+ All Categories
Home > Documents > Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Date post: 16-Mar-2016
Category:
Upload: emiko
View: 36 times
Download: 0 times
Share this document with a friend
Description:
Presented at Kaohsiung Water Forum April 21-25, 2013 – Kaohsiung Taiwan. Climate Risk and Adaptation Assessment in City Level Greater Malang, Palembang City and Tarakan Island. Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA - PowerPoint PPT Presentation
Popular Tags:
60
Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA Senior Technical Advisor on Office for Climate Change Resilience – Ministry of National Development Planning Climate Risk and Adaptation Assessment in City Level Greater Malang, Palembang City and Tarakan Island Presented at Kaohsiung Water Forum April 21-25, 2013 – Kaohsiung Taiwan
Transcript
Page 1: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Budhi SetiawanCivil Engineering Department, Sriwijaya University INDONESIA

Senior Technical Advisor on Office for Climate Change Resilience – Ministry of National Development Planning

Climate Risk and Adaptation Assessment in City Level Greater Malang, Palembang City and Tarakan Island

Presented at Kaohsiung Water ForumApril 21-25, 2013 – Kaohsiung Taiwan

Page 2: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Outline

• Climate Risk and Adaptation Assesssment Framework in Indonesia

• Flood Risk and Adaptation Method• Landslide Risk and Adaptation Method• Analysis of Climate Risk and Adaptation in :

– Greater Malang– Palembang City– Tarakan Island

Page 3: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

CLIMATE RISK AND ADAPTATION ASSESSMENT IN INDONESIA

Page 4: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Approach

Impact Vulnerability Adaptation RISK Integrated

Scientific Objective Impact and risk under future climate

Processes effecting vulnerability to climate

change

Processes effecting adaptation and adaptive

capacity

Risk and Policy Response

Assessment

Interaction and feedbacks between multiple driver

and impacts

Practical aims Actions to reduce risks Action to reduce vulnerability

Action to improve adaptation

Mainstreaming intoPolicy Making

Global policy options and costs

Research methods

Standard approach to CCIAV

Driver-pressure-state-impact-response (DPSIR) methods

Hazard-driven risk assessment

Vulnerability indicators and profilesPast and present climate risk

Livelihood analysisAgent-based methods

Narrative methodsRisk perception including critical threshold

Development/sustainability policy performanceRelationship of adaptive capacity to sustainable

development

Risk Assessment Procedures

Risk composes of Hazards and

Vulnerability

Integrated assessment modeling

Cross-sectoral interactionsIntegration of climate with

other driversStakeholder discussions

linking models across types and scales

Combining assessment approaches/methods

Motivation Research Driven Research/Stakeholders Driven Policy Driven Research/Stakeholders Driven

Approaches in Research of Climate Change Impact (CCIAVA)(Modified from IPCC, 2007)

Page 5: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Risk Assessment Approach

Climate stimuli • Temperature • Rainfall • Sea level

Surface condition :• topography • land cover• etc

Projected changes in :• mean • variability• extremes

CC Hazards (by sectors)

• Water resources• availability ()• flood & drought ()

• Agricultural• production () planting failure harvest failure lower productivity

• Health • incidence rate () DBD Malaria Diarrhea

• Coastal • inundated area () SLR Extreme events

H = F(f,M,p)

Bio-Physical• # Houses• Cultivated area• etc

Vulnerability Components• (E)xposure • (S)ensitivity• (A)daptive- (C)apacity

(R) isk = H×V

Elements of Built Environment

Social• Population density• # Vulnerable group• etc

Economic • # Assets • GDP growth • etc

ACSEV

Additional analysis/ modeling

IPCC AR4

Pseudo Equation (Wisner et al., 2004)

Page 6: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Adaptation Planning with DRR Framework

(1)Understand the climatic hazard

(2)Assess Risks (3)Reduce Risks

(4)Transfer Risks

uncertainty

past proxy data

• Hazard Assessments• Vulnerability Assessments• Risk Maps• Potential Impact Assess.

Macro-scale :• National scale • Policy & Laws • Long-term planningMeso-scale :• Province & Municipality • Policy / Strategy• Mid-term PlanningMicro-scale :• Municipality • Spatial planning• Adaptation action

• Reduce Hazard Level• Reduce Vulnerability Level

• Structural• Technological • Socio-cultural • etc. measures

• Financial instruments

present obs. data

future climate model

• To save human lives• To save investments

Climate scientists Climate scientists, engineers, economic & policy analysts Planners, Decision makers

• Reduce economic loss• Accelerate recovery

Page 7: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

(1)Science Basis (2) Risk Analysis

(3) Adaptation Policy

Hazard Analysis :• Water shortage/drought• Flood• Landslide

• Identify of risk area• Prioritize of adaptation program• Recommendation

ClimatevAnalysis & Projection

Rainfall and temperature in baseline and projection

Vulnerability Analysis :• Bio-Physic, Social, Economic• Baseline• Dynamic Vulnerability

Hazard Map

Vulnerability Map

Risk Map as Impact of Climate Change

Page 8: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

General MethodHazard Stimulation

(climatic driven)

Hazards (H) Vulnerabilities (V)

Risks (R)

GISR : H x V (E,S,AC)

Adaptation Policy & Strategy

Adaptation Measures (Programs & Activities)

H, V & R Analysis

(Baseline/B &

Projection/P)

Adaptation Analysis (B &

P)

H / V Components (non-climatic driven)

Page 9: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

FLOOD RISK AND ADAPTATION ASSESSMENT

Page 10: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Building

Data Process

Vulnerability Hazard

Risk analysis

Infrastructure

Administrative Boundary

PDA Statistic

Land Use and RTRW

Inundation

Swamp and river

Adaptation strategy

Drainage

Page 11: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

LANDSLIDE RISK AND ADAPTATION ASSESSMENT

Page 12: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

SlopeSoil TypeGeology

InfrastructureDensityBuildingLanduse

Environmental FactorTriggering Factor

Landslide Occurences Rainfall

IDFCRD

Ground water Table Recharge

Soil Strength Decreases

Landslide Hazard Analysis

(Map of Hazard)

Vulnerability Analysis(Map of Landslide Vulnerability)

Risk= Hazard x Vulnerability(Map of Landslide Risk)

Adaptation Strategy

STEP I

STEP IV

STEP II

STEP III

STEP V

Page 13: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

ANALYSIS OF CLIMATE RISK AND ADAPTATION ASSESSMENT

IN GREATER MALANG (FLOOD AND LANDSLIDE)

Page 14: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

0 50 100 150 200 250 3000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rainfall (mm/day)

Pro

babi

lity

of E

xcee

denc

e

1 yr2 yr

5 yr

10 yr

Probability of exceedence rainfall with return periods 1, 2, 5, and 10 years

Relationship between monthly rainfall and probability of extreme rainfall

Climate condition in Greater Malang

Page 15: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Hazard Potential of Flood in Greater Malang

Baseline Projection

Page 16: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Flood vulnerability in Greater Malang

Baseline Projection

16

Page 17: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Flood Risk in Baru City

Baseline Projection

Page 18: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Baseline Projection

Flood Risk in Malang City

Page 19: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Flood Risk in Malang Regency

Baseline Projection

Page 20: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

5 10 20 30 40 50 600.0

50.0100.0150.0200.0250.0300.0

Kurva IDF (Intensity-Duration Frequency)

kurva-basis

durasi

inte

nsita

s

Slope stability analysis based on climate change hazard

Page 21: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Hazard Baseline Map of December 2006, as the most wet month

Hazard Baseline Map of December 2007 as the most dry month

Landslide Hazard in Greater Malang

Page 22: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Components Indicators Sub-indicators Weighting

Exposure Population density Population and population growth per sub-district 0.54

Landuse Landuse as in regional planning 0.22Sensitivity Role of infrastructure Road infrastructure 0.18Adaptive Capacity Population Welfare Population’s income 0.06

baseline projection

Landslide Vulnerability in Greater Malang

Page 23: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Landslide risk map for baseline condition(Observation data)

Landslide risk map for baseline condition(Simulation data)

Landslide risk map for projection condition

Risk Level

Risk Area (m2)

Baseline Projection

Observation Simulation Simulation

Very Low 760.260.000 792.590.000 2.141.700.000

Low 1.639.880.000 1.657.270.000 328.540.000

Moderate 152.550.000 115.720.000 56.510.000

High 33.440.000 20.620.000 54.200.000

Very High 250.000 190.000 880.000

Landslide Risk Area of Great Malang

Page 24: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

ANALYSIS OF CLIMATE RISK AND ADAPTATION ASSESSMENT

IN PALEMBANG CITY (FLOOD)

Page 25: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Palembang City

Page 26: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA
Page 27: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA
Page 28: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Palembang inCoastal Area, Swamp Area, River and Lowland

The Development in Swamp Area

Page 29: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

= River

Page 30: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

(Curah Hujan di Asia Tenggara peta awal 1900-an,Broek, 1944)

Aldrian and Susanto (2003)

Sumsel beriklim basah; batas antara tipe monsunal (satu puncak) dan ekuatorial (dua puncak) ?

Regional Climate

Page 31: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Past Local Climate in Palembang

Equatorial

Monsunal

Ekuatorial in dry season

Limit of dry/wet month from Indonesian Agency for Meteorology, Climatology and Geophysics

De gemiddelde jaartemperaturen op de kustplaatsen verschillen minder dan l°C. en bewegen zich, voor zoover bekend, tusschen 26.6 en 27.3° C. ; het gemiddelde verschil tusschen dag- en nachttemperatuur is 5 a 6° C. ; dat tusschen de warmste en de koudste maand iets meer dan 1° C.

Page 32: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Temperature :• Monthly mean temperature has two peaks that seems to

lag about one month or more from the equinoxes with an average value of slightly above 27° C. It is of interest to note that the temperature difference between warmest (May) and coolest (January) months is about 1° C. (C. Lekkerkerker, 1916).

Development Verification weighting Projection

The trend of temperature does not show significant increasing from year of 1951 to 2030. From the 3 scenarios SRES the temperature increase to 1° C relative to (1961-1990)

Source : Hadi, 2011

Source : Hadi, 2011

Figure below shows Baseline condition of temperature for baseline (1955-1999) and projection of temperature (2009-2099).

TEMPERATURE

Page 33: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Slightly different in the mountains area on the North West it becomes unclear in dry season (rainfall is relatively higher)

Source : Hadi, 2011

The models shows the spatial variability of rainfall for baseline condition (1951-1990) by using Observation data (left) and SRA1B scenarios of IPCC.Source : Hadi, 2011

Source : Hadi, 2011

Rainfall analysis are using some scenarios of IPCC, although the models show large discrepancy from observations, the increase of rainfall during the last decade was obtained from the results from A1B and A2 scenarios. In general, results from these two scenarios produce similar rainfall variations at least until early 2030s.

RAINFALL

Page 34: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Hazard analysis

Baseline (2010) Projection (2030)

Page 35: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Vulnerability

Baseline (2010) Projection (2030)

Page 36: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Difference Analysis Level of VulnerabilityMesso Micro Local

Baseline

Projection

Baseline

Projection

Baseline

Projection

Page 37: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Risk Analysis

• R= H x V

Baseline (2010) Projection (2030)

Page 38: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Adaptation Strategy/ActionLand use type Short-term Long term

Road Drainage normalisationIncreasing level of road surface

Increasing level of pavement

Housing and building Drainage normalisationBio-poreIncreasing the amount of farming

Watershed areaRiver normalisation

Install embankmentPumping

Swamp area Drainage normalisation Monitoring to the regulation

Industry, office, trade and service area

Infiltration Measure (permeable paving) 

Bio-poreDetention

Other landuse typeInfiltration Measure

(permeable paving)Canalisation

Drainage normalisation Green space

Page 39: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

ANALYSIS OF CLIMATE RISK AND ADAPTATION ASSESSMENT IN TARAKAN ISLAND (LANDSLIDE)

Page 40: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Tarakan Island• On east-side of Kalimantan, Indonesia• Located at 3o14'23"-3o26'37" Northern Latitude and 117o30'50"-117o40'12“ Eastern Longitude• 61 Landslide occurences until 2010• Slope 0-15%• Extreme scenario of rainfall intensity is 100 mm/Hours (with the longest duration is 2 hours) • Annual rainfall has two peak; on April (338 mm with average monthly temperature) and November, 360 mm mmt), meanwhile the most dry is on February (252 mm mmt)• The estimation of temperature increasing is higher than 0,5 degree C/100 years

Page 41: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Survey Titik Longsor di Kota Tarakan

61 points of Landslide Occurences in Tarakan

Page 42: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Annual pattern of climate

Rainfall

Temperatur

Page 43: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Projection of climate

Page 44: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Hazard Components:• Landslide occurence• Slope• Geology• Ground Water Recharge

11 2 3

4

5 67

89

1.960

Distance (m)0 50 100 150 200 250 300 350 400 450 500 550

Elevation (m)

0102030405060708090

100110

Kelurahan X_coord Y_coord Kelurahan X_coord Y_coordKampung Enam 1 569047 365608 Karang Balik 2 565467 365390Kampung Enam 2 569439 366217 Karang Balik 3 565526 365380Pamusian (Ladang dalam) 566939 366518 Karang Balik 4 565182 365781Kampung Baru 1 566233 366429 Mamburungan Timur 569581 361431Kampung Baru 2 566273 366198 Juata Laut 1 560885 380305Kampung Baru 3 566506 366206 Juata Laut 2 561024 380413Pamusian (Markoni dalam) 566662 365150 Juata Laut 3 561763 380233Gunung Lingkas (Jl.TMD) 566369 364409 karang harapan 1 563223 370499Sebengkok 7 566377 364453 karang harapan 2 563569 369782Sebengkok 8 566034 364745 pantai amal 1 571892 364062Sebengkok 9 565766 365248 pantai amal 2 571835 364144Sebengkok 10 565817 364186 pantai amal 3 569838 366204Kampung Satu Skip 1 565648 367837 kampung enam 3 569316 365575Kampung Satu Skip 2 565730 367939 Karang Balik 1 565428 365739Kampung Satu Skip 3 565924 368020 Karang Balik 2 565611 365728Kampung Satu Skip 4 565861 367787 Sebengkok 1 565882 365505Kampung Satu Skip 5 567049 367541 Sebengkok 2 565892 365396Kampung Satu Skip 6 567535 367070 Sebengkok 3 565871 365463Kampung Satu Skip 7 567391 366852 Sebengkok 4 565945 365619Karanganyar 1 565197 367188 Sebengkok 5 565945 365491Karanganyar 2 565114 367103 Sebengkok 6 565992 365463Karanganyar 3 565141 367188 Selumit 1 565704 364833Karanganyar 4 565078 366936 Selumit 2 565710 364987karang anyar 5 564499 367360 Selumit 3 565433 364782Karanganyar 6 565260 366824 Gn. Lingkas ujung 565538 363812Karanganyar 7 566021 367099 Gn.Lingkas 1 566319 364375Karanganyar 8 566456 367367 Gn.Lingkas 2 566394 364447Juata Permai 1 560370 371544 Gn.Lingkas 3 566516 364805Juata Permai 2 560377 371540 Kampung Bugis 566137 367079Karang Balik 1 565484 365358 Perumnas 564366 367152

Survey lokasi longsor

Stabiliy modelling

Landslide existing map

Probability index

Modelling

Page 45: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

N

555000

555000

560000

560000

565000

565000

570000

570000

575000

575000

580000

580000

360000 360000

365000 365000

370000 370000

375000 375000

380000 380000

Index :12345

3 0 3 6KM

Skala :

Hazard Components :• Landslide occurence• Slope• Geology• Ground Water Recharge

No Steepness Slope1 Flat 0-2 %2 Gently Sloping 3-7 %3 Sloping 8-13 %4 Steep 14-20 %5 Very steep 21-55 %6 Extremely steep >56%

Page 46: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Hazard Components:• Landslide occurence• Slope• Geology• Ground water recharge

No Geology Grain size Texture Cohession Phi Consolidation Total Index1 Clayey sand 3 2 2 3 2 12 42 Monmorilonit 1 1 4 3 1 10 13 Conglomerate 4 1 1 4 1 11 2

4 Quarter Sediment 1 1 3 2 3 10 1

5 Coal 4 3 2 3 1 13 36 Sandstone 3 3 1 4 1 12 47 Claystone 1 3 4 1 3 12 4

N

555000

555000

560000

560000

565000

565000

570000

570000

575000

575000

580000

580000

360000 360000

365000 365000

370000 370000

375000 375000

380000 380000

3 0 3 6KM

Skala :

Indeks :1234

Page 47: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Hazard Components:• Landslide occurence• Slope• Geologi• Ground Water Recharge

Rainfall - Recharge

Rainfall

Using Cummulative Rainfall Departure Method (CRD)

Page 48: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

0

100

200

300

400

500

600

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000

Rainfall (mm) Water Level (mm)

Januari Februari Maret April Mei Juni

Juli Agustus September Oktober November Desember

Ground Water Recharge Modelling in Tarakan Island

Page 49: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

5 10 20 30 40 50 600.0

50.0100.0150.0200.0250.0300.0

Kurva IDF (Intensity-Duration Frequency)

kurva-basis

durasi

inte

nsita

sModelling process of slope stability using

input of soil strength decrease

Page 50: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Slope Stability Modelling using input of Soil Strength Decrease

Page 51: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Landslide Hazard (2020) In Tarakan Island

Januari Februari Maret April Mei Juni

Juli Agustus September Oktober November Desember

Page 52: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Landslide Hazard Area in Tarakan Island

January February March April May JuneVery Low 66,52 84,56 66,57 66,52 43,34 66,57

Low 111,55 122,52 128,81 111,55 61,35 111,62

Moderate 57,34 39,43 48,24 57,30 119,29 65,43

High 14,38 3,30 6,18 14,39 25,14 6,18

Very High 0,03 0,00 0,02 0,05 0,70 0,02

July August September October November DecemberVery Low 66,57 66,57 84,56 66,52 51,45 51,45

Low 128,81 128,81 122,52 111,55 105,05 73,06

Moderate 48,24 48,24 39,40 57,30 67,60 99,60

High 6,18 6,18 3,32 14,39 25,02 25,02

Very High 0,02 0,02 0,01 0,05 0,69 0,69

Hazard Area (KM2)

Page 53: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Landslide Vulnerability

Peta IndeksBuilding 0,3

Population density 0,25

Slope 0,23Infrastructure and public facilities 0,12

Landuse 0,1

Page 54: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Landslide Risk (2020) in Tarakan Island

Januari Februari Maret April Mei Juni

Juli Agustus September Oktober November Desember

Page 55: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Landslide Adaptatation Assessment

Refferring : • Australian Geomechanics Society (AGS)• Landslide Risk Assessment and Mitigation

(LARAM-2000) Describe 4 typical works, i.e : Drainage installation, Slope modification, Retaining Wall, and Internal Slope Reinforcement

Page 56: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Risk

Evaluation

Conceptual designClient/Owner/Regulator to

decide to accept or treat technical specialist to advise

Design to implement preferred site

Review preliminary design and select optimum method of

stabilising landslide

Detailed design of short and long term monitoring system

Specify any special measures specific to construction through

landslide zone

MonitoringInstall monitoring

system

Construct

Is project performing satisfactory ?

Continue periodic monitoring

Reconsider

Feedback

Feedback

Design phase

Construction phase

Maintenance phase

Feedback

Feedback

Revised design

No

Yes

Page 57: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA
Page 58: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Phase of Location Assessment

Tata Guna Lahan High Risk (m2)

Desain Non-Desain Hutan Lebat 13.056,98 Jalan 9.530,95 Kawasan Terbangun 55.804,71 Kebun Campuran 341.448,53 Kilang Minyak 81,49 Kolam 107,32 Kuburan 9.714,04 Lapangan Olahraga 0,06 Mangrove 24,81 Perkebunan 51,08 Pertanian Lahan Kering 64.510,56 Rawa 401,48 Semak Belukar 191.261,46 Tambak 1.851,31 Tanah Kosong/Tegalan 30.250,18 Tubuh Air 2.823,97

Landuse in High Risk Landslide

Adaptation and non-adaptation area

3 0 3 6KM

Skala :

Lokasi DesainPenanggulangan Longsor

555000

555000

560000

560000

565000

565000

570000

570000

575000

575000

580000

580000

360000 360000

365000 365000

370000 370000

375000 375000

380000 380000

N

Map of landslide Adaptation

Evaluation of Landslide Risk Assessment of Landslide Location

Page 59: Budhi Setiawan Civil Engineering Department, Sriwijaya University INDONESIA

Adaptation Modelling Process

N

Skala :

561200 561600 562000 562400

3798

0038

0200

3806

00

Peta Lokasi DesainPenanggulangan Longsor

0.1 0 0.1 0.2 0.3 0.4KM

Elevasi97.222 - 11084.444 - 97.22271.667 - 84.44458.889 - 71.66746.111 - 58.88933.333 - 46.11120.556 - 33.3337.778 - 20.556-5 - 7.778

BangunanBahaya Sangat TinggiResiko Tinggi

Keterangan : •Lokasi longsor berada pada Kecamatan Tarakan Utara, Kelurahan juata laut, •Slope 21-40%•Geologi batu pasir•Tata guna lahan berada di pinggir laut dengan kawasan terbangun •Vegetasi rapat•Safety factor 0,79•kejadian longsor 3 titik (56173,380233), (561024,380413), (560885,380305)

0.790

Distance (m)0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Elevation (m

)

-1

1

3

5

7

9

11

1.649

Distance (m)0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Elevation (m

)

-1

1

3

5

7

9

11

Kondisi awal dengan FK = 0,790 (tidak stabil)

Desain kestabilan lereng menghasilkan FK = 1,649 (stabil)

1 Risk Analysis

2 Ground Survey

3 Collecting Data

4 Adaptation Measurement


Recommended