52%

(b) BCJ and Japanese practiceCycle Inelastic Deformation Cumulative strain Cumulative

(Plastic length strain) ( by =0.25%) ( by =0.25%) Inelastic strain

by ×3 =3×4× by - by ) =0 by =3×4×0.25=3% =3×4×0=0%0.5%×3 =3×4× by - by ) =8 by =3×4×0.5=6% =3×4×0.25=3%1.0% ×3 =3×4× by - by ) =36 by =3×4×1.0=12% =3×4×0.75=9%

.0% ×3 =3×4× by - by ) =84 by =3×4×2.0=24% =3×4×1.75=21%

×3 =3×4× by - by ) =132 by =3×4×3.0=36% =3×4×2.75=33%

Total =264 by =81% =66%

(1.5 bm until fracture)

(3.0% until fracture)

Example BRB testing protocol

Page 39: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

39

Chapter 6: Performance Test Specification for BRB

Buckling‐restrained Braces and Applications39

6.4 Post Earthquake InspectionKoriyama Big-Eye, a 24-story, 133m building complete in 1998 in Fukushima experienced

Tohku Earthquake 2011 at 234km from epicenter. The cumulative deformationmeasurements and earthquake record were used to calibrate a finite element model,indicated a peak ductility demand of µ ≈ 4 and a cumulative plastic strain of ∑εp ≈ 20%(∑δp/δy ≈ 100) in the Y direction, still 6% of their capacity.

cumulative def. meter

max def. meterFukushima Koriyama Big-EyeInaba Y, Morimoto S, Tsuruta S, Takeuchi T, Matsui R. Damage record of buckling restrained braces that received actual ground motion. AIJ Kanto Branch Research Report Collection 2017

Page 40: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

40

Chapter 7.1: Damage Tolerant Concept

Buckling‐restrained Braces and Applications40

7.1.1 Damage Tolerant Concepts

Damage Tolerant StructureEarthquake Ground Motion and Seismic Design in Japan

Wada A, Connor J, Kawai H, Iwata M, Watanabe A: Damage Tolerant Structure, ATC-15-4, Proc. 5th

US-Japan WS on the Imprement of Building Structural Design and Construction Practices, 1992.9

Page 41: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

41

Chapter 7.1: Damage Tolerant Concept

Buckling‐restrained Braces and Applications41

0.005(1/200)

0.00125(1/800)

0.01(1/100)

0.00125(1/800)

0.01(1/100)

BRB EnergyDissipationZone

Main FrameDamage Zone

BRB EnergyDissipationZone

Main Frame(Normal Steel)

BRB

Main Frame(High-strengthSteel)

BRB

Max Response Max Response

Story DriftAngle

Story DriftAngle

ShearForce

ShearForce

System of Main Structure and DamperStrain Distribution along the beam

(a) Ordinary Concept (b) Damage Tolerant ConceptShear force-Story Drift Relationship of Damage Tolerant Structure

Page 42: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

42

Chapter 7.1: Damage Tolerant Concept

Buckling‐restrained Braces and Applications42

Triton Square Project

Page 43: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

43

Chapter 7.1: Damage Tolerant Concept

Buckling‐restrained Braces and Applications43

Grand Tokyo North Tower Election of Large BRBF

Following Damage Tolerant Projects

Page 44: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

44 Toru Takeuchi Tokyo Tech

Grid-skin structures with BRBs

BRB is suitable for Grid-skin structures

Ductile elements, Less bending loss, Free internal space, Design with facades

Page 45: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

45

Cg南側

Toru Takeuchi Tokyo Tech

Energy-dissipation Skins with Solar Cells2. Disaster Prevention and Environmental Sustainability

Page 46: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

46

Solar-panel Envelope StructureFlexible and Lightweight structure over the main frame

Main FrameSpiral Layout of Energy-dissipation Fuses around Perimeter zones

Open Space

Energy Dissipation Brace

Energy-dissipation Skins with Solar Cells2. Disaster Prevention and Environmental Sustainability

Page 47: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

47

Chapter 7.3: Seismic retrofit with BRBs

Buckling‐restrained Braces and Applications47

Midorigaoka-1st Building Retrofit concept

Page 48: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

48

Chapter 7.3: Seismic retrofit with BRBs

Buckling‐restrained Braces and Applications48

-800

-600

-400

-200

0

200

400

600

800

-30 -20 -10 0 10 20 30

Experiment

(kN

)

(mm)

Calculation -800

-600

-400

-200

0

200

400

600

800

-30 -20 -10 0 10 20 30

Experiment

(kN

)

(mm)

Calculation

(a) Before retrofit (b) After RetrofitReduced mock-up test for 2nd floor frame

Page 49: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

49

Chapter 7.3: Seismic retrofit with BRBs

Buckling‐restrained Braces and Applications49

Detail for the connections between frame and BRB

Maximum story drift obtained by time‐history analyses

Page 50: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

50

Chapter 7.3: Seismic retrofit with BRBs

Buckling‐restrained Braces and Applications50

summer spring/fall winter

Environmental effect of outer skins

Page 51: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

51

Chapter 7.3: Seismic retrofit with BRBs

Buckling‐restrained Braces and Applications51

Perimeter work process

Carbon fiber reinforcement BRB Attachment

Page 52: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

52

Chapter 7.3: Seismic retrofit with BRBs

Buckling‐restrained Braces and Applications52

Page 53: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

53

Chapter 7.3: Seismic retrofit with BRBs

Buckling‐restrained Braces and Applications53

(a) Exterior appearance (b) Interior viewApplication for Seismic retrofit (Administer Build. Tokyo Tech)

Retrofit with Diagonal BRB Louver

Takeuchi T, Yasuda K, Iwata M: Seismic Retrofitting using Energy Dissipation Façades, ATC-SEI09(San Francisco), 2009.12

Page 54: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

54

Chapter 7.3: Seismic retrofit with BRBs

Buckling‐restrained Braces and Applications54

7.4.1 BRB application on RC frame with elastic steel frame

Page 55: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

55

Chapter 7.3: Seismic retrofit with BRBs

Buckling‐restrained Braces and Applications55

A

B

C

D

E

F

1 2 3 4 5 6 8 9 107 12 1311

A

B

C

D

E

F

Typical RC school building in Turkey

Page 56: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

56

Chapter 7.3: Seismic retrofit with BRBs

Buckling‐restrained Braces and Applications56

‐80

‐40

0

40

80

120

160

0 20 40 60 80 100 120

Inter‐story displacemen

t (mm)

Time (sec)

RC onlyRC+BRBRC+BRB+SF

≈1/1000 story drift≈1/3000 story drift

≈1/30 story drift

Residual displacement

RC only

RC + BRB

RC + BRB + SF

Page 57: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

57

Chapter 7.3: Seismic retrofit with BRBs

Buckling‐restrained Braces and Applications57

0

0.5

1

1.5

2

0.000 0.005 0.010 0.015 0.020 0.025

"First M

ode" Spe

ctral A

cceleration S A

(T1, 5%

) (g)

Maximum inter‐story drift (rad) 

RC onlyRC+CB+SFRC+BRB+SFtarget drift (1/150)

(a)

0

0.5

1

1.5

0 0.00025 0.0005 0.00075 0.001"First M

ode" Ape

ctral A

cceleration S A

(T1, 5%) (g)

Maximum Residual Drift (rad) 

RC+CB+SFRC+BRBRC+BRB+SF

(b)

Increment Dynamic Analyses curves

Page 58: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

58

Chapter 7.3: Seismic retrofit with BRBs

Buckling‐restrained Braces and Applications58

Cyclic Loading Test for RC retrofit with BRB+SF(Istanbul Technological University)

Page 59: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

59

Chapter 7.6: Applications for truss and spatial structures

Buckling‐restrained Braces and Applications59

7.5.2 Types of Spatial Structure Applicationsa) Truss structures

△ △ △ △ △ △

Buckling BRB -2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

軸歪み [%]

ForceLimitingFunction

Devices

Response Control for Truss Structures

Device Layout Types for Response-controlled Truss Structures

Page 60: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

60

Chapter 7.6: Applications for truss and spatial structures

Buckling‐restrained Braces and Applications60

Horizontal Acceleration

Vertical Acceleration

Horizontal Input

(R‐1) Roof with Dampers (R‐2) Base IsolatedRoof

(R‐3) Substructure with Dampers (R‐4) Entire Base Isolation

Seismic Response of Raised Roof

Device Layout for Response-controlled Roof Structures

Page 61: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

61

Chapter 7.6: Applications for truss and spatial structures

Buckling‐restrained Braces and Applications61

Seismic retrofit of communication towers

Page 62: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

62

Chapter 7.6: Applications for truss and spatial structures

Buckling‐restrained Braces and Applications62

Deck

Horizontal Tie

Thrust Brace

Vibration Control Brace (Deck)

Main Arch

Horizontal Brace

Vibration Control Brace (Roof)

5.7

5.7

108.

3m

5.7

5.7

Toyota Stadium

Shimokita Dome

Page 63: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

63

Chapter 7.6: Applications for truss and spatial structures

Buckling‐restrained Braces and Applications63

BRBs

Buckling‐restrained Braces

Retrofit of Hanshin  highway bridge

Bridge girder with BRBs on RC peer

7.5.3 Applications to Bridge Structures

Seismic retrofit of steel arch bridge with BRBs

Celik O, Bruneau M: Skewed Slab‐on‐Girder Steel Bridge Superstructures with Bidirectional‐Ductile End Diaphragms, ASCE Journal of Bridge Engineering, Vol.16, No.2, pp.207‐218, 2011

Page 64: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

64

Chapter 7.7: Spine frame concepts

Buckling‐restrained Braces and Applications64

7.6.2. Dual spine systemBRB or Damper

BRB or Damper(a) Conventional BRB distribution (b) Dual spine concept

ElasticBrace

Taga K, Koto M, Tokuda Y, Tsuruta J, Wada A. Hints on how to design passive control structure whose damper efficiency is enhanced, and practicality of this structure, Proc. Passive Control Symposium 2004, 105‐112, Tokyo Tech, 2004.11

Page 65: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

65

Chapter 7.7: Spine frame concepts

Buckling‐restrained Braces and Applications65

Retrofit of Suzukake G3 Tokyo Tech 2010Akira Wada, Qu Zhe et al.

Qu Z, Wada A, Motoyui S, Sakata H, Kishiki S: Pin-supported walls for enhancing the seismic performance of building structures. Earthquake Engineering and Structural Dynamics 2012

Page 66: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

66

Chapter 7.7: Spine frame concepts

Buckling‐restrained Braces and Applications66

7.6.4. Non-uplifting Hinged Spine Frame System (Material Research Building)

Page 67: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

67

Chapter 7.7: Spine frame concepts

Buckling‐restrained Braces and Applications67

(a) Conventional BRBF (SD) 

(b) Lift‐up Rocking Frame (LU) 

(c) Non‐uplifting Spine Frame (NL) 

7.6.5. Comparison of Spine Frame Systems

Takeuchi T, Chen X, Matsui R. Seismic performance of controlled spine frames with energy‐dissipating members, Journal of Constructional Steel Research, Vol.115, 51‐65, 2015.11

Page 68: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

68

Chapter 7.7: Spine frame concepts

Buckling‐restrained Braces and Applications68

BRC

PT wire

BRC BRC

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

1

2

3

4

5

0 0.03 0.06 0.09 0.12 0.15

1

2

3

4

5

0 0.03 0.06 0.09 0.12 0.15

1

2

3

4

5

0 0.03 0.06 0.09 0.12 0.15

Residual Story Drift Angle (%)Max. Story Drift Angle (%)

0.8% rad.(1/125)

0.8% rad.(1/125)

0.8% rad.(1/125)

0.05% rad.(1/2000)

0.05% rad.(1/2000)

0.05% rad.(1/2000)

Shear DamperSystem

Lift-upSpine

System

Non Lift-upSpine

System

Page 69: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

69

Chapter 7.7: Spine frame concepts

Buckling‐restrained Braces and Applications69

680 Folsom Street, SF, US

7.6.7 Application ExamplesRetrofit of Steel Frame with RC core wall spine

Janhunen B., Tipping S., Wolfe J., Mar T. Seismic Retrofit of a 1960s steel moment-frame highrise using a pivoting spine, SEAOC 2013 Convention Proceedings

Page 70: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

70

Chapter 7.7: Spine frame concepts

Buckling‐restrained Braces and Applications70

BRBs

RC core

Wilshire Grand Tower, LA, US

Damped Outrigger concept

Joseph LM, Gulec C, Schwaiger K Justin M: Wilshire Grand: Outrigger Designs and Details for a Highly Seismic Site,  International Journal of High‐Rise Buildings,  Vol.5, Issue 1, 2016, pp.1‐12

Page 71: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

71

Chapter 7.7: Spine frame concepts

Buckling‐restrained Braces and Applications71

atR

Optimization Method

2 2 2

2 2 2

3.28 0.75 (1 ) 0.57(1 )6.75 1.81 (1 ) 0.63(1 )

tr at tr at at at

tr at tr at at topt

a

S R S R R RS R S R R R

,, ,

2

4 2 2

0.20 0.59 0.61 ,2.01 ( 2)

b

t

at optat opt d op

r trtS

R ck R

S

Exclusive Optimization

Res

pons

e

Outrigger position

Dam

per

B.Huang, T.Takeuchi: Dynamic Response Evaluation of Damped-Outrigger Systems with Various Heights, Earthquake Spectra, Vol.33, No.2, pp.665-685, 2017.5

Page 72: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

72

Chapter 7.6: Applications for truss and spatial structures

Buckling‐restrained Braces and Applications72

The latest knowledge is overviewed in

Buckling-Restrained Braces and Applications

T. Takeuchi and A. Wada, Japan Society of Seismic Isolation, 2017

mail to [email protected]

30-years from the first application, BRBs are still actively researched andexpanding applications. I am looking forward to further development inthe future.

Page 73: Buckling‐restrained Braces and Applications · Toru Takeuchi, Akira Wada RyotaMatsui, Ben Sitler, Pao-Chun Lin, FatihSutcu, Hiroyasu Sakata, ZheQu. 2 Chapter 1: Composition and

73

Thank you very much for your kind attention


Recommended